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Abstract-The nature of a class of division techniques which
permit the selection of quotient digits in digital division by the inspec-
tion of truncated versions of the divisor and partial remainder is
reviewed in detail. Two types of mechanisms, or so-called model
divisions, for the selection of quotient digits are introduced. For both
types of techniques, analytic tools are suggested for determining the
number of bits which must be inspected as a function of the radix
and form of representation of quotient digits. The analysis accounts
for the representation of the partial remainder in a redundant form
such as the one produced by an adder-subtractor which eliminates
carry-borrow propagation.

Index Terms-Arithmetic unit, binary division, computer arith-
metic, division.

INTRODUCTION
Tp HIS PAPER reviews the nature of a class of divi-

sion techniques especially suited for implementa-
tion in an electronic digital computer. The tech-

niques permit the selection of quotient digits by the
inspection of truncated versions of the divisor and par-
tial remainder. The radix-two member of this class, the
so-called SRT division, has been known for some time.
An example of this radix-two case was described by
Nadler [1] as early as 1965. Whether or not the Nadler
division is equivalent to the SRT is obscured by the fact
that it is discussed in conjunction with a stored carry
adder-accumulator. The SRT division was given that
name by Freiman [2] because it was discovered inde-
pendently at about the same time by D. Sweeney of
IBM, J. E. Robertson of the University of Illinois [3],
and T. D. Tocher, then of Imperial College, London [4].
The extension of the technique to higher radices as re-
ported here is based primarily upon work by J. E.
Robertson [5l. References [8]- [11] are provided for
those wishing to read further concerning division tech-
niques.
The purpose of this paper is to first review and illu-

minate the theory of this division technique, and then to
develop analytic expressions for determining the num-
ber of bits of divisor and partial remainder which must
be inspected for a given radix and a given form of repre-
sentation of quotient digits.

It will also be demonstrated that the required preci-
sion is related to the type of selection mechanisms used
to generate quotient digits.
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THE RECURSIVE RELATIONSHIP
Digital division as implemented in an electronic com-

puter consists of preliminary operations, e.g., normaliza-
tion, a recursive process; and a terminal operation, e.g.,
changing the form of the remainder. Although prelimi-
nary and terminal operations vary from machine to
machine, they generally consume much less of the execu-
tion time than the recursive operations. For restoring,
nonrestoring, and the schemes to be described in this
paper, this recursive relationship is defined by

Pj+l = rp, -qj+1d (1)

where the symbols are defined as follows:

j=the recursive index =0, 1, * * - , mi-1
pi= the partial remainder used in the jth cycle
po =the dividend
Pm = the remainder
qj= the jth quotient digit in which the quotient is of

the form

qo a qlq2 . . . qm

*i radix point

m = the number of digits, radix r, in the quotient
d = the divisor
r =the radix.

Although not germane to the theory of division, it is
interesting to note in passing that this relation points to
possibilities for accelerating the execution of division.
Verbally, the equation says that each partial remainder
must be multiplied by the radix rpj, i.e., shifted left one
digital position, and that the selected quotient digit
must then be multiplied by the divisor qj+ld, and sub-
tracted from this shifted partial remainder. The division
process will thus be accelerated if the shift and/or the
subtraction time is decreased. In practice, all values of
qj+ld are stored in registers or are readily available via
shift gates from the register containing the divisor. The
rapid formation of qj+ld thus reduces to minimizing the
necessity for forming awkward multiples requiring an
addition, and to accelerating the selection of qj+ld at the
divisor input to the adder-subtractor.

Secondly, note that the recursive index j is implicitly
an inverse function of the radix. When actually imple-
mented on a machine, digits of a radix higher than two
are represented by two or more binary bits. A string of I
binary digits (bits) is equivalent to 1/2 radix-four digits.
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In general, for I bits of radix two, there corresponds
m =l/log2r digits of radix r, where for practical cases,
r=2I and n=integer>0. Thus to produce a quotient of
given precision, the number of iterations required and
concomitantly, the execution time, are decreased as the
radix is increased.

REPRESENTATION OF QUOTIENT DIGITS

As noted above, the use of a higher radix reduces the
number of cycles required to perform a division of given
precision. The implementation of such a scheme may be
costly, however, and costlier still if quotient digits are
represented as they are in manual methods or machine
restoring division. In these cases, quotient digits have
the values 0, 1, 2, * , r-1. A radix-four restoring
division therefore requires that multiples of 1, 2, and 3
times the divisor be available for subtraction from the
partial remainder. The 1 time multiple is readily avail-
able, of course; the 2 times multiple is formed by merely
shifting left one binary position; the 3 times multiple,
however, requires extra time and/or hardware. It may
be formed by a tripler circuit or by addition of 1 time
and 2 times the divisor which is then stored in an auxil-
iary register.
With higher-radix SRT division the problem of form-

ing divisor multiples is mitigated by using both plus and
minus quotient digit values. The quotient digits are of
the form -n, -(n-1), * * * , -1, 0, 1, * - *, n, where
n is an integer such that 1/2(r-1)<n<r-1. Within
this range the actual choice of n for a given r is largely a
function of design details.
The necessity for the range restriction is as follows:

at least r unique digits are required to represent a num-
ber, radix r. In the representation introduced above,
there are 2n +1 unique digits, and thus the requirement
2n+1>r. On the other hand, for radix r, the maximum
value of a quotient digit n should not be greater than the
value of the maximum digit representable, thus n < r -1.
Combining these two inequalities yields the restriction
stated above.
With plus and minus quotient digits, a higher-radix

division may be implemented with fewer awkward
multiples of the divisor. Now the quotient digits for a
radix-four division are -2, -1, 0, +1, +2. All the
necessary multiples of the divisor may be formed by
shifting and complementation and require no auxiliary
registers.
The second, but probably more significant, conse-

quence of this representation of quotient digits is that it
introduces redundancy into the representation of the
quotient. If 2n is greater than r -1, then there are more
symbols available to represent a number than is actually
necessary. Therefore, some numerical values may be
represented in more than one form. For example, with
r = 4, n =2, and with - representing negation, the num-
ber 6 could be represented as 12, or 22. As explained in
later sections, this redundancy permits less precision in

comparing the divisor and partial remainder in selecting
a quotient digit. This statement seems intuitively cor-
rect, since without redundancy each quotient digit may
be represented in only one way and thus must be se-
lected precisely. With redundancy, the quotient digit,
and thus the comparison of divisor and partial remain-
der, need not be precise. However, this nonunique repre-
sentation does complicate the division in that the re-
dundant form must eventually be converted to a con-
ventional representation.

RANGE RESTRICTIONS
With the quotient representation now defined, con-

sider the derivation of range restrictions on the partial
remainders. Recall from the manual execution of a divi-
sion that in determining whether a quotient digit is
correct or not, one is essentially applying the restriction
that 0 <pj+ <d, where pj+l is the result of the subtrac-
tion of qj+l times the divisor from the jth partial re-
mainder. If pj+l is not within this range then qj+l is
changed until it is. For nonrestoring division, negative
partial remainders and negative quotient digits are al-
lowable, and thus the range restriction is Pj1±l < d| . It
seems reasonable, therefore, to hypothesize other divi-
sion techniques for which .pj+il<k|d|, and which
utilize the quotient digit representation introduced in
the last section. The upper limit on k is 1.
We now adopt the hypothesis that even though we

may be working with a radix greater than two, the
divisor is in a binary normalized form, i.e., restricted to
the range 1/2<d<1. In this case, as we shall find, the
lower limit of k is 1/2.

First reconsider the recursive relationship (1). After
pj+l is formed on the jth cycle, it is multiplied by the
radix r (shifted left); j is increased by one and becomes
rpj of the present cycle. Since Pj+1I < kd, it follows that
pj must obey the same restrictions, i.e.,

rl pjj < rkl dl .

Substituting (1) into (2) yields

-kd < rpj - qj+l < kd.

(2)

(3)

Equation (1) is now normalized with respect to the
divisor and is rewritten, letting zj=pj/d and zj+
=Pj+11d:

zj+l = rzj - qj+i. (4)
Equation (4) may be interpreted graphically as a plot

of zj+1 versus rzj with the quotient digit qj+l as a param-
eter. Such a representation shall be called a "z-z plot."
Recall that the quotient digits assume values -n,
-(n-1), * * *, -1, 0, +1, * * *, n. Fig. 1 is such a
graph. To facilitate discussion, each plot corresponding
to a different quotient digit is called a "q line."
The goal of this section is to demonstrate that a cor-

rect division procedure exists which incorporates the
above range restrictions and quotient representation.

926



ATKINS: HIGHER-RADIX DIVISION

Fig. 1. z-z plot of division procedure.

This existence is substantiated if for each value of rzj in
the allowed range there corresponds a quotient digit and
a zj+1, also in their allowed ranges. In terms of Fig. 1,
this means that for any point on the rzj axis such that
-rk<rzj<rk, one must be able to move on a line seg-
ment normal to the rzj axis and intersect a q line at a
point corresponding to a zj+l within the range - k < zj+1
<k. This allowed range is enclosed between the lines
zj+l=k and zj+l=-k in Fig. 1.
To satisfy the foregoing requirements, the maximum

value of rzj, i.e., rk, must occur at the intersection of
zj+l= k and the q line, zj+l=rzj- n. Similarly, the mini-
mum value must occur at the intersection of zj+l= -k
and the q line, zj+l= -rzj+n. These bounds on rzj are
indicated by the dashed vertical lines of Fig. 1.

Fig. 1 now points to the value of k in terms of r and n.
At the upper-right vertex of the bounding rectangle,
zj+1 = k = rzj-n. But since rzj = rk,

n
k = * ~ . (5)

r- 1

The division is now characterized by tangible param-
eters, namely the radix and the maximum value of quo-
tient digits. Combining (5) with the restriction on n,
(r-1)/2<n<r-1, verifies the statement at the begin-
ning of this section, 1/2 < k < 1.

REDUNDANCY IN THE QUOTIENT REPRESENTATION
We have established that the quotient digit represen-

tation introduces redundancy into the quotient. This
fact is also manifested in Fig. 1 in the regions on the rzj
axis for which either one of two q lines may be legiti-
mately selected. For example, at point A one may move
vertically upward to the qj+l =0 line or downward to the
qj+l = + 1 line. In either case the quotient digit is correct.
Fig. 2, a specific case of Fig. 1, testifies to the fact that

this freedom of choice is not merely the result of an in-
accurately drawn graph. Here r= 4, n =2. The vertical
dashed lines define the overlap regions.
The production of a redundant quotient requires

extra hardware and perhaps time to convert it to a
conventional binary representation acceptable by other
sections of the machine and by programmers. This con-
version is discussed at greater length in subsequent
sections of this paper. With no redundancy, the divisor
and the shifted partial remainder must be compared
(usually by subtraction) to the full precision defined for
the machine. With redundancy, the designer is at liberty
to inspect fewer bits of the divisor and shifted partial
remainder than define full precision. Handling fewer
bits may save time and hardware. In Fig. 2, for example,
a correct quotient digit is selected knowing rzj = rpj/d to
a precision only great enough to contain it within an
overlap region. Exactly what precision is required for a
given value of r and n is the subject of the next section.

In terms of z-z plots such as Figs. 1 and 2, the redun-
dancy is proportional to the width of the overlap re-
gions. The width of this region in terms of n and r is
found as follows. Consider two adjacent lines of Fig. 1,
i.e., zj+i=rzj-i and zj+i'=rzj-(i-1). The overlap,
Arzj, is the difference between rzj for zj+l = n/(r-1) and
rzj for zj+1' =-n/(r-1). Solving for this difference
yields Arzj = 2n/(r-1 ) + 1. The ratio n/ (r-1 ), is, there-
fore, a measure of redundancy.
As redundancy (width of overlap region) is increased,

the required precision of inspection of divisor and par-
tial remainder, and thus hopefully the execution time, is
decreased. Therefore, it appears that for a given r, n
should be as large as possible, i.e., n should equal r- 1.
Such a choice may not be practical, however, since n = h
requires the ability to form h multiples of the divisor.
The choice of n is therefore bound up in the usual trade-
off between time and hardware.
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il

r = 4
n = 2
n/tr-l)= 2/3
rn/(r-l)= 8/3

Fig. 2. z-z plot with r = 4, n = 2.

THE P-D PLOT
Now consider another graphical representation of the

division procedure. This construction, suggested by
C. V. Freiman of IBM [2], is useful in further describing
higher-radix SRT division and in computing the re-
quired precision of inspection of the divisor and shifted
partial remainder. The basis for the plot is recursive
relationship (1), together with the range restriction

n
Ipj+ 1| <_- d.

r-1

The figure is thus essentially a plot of partial remainder
versus divisor values and therefore in this paper shall be
referred to as the "P-D plot."

Solving the recursive relationship for rpj yields

rpj = pj+ + qj+id. (6)

For a fixed quotient digit, the upper limit of rp1 as a
function of the divisor d occurs when pj+l is maximum,
i.e., when

n
Pj+ r d

and thus

/n \
rpjmax = (r 1+ qj+i)d. (7)

Likewise, the lower limit occurs with

-n
Pj+ir= d

and thus

/-nn
rpj min = t~ + qj+l Xd.

\r - I

These linear equations may be plotted as functions of d
with qj+l as a parameter ranging from -n to +n in steps
of 1. The area between rpj max and rpj mini for a given
qj+l = i will be denoted as the "q (i) area."
The division procedure is now determined. A given

value of divisor d and the jth shifted partial remainder
will specify a point in a q(i) area. The digit i will be the
value of the next quotient digit qj+l which in turn is used
in forming the next partial remainder. In this represen-
tation, the redundancy is manifested as overlapping of
the q(i) regions, i.e., some pairs of d and rpj will specify
a point for which either qj+l=i or qj+ = i-1 is a valid
choice.

Fig. 3 is an example of a P-D plot for a division with
r= 4, n= 2. The equations for the lines plotted, 2', 2,
etc., are given in Table I. The region for which qj+l= 2
is a valid choice, the q(2) area, is between lines 2' and 2;
the q(1) area is between lines 1' and 1, and so forth. Note
the overlap between q(i) areas; for example, the region
between lines 1' and 2 in which either the choice qj+l = 1
or qj+l=2 is correct. Note further that the figure is
symmetric about both axes.
On the right half of Fig. 3 (the same may be done on

the left), "steps" have been drawn within the overlap of
the q(i) regions. The width of a "tread" (constant rpj, d
varying) defines a "divisor interval," the value of rpj for
each tread defines a comparison constant, and the dis-
tance between comparison constants defines a "partial
remainder interval." Phrased in this terminology, divi-
sion consists of locating a given divisor value within the
appropriate divisor interval, locating the shifted partial
remainder within the appropriate interval (using com-
parison constants), and selecting a value of qj+i enclosed
by the intersection of the boundaries of these intervals.
Since a divisor and partial remainder must be located
only to within an "interval," they need not be inspected
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2

== q j+l

q1
i I

Fig. 3. P-D plot with r=4, n=2.

TABLE I
EQUATIONS DEFINING THE REGIONS OF FIG. 3

n
rpe = + d +qj+i d

r-1
r =4

Designation
in Fig. 3 Pi+l rpi

2' 2 2/3 d 8/3 d
2 2 -2/3 d 4/3 d
1' 1 2/3 d 5/3 d
1 1 -2/3 d 1/3 d
0' 0 2/3d 2/3d
O 0 -2/3 d -2/3 d
I' T 2/3 d -1/3 d
I 1 -2/3 d -5/3 d
2' 2 2/3 d -4/3 d
2 2 -2/3 d -8/3 d

to full precision in selecting a correct quotient digit.
Here is where the redundancy pays dividends.
Techniques for selecting divisor intervals and com-

parison constants are detailed in the next two sections.
At this point, however, we shall make several general
observations. First, note that the comparison constants
are compared with the high-order N, bits of the shifted
partial remainder and, similarly, that the end points of
the divisor intervals are compared with the Nd high-
order bits of the divisor. The comparison constants and
end point of the divisor intervals should therefore be
numbers which are representable with Np and Nd bits,
respectively. The choices illustrated in Fig. 3 which
maximized the width of the divisor intervals do not meet
this requirement.

In Fig. 4, however, more practical choices are shown.
The dashed lines represent the theoretical choices used

1.I00 I+
2

0.110~~~~~~~~~~-3 - -____ 4pj= 2d

0.010 I1 i =3P
4

0.1 9 3__3 3 _

2 16 8 16 4 16 8 16

.1000 .1001 .1010 .1100 .1111

Fig. 4. Divisor intervals and comparison constants with r = 4, n =2.

in Fig. 3. Now, although the number of steps has been

increased, the boundaries fall at points easily represent-

able in binary notation. Note that inspection of four

bits plus sign of the partial remainder and divisor is

sufficient to locate the correct choice of quotient digit.

The second observation is that the choice of divisor

intervals and comparison constants is bound up with the

-2

-1\--
-21 .....

O -
-I',

3-

d
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rp

rp. t [ n/(r-l) + i-I I d

rp. . [-n/(r-1) + i]d

d

d,d1

Fig. 5. Detail of a P-D plot overlap region.

required precision of inspection of the partial remainder
and divisor; if, for example, the divisor intervals widths
are increased, the required precision of divisor inspec-
tion (number of bits) may be decreased. Furthermore,
the maximum precision of inspection of the divisor is
determined by the divisor interval of smallest width. By
inspection of Fig. 4, the reader might guess where this
step is, but we shall now locate it analytically. The
result of this derivation will be useful in the next sec-

tions.
The length of a divisor interval is limited by the

boundaries of the overlap region. The maximum preci-
sion of inspection is required where the divisor interval
is minimum. To determine where this minimum divisor
interval occurs, consider the detail of the overlap of the
q(i) and q(i- 1) regions shown in Fig. 5.

For a given value of rpj, the maximum width of a

divisor interval is

Ad = d2-d1 = rp, _ rpj
-n n

- 1
+- +

(9)
r-1 r-1(9

2n-R
= rpjR

R22- R2i + nR -n2

where R = (r-1).
The interval Ad is minimum when i is maximum and

rpj is minimum. The maximum value of i is n; the mini-
mum value of rpj for qj+l = n will occur when the upper
bound of the overlap region intersects d = 1/2, i.e., when
d1 = 1/2. The precision of required inspection of divisor
is thus determined by the divisor interval closest to
d = 1/2 and between qj+l = n and qj+l = n-1.

THE COST OF QUOTIENT DIGIT SELECTION

To this point we have established that an important
feature of the division is the ability to select quotient
digits from truncated versions of the divisor and shifted
partial remainder. We now turn to the more specific
question of what precision is required in these approxi-
mations, i.e., how many bits of the divisor and shifted
partial remainder must be inspected to guarantee cor-
rect quotient digit selection. In a sense, this required
precision is the "cost of quotient digit selection."
The cost will be shown to be a function of the choice

of radix, and to a certain extent, of the method of select-
ing the quotient digits. Robertson [5] has suggested
that the mechanism for selection of quotient digits may
be viewed as a "limited precision model" of the full
precision division. This concept is exemplified in the
following example.
A radix-256 division would require 8 quotient bits per

shift of partial remainder. To generate these 8 bits, 12
bits of the partial remainder and 13 bits of the divisor
are presented to a division mechanism which need be
only elaborate enough to produce 8 bits of quotient
from a 12-bit dividend and a 13-bit divisor. The results
of this limited precision division (8 bits) are returned to
the full precision mechanism as part of the full precision
quotient, and are used in forming the next full precision
partial remainder. Note that the number defining full
precision may be changed in discrete steps by changing
the number of "calls" to the model division. Further-
more, the model division scheme may be quite different
from that of the full precision division.

For purposes of computing costs of quotient selection,
we shall consider two classes of model division proce-
dures. The first will be those involving the use of an
auxiliary arithmetic unit and employing addition and/or
subtraction in forming the quotient digits. Examples of
schemes in this class include a radix-four division per-
formed in the exponent arithmetic unit, or the procedure
suggested by Wallace [6] which is logically equivalent
to forming the approximate reciprocal of the divisor and
multiplying by the partial remainder. This class will be
referred to as the "arithmetic models."
The second class consists of those methods which are

the logical equivalent of a table look-up. This technique
may be viewed as the direct implementation of a P-D
plot, i.e., decoding the divisor interval and the partial
remainder interval, and producing the quotient digit
indicated by their intersection. This class will be re-
ferred to as the "table look-up models."

Before considering these two models in further detail,
let us state more precisely the conditions which must be
obtained in the choice of model division and precision of
inspection. Let

m = the number of bits to the right of the radix point
of divisor and dividend
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rpj =the truncated version of the shifted partial re-
mainder

e = the number of bits to the right of the radix point
in rp,

Ap = ± (2-_ 2-m2) ± 2-e, the uncertainty in rp,
d = the truncated version of the divisor
3= the number of bits to the right of radix point in a

Ad = + (2-6- 2-m) + 2-8, the uncertainty in a.

The following "cost criterion" summarizes the re-
quirements on the quotient selection mechanism, Ad
and Ap.

Cost criterion: Given the approximations rfij±Ap and
a+Ad, the integer result of rpj/ad=i performed in the
model must be such that on the appropriate P-D plot,
the rectangle defined by (a+Ad, rpj±Ap) is entirely
within the q(i) region.

COST DETERMINATION FOR AN ARITHMETIC MODEL
We first consider the determination of the cost for a

division using an arithmetic model. In this case, rpj and
d are presented to a limited precision arithmetic unit
and the division carried out to produce a rounded inte-
ger quotient. If the bit position to the right of the radix
point in the model is 1, the integer portion is increased
by one and truncated; otherwise the result is merely
truncated. This rounding is necessary if the cost cri-
terion is to hold for an arithmetic model.

Equation (9) indicated that maximum precision is
required in the overlap of the q(n) and q(n -1) regions
in the vicinity of d = 1/2. The precision determined here
will be sufficient for any other region of the P-D plot.
Fig. 6 is a detail of this region.
Two additional factors must now be considered: a

redundantly represented partial remainder, and a nega-
tive divisor. A division scheme which meshes well with
multiplication must cope with redundantly represented
partial remainders. One consequence of the representa-
tion is that the truncation error (Ap) attributable to
considering only a few higher-order bits of the partial
remainder may be either positive or negative. When a
negative (2's complement) divisor is permitted, trunca-
tion error may also be negative.

In the divisor interval 1/2 +Ad, the dividing line
between the selection of q = n and q = n -1 is rp
=1/2 (n-1/2), since rpj/d = 2 X 1/2 (n-1/2) = n-1/2
which must be rounded to n. For the cost criterion to
hold, the rectangle (1/2+Ad, 1/2(n-1/2)±Ap) must
not extend below the bottom of the overlap region
defined by rpj = (n - 2/3)d. Such a rectangle is indicated
by the dashed lines in Fig. 6. Since this rectangle is not
unique, there is some available tradeoff between Ap and
Ad. To achieve more quantitative results, we now limit
the analysis to the special but useful case in which the
radix is of the form r = 22k, where k is a positive (nonzero)
integer.
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Fig. 6. Cost calculation from P-D plot.

A division with r = 22k may be implemented with a
cascade of k adder-subtractors, with multiples of 1 time
and 2 times the divisor available to the first stage of the
cascade, multiples of 4 times and 8 times to the second,
and so forth through multiples of 2(2k-2) times and
2(2k-1) times available to the kth stage. In this case, n,
the largest multiple of the divisor which may be formed,
is the sum of the largest multiples which may be formed
at each stage in the cascade, i.e., n=2+8 * * * 2(2kJ).
Furthermore, the sum of this geometric series is n/(r - 1)
= 2/3. Thus we shall consider the case r = 22k, n
=2/3(r-1).
For practical implementation, the rectangular region

defined horizontally by Ap will be symmetric about
d=1/2 and rpj =1/2(n-1/2). Referring to Fig. 6, note
that Ad must be smaller than the smaller of Ad1 max and
Ad2 max. The following demonstrates that Ad2 <Ad,m1,.

/n-1/2 \
Ad2max = 1/2( / -1)

(10)

Ad,max = 1/2 -n- 1/2 + 1'kr- 1/3 /
n2 _-n + 1/4

Ad, max - Ad2 max = 1 - -
n2 -n + 2/9

since

n2 -n + 1/4
-+ > 1

n2-n + 2/9

Ad,max-Ad2 max < 0 (12)
Ad, max < Ad2 maxs

(11)
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Thus, choosing Ad .Ad1 max will insure that the rectangle
will fit horizontally.

Similarly

AP, = (n - 1/3)dl - 1/2(n - 1/2)
Ap2 = - (n - 2/3)d2 + 1/2(n - 1/2)

Ap1 - Ap2 = (n - 1/3)d1 + (n - 2/3)d2
- (n -1/2).

di= 1/2 - Ad

d2 = 1/2 + Ad.

(13)

(14)

(15)

Substituting (15) into (14) yields

-,Ad
AP1-Ap2= 3 < 0

3

and thus Ap1<AP2.
As implied earlier, if we are certain that rfi

= 1/2 (n - 1/2) will produce the quotient selection
qj+l= n, then AP<AP2 will be sufficient. If we cannot
guarantee this, then Ap <Ap, must hold.
We shall adopt the latter, more cautious approach. If

we selected the former, then the (n- 1/3) term in (21)
would be replaced by (n-2/3). The results in Table II,
however, will be the same.

Recalling that Ad = 2-8, we want

TABLE II
COSTS FOR ARITHMETIC MODEL

k r n a e Nd Np

I 4 2 6min 5 5 5 7
6 5 6 7
7 4 7 6
8 4 8 6

m 4 m 6

2 17 10 5min= 7 7 7 1 1
8 5 8 9
9 4 9 8
10 4 10 8

m 4 m 8

3 64 42 bmin 9 9 9 15
10 5 10 1 1
11 4 11 10
12 4 12 10

m 4 m 10

4 256 170 6min II 11 11 19
12 5 12 13
13 4 13 12
14 4 14 12

r.

m 4 m 12

2-5 < Adimax,

which from (10) becomes

2-5 < 1/2 ( - - 1)

where

n= 2/3(22k - 1).

Let

I(x) =x if x is an integer
=next larger integer if x is not an integer.

The minimum value of a is therefore

i1min = - I(10g2 (1/2(1 - -/2)))
n - 113

Possible values of 8 are thus

(16)

(17)

(18)

Now let

Nd= number of bits of d = a
Np=number of bits of rPfj=e+2k.

Note also that the sign of d and rpj must be known to
model. Table II summarizes the results of (19) and (21)
for k = 1, 2, 3, 4. Note that e approaches a lower limit of
4 when the 1/12 term in (21) becomes dominant.
Thus it appears there are three feasible cases for which

the cost of inspection is as follows.
Case 1:

Np = 4k + 3

Nd = 2k + 3.

Case 2:

Np = 2k + 5

Nd = 2k + 4.

a = amin, amin + 1, . .I m.

Similarly, since Ap = 2-e, combining the fact that
ApP1<Ap2 with (13) yields

2-E < 1/12 - 2-8(n - 1/3)

and thus

= - I(log2 (1/12 - 2-6(n - 1/3)))

where is defined by (19).

Np = 2k + 4

Nd = 2k + 5.

(20) Case 3 would probably be the most practical case to
implement since Np is minimum. Np bits of the redun-
dantly represented partial remainder must be converted

(21) into conventional form before each model division. Since
this assimilation is essentially a serial process, the as-
similation time is directly proportional to Np.

Let

(19) Case 3:
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COST DETERMINATION FOR A TABLE
LoOK-UP MODEL

This class of models is a logical implementation of the
P-D diagram. In its most brute force form, this model
may be viewed as a grid or matrix with vertical lines
which are the outputs of decoders applied to d and with
horizontal lines which are the outputs of the decoders
applied to rpi. At each intersection of the lines is an
AND gate with one input connected to the vertical line,
the other to the horizontal line. Each point of intersec-
tion corresponds to a quotient digit value i, and thus
the output of each AND gate is connected to the input of
the appropriate OR gate, the true output of which is
qj-i -=i.
The overlap regions are divided by steps, as discussed

earlier, such that the cost criterion will hold in all inter-
vals. To determine the required Np and Nd in this case,
we again consider the worst-case region of the P-D plot
where d = 1/2 and between q(n) and q(n -1) as shown
in Fig. 6.

Again, if we choose the dividing line between qj±l = n
and qj+i=n-1 to be at 1/2(n-1/2), then the calcula-
tions from the arithmetic model also hold for the table
look-up case with r = 22*. Recall, however, that we gen-
erally wish to minimize Np since this will reduce the
assimilation time in forming rpi in each cycle. We can
accomplish this by selecting the comparison constants,
the dividing line between choice of quotient digit values,
as close to the top of an overlap region as possible.

In the arithmetic models, the comparison constants
are implicit in the model; thus, for example, we had no
choice but to use 1/2 (n - 1/2) in the cost calculations.
In the present case, however, we may select any value
which is within the overlap region and an integer mul-
tiple of 2-e.
The value of 1/2 (n - 1/2) is always an exact binary

number, specifically, a number with a fractional part of
3/4. The distance from 1/2 (n - 1/2) to the upper limit
of the overlap region along d = 1/2 is 1/2 (n - 1/3)
-1/2 (n-1/2) = 1/12. This means that the largest com-
parison constant we may choose in this region without
increasing e to be greater than 4 is 1/2(n-1/2)+1/16.
If we design the logic such that rpj = 1/2 (n-1/2)+ 1/16
and (2= 1/2 selects qj+l = n, then Ad and Ap cost calcula-
tions are as follows:

2-6 < Admax

2-5 < 7/48.
n -2/3

2-e < 7/48 - 2-(n - 2/3).

In the manner outlined in the last section we obtain
Table III and the three cases.

Case 1:

Np = 2k + 4

Nd = 2k + 3.

TABLE III
COSTS FOR TABLE LooK-UP MODELS

k n a e Nd Np
2 5min=4 4 4 6

5 4 4 6
6 3 4 6
7 3 3 5

m 3 m 5

2 10 Sin=i 7 4 7 8
8 4 8 8
9 3 9 7

m 3 m 7

3 42 ami. =9 4 9 10
10 4 10 10
11 3 11 9

m 3 m 9

4 170 5miu=11 4 11 12
12 4 12 12
13 3 13 11

= m 3 m 11

Case 2:

N= 2k + 4

Nd = 2k +4.

Case 3:

Np = 2k + 3

Nd = 2k + 5.

The first entry Nd= 4, Np=6 is not included in the
above linear equations, but this is the most practical
case for k = 1, radix four. By comparison with the results
in Table II note that for a given k, a case may be found
for which a table look-up model requires fewer bits of
comparison than the corresponding arithmetic model.

QUOTIENT CONVERSION
The quotient developed by higher-radix SRT division

will, in general, include negative digits and eventually
must be converted to a conventional binary form. This
conversion time and hardware is the greater part of the
price paid for the accrued advantages of redundancy.

First consider a specific case: conversion of a result
produced by a nonrestoring division. Here quotient
representation is the same as that discussed earlier ex-
cept that 0 is not an allowable digit. This conversion
may be performed sequentially as the quotient digits are
generated, and thus requires no additional terminal
operations. The digit qj+l is unchanged if it is positive;
otherwise, it is replaced by r+qj+÷, and the adjacent
higher-order digit qj, decreased by 1. Note that since 0
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is not a permissible digit, there is no requirement for a
borrow propagation in decreasing qj by 1. The hardware
required is of the order of a 2-digit subtractor.

JIt is not generally possible, however, to perform SRT
division not allowing q =0. Nonrestoring division may
be viewed as SRT division with n = r -1. For this case,
the q(O) region of a P-D plot is completely overlapped
by the q(1) and q(-1) regions. The quotient digit value
q =0 may, therefore, be eliminated and the conversion
consequently simplified. For cases of division with
n <r- 1, the q(O) region is not subsumed by other re-
gions, and thus q = 0 must be allowed if the division is to
be completely defined.
With the possibility of q = 0, the conversion is compli-

cated, for now the difference qj-1 may require a borrow
from qj-i. Furthermore, this borrow must propagate to
the left until it encounters a nonzero digit. This poten-
tial for borrow propagation requires that the equivalent
of a full precision subtractor be available to the quotient
register if conversion is to occur as the quotient digits
are generated.

Alternately, the full precision quotient may be gen-
erated and stored in the redundant form and then con-
verted during an extra terminal step. A high-speed arith-
metic unit frequently employs a redundant representa-
tion of the partial product during multiplication, e.g.,
carry-save adders, which also require a terminal con-
version. One possibility, then, is to share the hardware
for conversion of both products and quotients.

AN IMPLEMENTATION
Higher-radix SRT division is being used in the high-

speed arithmetic unit of the Illinois Pattern Recognition
Computer-Illiac III. This unit employs a cascade of 4
adder-subtractors. At each stage in the cascade, a radix-
four, table look-up model division selects a radix-four

quotient digit which is used to select the addition or
subtraction of a multiple of the divisor from the partial
remainder at the next stage. Thus in one pass of the
partial remainder through the cascade, 8 bits of the
quotient are formed.

Readers interested in the details of this unit are in-
vited to contact the author. Implementation is also
discussed in [7].
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