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Mathematical Foundation of Computer Arithmetic

ULRICH KULISCH

Abstract-During recent years a number of papers concerning
a mathematical foundation of computer arithmetic have been
written. Some of these papers are still unpublished. The papers
consider the spaces which occur in numerical computations on
computers depending on a properly defined computer arithmetic.
The following treatment gives a summary of the main ideas of these
papers. Many of the proofs had to be sketched or completely omit-
ted. In such cases the full information can be found in the refer-
ences.

Index Terms-Axiomatic definition of computer arithmetic,
floating-point arithmetic, interval arithmetic, numerical analysis,
rounding analysis, theory and implementation of computer arith-
metic.

I. INTRODUCTION
NUMERICAL algorithms are usually derived

and defined in one of the spaces R of real numbers,
VR of vectors, or MR of matrices over the real numbers.
Besides these spaces, the corresponding complex spaces
C, VC, and MC also occur occasionally. Several years ago
numerical analysts also began to define and study algo-
rithms for intervals over these spaces. If we denote the set
of intervals over an ordered set {M,'} by IM we get the
spaces IR, IVR, IMR and IC, IVC, and IMC. See the sec-
ond column in Fig. 1.

Since a real number in general is represented by an in-
finite b-adic expansion, the algorithms given in these
spaces in general cannot be executed within them. The real
numbers, therefore, get approximated by a subset T in
which all operations are simple and rapidly performable.
On computers for T a floating-point system with a finite
number of digits in the mantissa is used. If the desired
accuracy cannot be achieved by computations within T,
a larger system S with the property R D S D T is used.
Over T, respectively S, we can now define vectors, matri-
ces, intervals, -and so on as well as the corresponding
complexifications. Doing this we get the spaces VT, MT,
IT, IVT, IMT, CT, VCT, MCT, ICT, IVCT, IMCT, and
the corresponding spaces over S. See the third and fourth
columns in Fig. 1. In the practical case of a computer, T
and S can be understood as the sets of floating-point
numbers of singre and double length. In Fig. 1, however,
S and T are only examples for a whole system of subsets
of R with properties which will be defined later.
Now in every set of the third and fourth columns of Fig.

1, operations are to be defined. See the flfth column in Fig.
1. Furthermore the lines in Fig. 1 are not independent of
each other. A vector can be multiplied by a number as well
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as by a matrix and an interval vector by an interval as well
as by an interval matrix. In a good programming system
the operations in the sets of the third and fourth columns
in Fig. 1 should be available possibly as operators for spe-
cial data types.

This paper is devoted to the question of how these op-
erations are to be defined and in which structures they
result. We shall see that all these operations can be defined
by a simple, general, and common concept which allows us
to describe all the sets listed in Fig. 1 by two abstract
structures. More precisely, the structures derived from R
can be described as ordered ringoids, respectively as or-
dered vectoids, while those derived from C are weakly or-
dered ringoids, respectively weakly ordered vectoids. (For
definitions, see below.)
We are now going to describe this general principle in

more detail. LetM be one of the sets listed in Fig. 1 andM
a set of rules (axioms) given for the elements of M. Then
we call the pair IM,M1 a structure. In Fig. 1 the structure
is well known in the sets of R, VR, MR, C, VC, and MC.
Now letM be one of these sets and * be one of the opera-
tions defined in M. Then also in the power set PM, which
is the set of all subsets ofM, an operation * can be deflned
by

(1)A A*B:=Ia*blaeAAbeB}.
A,BePM

Ifwe apply this definition for all operations * ofMwe shall
also see below that in the power set a structure {PM,PM}
can be derived from that in jMM}. Summarizing this result
we can say that in Fig. 1 the structure JM,M} is always
known in the left-most element of every line. We are now
looking for a general principle which allows us, beginning
with the structure in the left-most element of every line,
also to derive a structure in the subsets to the right-hand
side.

First of all we define that the elements of a setM have
to be transferred into the elements of a subset N on the
right-hand side by a rounding. A mapping a:M N, N _
M, is called a "rounding" if it has the property

(RI) A Oa=a.
aeN

Further, in all structures of Fig. 1 which we already know,
a minus operator is defined and if, for instance, S and T
are floating-point systems it is easy to see (see [11]-[14],
[16], [19]) that in every line in Fig. 1 all subsets have the
property
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R > S > T

YR ) VS ) VT

MR > MS ) MT

PR IR) IS ) IT

PYR ) IVR ) IYS ) IVT

PMR > IMR ) IMS > IMT

C ) CS > CT

YC ) VCS > VCT

MC ) MCS > MCT

PC IC ) ICS ) ICT

PVC ) IVC > IVCS ) IVCT

PMC ) IMC ) IMCS > IMCT

Fig. 1. Table of the spaces and operations
computations.

order homomorphism, i.e.,+- /
x

x+4-

'-x
4-

x

x

A (a_b=*Ea_Ob).o
a,beM

(3)

We are now going to derive these necessary conditions. If
we restrict (2) to elements of N we immediately get, be-
cause of (Ri),

(R) A a b=o(a*b).
a,beN

Later we shall use this formula to define the operation [-,
* E {+,-, * ,I}, by the corresponding operation * in M and
the rounding o3:M -- N.
From (3) we immediately get that the rounding has to

be a monotone functionx

x

occurring In nulmerical

(S) A -aENA o,e e N,
aeN

where o denotes the neutral element of addition and e the
neutral element of multiplication if it exists.

It will turn out below that the rounding [L:M , N is
responsible not only for the mapping of the elements but
also for the resulting structure in the subsets N. If the
structure IM,M} is given, the structure {N,Nj is essentially
dependent by the properties of the rounding function o.
More precisely, N can be defined as the set of rounding
invariant properties of M, i.e., it is N c M. Or in other
words the structure 1N,N) becomes a generalization of
jM,M}. Ifwe move from the second to the third column in
Fig. 1 we get a full generalizationN C M. In the next and
possibly further steps, N = M.

Let us now consider the question of how a given struc-
ture {M,M} can be approximated by a structure $N,N} with
N c M. In a first approach one is tempted to try it with
useful mapping properties like isomorphism and homo-
morphism. But it is easy to see that an isomorphism cannot
be achieved and it can also be shown by simple examples
in the case of the first line of Fig. 1 that a homomorphism
cannot be realized in a sensible way. We shall see, however,
that it is possible to implement in all cases a few necessary
conditions for an homomorphism. With these conditions
we come as close to a homomorphism as possible. Let us
therefore first repeat the definition of a homomor-
phism.

Definition: Let IM,M} and iT,TI be two ordered alge-
braic structures and let a one-to-one correspondence exist
between the operations and order relation(s) inM and T.
Then a mapping o:M -k N is called a "homomorphism"
if it is an algebraic homomorphism, i.e., if

A (o a) i] (ob) =o (a*b) (2)
a,beM

for all corresponding operations * and i* and if it is an

(R2) A (a_b=o3a_Eb),
a,beM

monotone.

If we further, in case of multiplication in (2), replace a by
the negative multiple unit -e, we get

A o(-b) = o(-e) l ob = (-e) E] ob
beM (S),(R1)

= o(-ob)= -o3b,
(R) (S),(R1)

i.e.,

(R3) A o(-a) = -aa,
aeM

antisymmetric.

This means that the rounding has to be an antisymmetric
function.
The conditions (R1),(R2),(R3) do not define the

rounding function uniquely. We shall see later, however,
that the structure of an ordered or weakly ordered ringoid
or vectoid is invariant with respect to mappings with the
properties (S), (Ri), (R2), (R3), and (R). The proof of this
assertion in all cases of Fig. 1 is a difficult task which
cannot be solved within this paper. It is, however, essential
that it can be given in all cases. (See [11]-[14], [16], [19],
[20].)
Now there arises the question of whether an arithmetic

which fulfills all our assumptions (R1),(R2),(R3),(R) can
be implemented on computers in all cases of Fig. 1 by fast
algorithms. We shall informatively answer this question
positively within the next section. (For proofs, see [13],
[14], [16], [3], [6].)
II. FURTHER ROUNDINGS, IMPLEMENTATION, AND

ACCURACY

The situation is the following. We have a setM with an
operator *, for instance +,-,I' ,/. On our computing tool
in general the elements ofM as well as the result of an
operation a * b are not exactly representable. Therefore
we approximate the elements of M in a subset N by a
proper rounding :M- N. For an approximation of the
operation * we have derived the formula
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(R) A aF*Jb:=o(a*b).
a,beN

At the first view this formula seems to contain a contra-
diction. The in general not representable result a * b seems
to be necessary for its realization. If; for instance, in the
case of addition in a decimal floating-point system, a if of
the magnitude 1050 and b of the magnitude 10-5, about
100 decimal digits in the mantissa would be necessary for
the representation of a + b. Even the largest computers
do not have such long accumulators. A much more difficult
situation arises in the case of a floating-point matrix
multiplication or in the case of a division of complex
floating-point numbers by formula (R). It can be shown,
however, that in all cases in which a * b is not represen-
table on the computer it is sufficient to replace it by an
appropriate and representable value a *j b with the prop-
erty 3(a * b) = a (a *b). Then a * b can be used to define
a ] b by

A a 1b:= a(a*b)=o3(a*b).
a,beT

The proof of this assertion has to be given by concrete al-
gorithms in all cases of Fig. 1.

Before we are going to discuss the question of imple-
mentation in more details let us increase the-available set
of roundings. A rounding 0: M -k N is called "directed"
if

(R4) A Oa-<a,
aeM

downwardly directed

v A a - 3a, upwardly directed.
aeM

Let us now assume that the subset T of R in Fig. 1 is a

floating-point system T = T(f,n,el,e2) wherein denotes
the base of the number system, n the number of digits in
the mantissa, and el and e2 the least and greatest positive
exponent. Then we shall use special notations for the fol-
lowing special roundings1:

va, monotone downwardly directed rounding

Aa, monotone upwardly directed rounding

A Ofla _aA A o3a= -o3(-a),
a_0 a<0

monotone rounding towards zero

A a 30oa AA 03oa = -C3(-a),
a-0 a<0

monotone rounding away from zero.

Further let

S,.z(a)a:= va + Va*,
Then we define roundings o,,:R T, T, = 1(1),B 1, by

1 Since it is not necessary for the purpose of this paper we do not define
the roundings 3, ,u = 1(1) 3, for Ia > B.

A ol)a= {
oel-l< A_BA a,

for a E [va,S, (a))
forae [S,,(a),Aa]

A a=D- 3(-a),
a<O

(5)

where B := o - (,B-1)(B-I1) ...* (,-1) _ fle2 denotes the
greatest representable floating-point number.

If : is an even number, then 3,B/2 denotes the rounding
to the nearest number of T and O3l/2a = (va - Aa)/2.
The roundings {V,A,O3, ,u = o(1)fl1 are not independent

of each other. The following relations are easily verified:

Aa = -v(-a) (6)

va = -,(-a) (7)

3Oa = sign (a).- lal

o#a = sign (a) * vIal.

All roundings 3 :R T, , = o(1) 3, are further antisym-

metric functions. From (4)-(7) it follows that all these
roundings can be expressed by the monotone downwardly
(respectively, upwardly) directed rounding.
An algorithm for the realization of formula (R) can in

principle be separated into the following five steps.
1) Decomposition of a and b, i.e., separation of a and

b into exponent part and mantissa (DC).
2) Execution of the operation a *c b. It is possible that

a *c b = a * b.
3) Normalization of a *c b. If the result is already nor-

malized this step can be omitted (N).
4) Roundingofa*ibtoa@Jb= 3(a*b)= 3(a icb)

(R).
5) Composition, i.e., combination of the resulting ex-

ponent part and mantissa to a floating-point number
(C).

Fig. 2 gives a graphical diagram of these five steps. A
more detailed discussion of these steps can be found in the
literature [13]-[151, [17], [22], [8].
The algorithms can be implemented using accumulators

of different lengths. A convenient algorithm uses an ac-

cumulator of one digit which can be a binary digit in front
and 2n + 1 digits of base a after the point. See Fig. 3. A
more structured algorithm does it with an accumulator
with one digit which can be a binary digit in front of the
point and n + 2 digits of base ,B plus one binary digit after
the point. See Fig. 3. This algorithm shows that a further
reduction of the length of the accumulator is impossible
if formula (R) is to be strictly realized.
The algorithms show as an essential result that the

whole implementation can be separated into five steps, as

indicated above, which are independent of each other. This
means that the provisional result a *c b can be chosen in-

dependently of the rounding function such that for all *
E I+,-, ,/j and for all roundings of the set I ,t =
O(1)jl,formula (R) holds.
With these algorithms the question of implementation

A/ OaO=0
aes [O,Oel-l)

612
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A,S Addition and Subtraction
a N

DV ~ ~ a

a i b
DV rlUivisIIoanIuII

DV Division

Fig. 2. Flow diagram for the arithmetic operations.

whenever (9) is not representable it can be replaced by an
appropriate and representable value

(10)EaiVlJj
v=l

with the property

long accummulator

n n I §

1 bit 2n+l digits of base a

short accumulator

n |

t
1 bit n+2 digits

of base 6

t
1 bit

Fig. 3. Long and short accumulators.

is solved for the case of the first line of Fig. 1 and, since
formula (R) has also been implemented with the roundings
v and A, also for most of the interval lines in Fig. 1. This
last assertion will be discussed later.
We are now going to discuss briefly the implementation

in case of matrix operations. Let o:R -- T be a rounding.
If we define a mapping o :MR o MT by

A [3A:=(O3aij)
A= (aij) eMR

then o:MR MT is also a rounding. If, further, the

rounding o:R T is monotone, directed, antisymmetric,

respectively, then the rounding o3:MR MT is also

monotone, directed, antisymmetric, respectively.
By formula (R) the operations@3 * E {+, .*, in MThave

to be defined by

(R) A A nB:= (A*B),
A,BEMT

for all * E 1+,
If A = (aij) and B = (bij), then we get in case of addi-
tion

A F B:= a (A+ B) = (aij EE bij).
Here, the addition on the right-hand side means the ad-
dition in T which by assumption is properly defined and
there is no problem connected with the addition.

In the case of multiplication, however, we get

AwhrB:=e(Ae-iB)n=3( .ai,b (8)

where in
r

E ai,,bpj (9)
v=1

the multiplications and additions denote the real multi-
plication and addition. Even on computers with a so-called
accumulator of double length only in very rare cases is (9)
exactly representable. The algorithms show, however, that

a(A *B) = o (E aivbji)
r= o(A.B)= o (f aib~i).

= o3(A-B) = o3 (E ai,b^j
v=l

(11)

Then (11) can be used to define (8). The explicit algorithms
prove this assertion. See [16], [3]. In order to realize (11)
at first the products air * b j are calculated. If aij and bij are
floating-point numbers of n digits in the mantissa, then
ai, - b^j can exactly be generated within an accumulator
ofL = 2n digits. If this is done then (11) can be generated
if the sum

z := O (E Xi) = O ( X) (12)

can be implemented where the xi, i = 1(1)r, denote L = 2n
digit floating-point numbers and z is an n digit floating-
point number. The algorithms mentioned above could also
be used to produce a floating-point number z defined by
(12) of n,n + 1, I..,L = 2n correct digits just by rounding
the intermediate result -T1x[to another length. These
algorithms again can be separated into several indepen-
dent steps which means that the intermediate result 2J=
xi can be chosen independently of the rounding function
such that for all roundings of the set 0 e JV,A,0L, ,u =
o(1)3} the equality

o(f= x) =o(f X)
holds. The whole algorithm uses an accumulator with one
digit which can be a binary digit in front of the point and
L + 2 digits of base (3 plus one further binary digit after the
point. If n denotes the number of digits of the floating-
point mantissa then L = 2n. See Fig. 4.
With this algorithm the question of implementation is

solved not only in case of the third line of Fig. 1 but also in
the cases of vector matrix multiplication, multiplication
of complex floating-point numbers by formula (R), com-
plex floating-point matrix products, and matrix vector
multiplication, and, since formula (R) has also been real-
ized for the roundings v and A, in all cases of interval
structures occurring in Fig. 1.
As far as the implementation is concerned there remains

only one open question. This is the case of complex float-
ing-point division. In this case the formula

ab + cd
ef + gh!

has to be realized. But this problem has also been solved
in [6]. In this case still a slightly longer accumulator is
necessary. The running time for a software solution of this

613



IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

it1 bit L+2 digits of
base a, L=2n

1 bit

Fig. 4. Length of the accumulator for scalar products.

known result: Let T = T(fl,n,el,e2) be a floating-point
system and o:R - T a monotone rounding and let 5(Oa)
:= a - Cla, denote the absolute rounding error and ec=
6(3a)/a the relative rounding error. Then

quotient compared with the usual complex quotient
(UNIVAC 1108) was enlarged by an average factor of 1.2.
If we take into account the improvements with respect to
error analysis (see below) or to a much better theoretical
understanding of computer arithmetic (see below) this
shows that such algorithms should be realized.

Let us, for the case of matrix operations, still discuss the
general advantage which we get if we define the computer
arithmetic by formula (R) in all lines of Fig. 1. Fig. 5(a)
describes the way in which matrix operations on computers
are usually defined. The matrix operations in MT for in-
stance are defined by the floating-point operations in T
and the usual formulas for matrix addition and multipli-
cation of real matrices. An error analysis of such an arith-
metic has to go back to the elementary floating-point op-
eration and in general there are no obvious compatibility
properties valid between the matrix operations in MR and
MT.

Fig. 5(b) describes the new way of defining floating-point
matrix operations by formula (R). The operations in MT,
for instance, are directly defined by the operations in MR.
This leads to a much higher accuracy and allows a much
simpler error analysis (see below). Further, by the rounding
properties (R1),(R2),(R3) which we have assumed, the
following reasonable compatibility properties between the
structure in MT and that in MR are easily verified:

(RG1) A (A *BE MT)==A IElB
A,BEMT

= A * B), for all * E {+,-, *}

A (bel-1_ lal< be2=a= a(l-e)with JEl< e*
aeR

* la -DEa I -< *
- la I)

where

for the- rounding to the nearest
floating-point number
else. (13)

Ifwe define floating-point arithmetic by formula (R) and
a monotone and antisymmetric rounding we immediately
get, for all operations * E {+,-,*

A (f3el-l Ia*bb <fle2= a1b=(a*b)(1-e),
a,beT

with 1El <E * la *b -a iF. bl c* Ia *bl)
where e* is defined by (13).

This result is the base for most rounding error estima-
tions in numerical mathematics. It should, however, be
clear that such estimations only lead to reliable error
bounds if formula (R) is strictly implemented.

Error estimations for floating-point matrix computa-
tions are usually derived in the sense of Fig. 5(a). See [21].
If we apply the new definition (R) [Fig. 5(b)] we get iden-
tically the same formulas as in the case of the elementary
floating-point operations. Again let o :R - T be a mono-
tone and antisymmetric rounding and let a rounding o:MR
MT be defined by

(RG2) A (A*B-<C*D
A,B,C,DeMT

==A B s C ElJD),

A
A= (aij)eMR

o A := (Eaij).

for all * E J+,-A-1 Then

(RG3) A -A = sA:= (-E) E1 A,
AeMT

E unit matrix.

(RG1) should be valid for every computer arithmetic,
(RG2) expresses its monotonicity, and (RG3) the identity
of the minus operators in MR and MT.

In all interval lines in Fig. 1 the rounding is furthermore
upwardly directed. Then we get a fourth compatibility
property:

(RG4) A A*B-ARjB.
A,B

In this case the _ sign means the inclusion and (RG4) then
says that the result of an operation in the original set is
always included in the result in the approximating sub-
set.

Concerning accuracy we begin with the following well

A (A bel-l jaijl <be2 aA
A= (aij)eMR i,

= (aij( eij)),

with JIJI <e* = A 3Aj _ e** IAl)

where e* is defined by (13) and the absolute value is de-
fined componentwise.

If in MT operations M* * E {+, }1, are defined by formula
(R) and A,B e MT we get with the abbreviation Z := (Zij)
A * B for all operations * E {+,-, *}:

A (Abel-i zij <be2 A 1 B
A,BeMrT i,j

= (zij(1 -ij))

= JA*B-AfBBI ' e* -A*Bl).

with ,Eij <E*

(14)
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R-. S-> T

I I I
MR MS MT

R-* S-* T

I
MR - MS * MT

Fig. 5. Definition of floating-point matrix operations.

This is the same simple formula with the same E* which we
have gotten in case of the elementary floating-point op-
erations. Because of its much simpler form it allows a much
simpler error analysis for floating-point matrix compu-
tations than an error analysis derived in the sense of Fig.
5(a). Furthermore (14) is more accurate. In [5] an error
analysis of the Gauss algorithm for linear equations using
formula (14) is given. See also [4].

Contrary to most error estimations in numerical math-
ematics, the error formulas derived in this paper lead to
absolute error bounds if formula (R) is strictly imple-
mented.

III. THE STRUCTURE OF COMPUTER ARITHMETIC

In the literature several attempts to formalize computer
arithmetic are known. All these models are only interested
in describing the relationship between the real numbers
and a floating-point system. It turns out, however, that the
real numbers have too many very special properties for us
to recognize all essential properties already at this stage.
Only the entirety of the structures listed in Fig. 1 seems to
give the frame which allows a general theory of computa-
tions in subsystems. Essential contributions towards a
theoretical understanding come especially from interval
arithmetic. Roughly it can be said that between the power
set of an ordered algebraic structure and its intervals there
exists mathematically the same relationship as between
the real numbers and a floating-point system.
An abstract theory of computations in subsets has to

begin with a characterization of the essential properties
of the sets in Fig. 1. All these sets are ordered with respect
to certain order relations. Let us consider the interval
vectors of dimension 2, IV2R. These are intervals of two-
dimensional real vectors. Geometrically such a vector de-
scribes a rectangle with sides parallel to the axes. These
interval vectors are special elements of the power set PV2R
of the real vectors which is defined as the set of all subsets
of real vectors. Between these sets the following relation-
ship holds:

1) For all a E PV2R there exist upper bounds (with
respect to the inclusion as order relation) in the subset
IV2R. See Fig. 6.

2) For all a E PV2R the set of all upper bounds in the
subset IV2R has a least element. See Fig. 6.
These two properties also characterize the relationship

between any set of Fig. 1 and its subset(s) on the right-
hand side. Let us now consider the set of real numbers R

16 a c- PV2R
1Vb RcIV R

L~~.221J AA (acb =:->cc:b)
__ _ __ be IV2R

Fig. 6. To the concept of a screen.

aGR
b,c T

4' I I 4' ~~4' I a < bAaa<c
b' c' a c b

AA (a< b =- c < b)
b6T -

Fig. 7. To the concept of a screen.

and a subset t of floating-point numbers. We have again
the two properties.

1) For all A E R there exist upper bounds (with respect
to the order relation _ of the real numbers) in the subset
T. See Fig. 7.

2) For all a e R the set of all upper bounds in the subset
T has a least element. See Fig. 7.

In this case corresponding properties are also valid for
the lower bounds. We summarize these properties by the
following definition.

Definition: Let {M,_} be an ordered set and L(a) :b
E Mlb _ a), respectively U(a) := lb E Mja _ b}, denote
the set of all lower, respectively upper bounds of a. A
subset T c M is called a lower, respectively an upper,
screen ofM if

(S1) A L(a) n Tit,
acM

respectively A U(a) n T* f
aeM

(S2) A V A b < x,
aeM xeL(a)nT bEL(a)qT

respectively A V A x _ b.
aeM xe U(a)nT be U(a)nT

If T c M is simultaneously a lower and an upper screen,
then it is called a screen ofM [9]. o

In all essential applications of the concept of a screen the
basic setM is not only an ordered set but a complete lat-
tice. In this case necessary and sufficient conditions for the
concept of a screen can be derived. See [10].

Let {M,_} be a complete lattice with the greatest element
i(M) and the least element o(M). If a subset T aM is also
a complete lattice it is called a complete subformation.
Then

A (infTA _ infMA A supMA < SUpTA).

If the first inequality always is an equality T is called a
complete infimum-subformation ofM and in the dual case
a complete supremum-subformation of M. If both ine-
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qualities are always equalities T is called a complete sub-
lattice of M. The following theorem holds.

Theorem: A subset IT,< of a complete lattice {M, I is
a lower screen (respectively an upper screen) of {M,_} if
and only if

(Si') o (M) = o (T) (respectively i(M) = i (T))
and

(S2') IT,-} is a complete supremum-subformation
(respectively) a complete infimum-subforma-
tion) of IM,_}.

T, is a screen of {M,_} if and only if o(M) = o(T), i(M)
= i(T), and IT,_ is a complete sublattice of {M,_}. o
For the proof see [10]. Now it can be shown that all sets

in Fig. 1 are screens of the set(s) on their left-hand side. See
[11]-[13].
With this concept further theorems can be derived. For

instance if {M,<} is a complete lattice and IT, a lower,
respectively an upper, screen then the monotone down-
wardly respectively upwardly, directed rounding can be
characterized by

A va =sup (L(a) nT),
aeM

respectively A Aa = inf (U(a) n T).
aeM

If further {M,*} is a groupoid with a right neutral element
then IT, B I is a groupoid on the screen with the properties
(RG1),(RG2),(RG4) if and only if

A a 1b=v(a*b),
a,beT

respectively A a iJ b = A(a * b).
a,beT

For proofs and applications see [9], [13].
We are now going to define the special structures of a

weakly ordered, respectively an ordered, ringoid and derive
its most important properties. We shall later see that this,
under the assumptions (S1), (S2), (S), (Ri), (R2), (R3), and
(R), describes the structures in the lines 1,3,4,6,7,9,10,12
of Fig. 1.

Definition: A nonempty set R in which an addition and
a multiplication are defined is called a ringoid if

(Dl) A a+b= b+a
a,beR

(D2) V A a+o=a
oER aeR

(D3)- V A aae=e-a=a
eER\Iol aeR

(D4) A a-o=o.a=o.
aeR

(D5) There exists an element x E R\Je1 such that
(a) x - x = e

(b) A x(ab) = (xa)b = a(xb)
a,beR

(c) A x(a+b)=xa+xb
a,beR

(D6) x is unique.
If furthermore in a ringoid a division/: R X R\N - R is
defined withN C R and o E N it is called a division-ringoid
if

(D7) A a/e =a
aeR

(D8) A o/a = o
aeRR\N

(D9) Besides (D5) the element x also fulfils the
property

A A x(a/b) = (xa)/b = a/(xb).
aeR beR\N

A ringoid is called weakly ordered if JR,'} is an ordered2
set and

(OD1) A (a_b=*a+c-b+c)
a,b,ceR

(OD2) A (a b =*-b _-a).
a,bER

A weakly ordered ringoid, respectively division-ringoid,
is called an ordered ringoid, respectively an ordered divi-
sion-ringoid, if

(OD3) A (o_a_b A c _o=*a-c_b-c A c-a
a,b,ccR

< c- b), respectively

(OD4) A (o<a-_b A c>o O_ a/c_ b/c A c/a
a,b,ceR

-c/b_o). a

The uniqueness of x can be used for the following defini-
tion.

Definition: In a ringoid-R we-define a minus operator
and a subtraction by

A -a:=x^a
acR

A a - b:= a + (-b). o
a,beR

(15)

(16)

2 JR,_} is an ordered set means _ is a reflexive (O1),transitive (02),
and antisymmetric (03) relation.
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Simple consequences:
(1)= x = -e

a=e

(D5a) = (-e)(-e) = e
(D5b) -(ab)= (-a)b = a(-b)
(D5c) -(a + b) = (-a) + (-b)
(OD2) = (a < b * -b _ -a).

In general additive inverses do not exist within a ringoid.
But nevertheless the subtraction is no independent oper-
ation. It is defined by the multiplication and the addi-
tion.

Theorem: In a ringoid R the following properties
hold:

(a) e * o, -e * o, -e * e.
(b) o - a = -a
(c) -a = (-e) - a = a (-e)
(d) -(-a) = a
(e) -(a - b) = -a + b = b - a
(f) (-a)(-b) = ab
(g) o, respectively e, is the only neutral element of the
addition, respectively multiplication

(h) o is the only right neutral element of the subtrac-
tion.

In a division-ringoid we get further
(i) (-a)/(-b) = a/b
Ci) (-e)/(-e) = e.

In a weakly ordered ringoid holds
(k) a _ b A c _ d > a + c _ b + c
(l)a<b =>-b<-a.

In an ordered ringoid, respectively ordered division rin-
goid, we get

(m) o _ a ' b A o _c. d o _ ac ' bd
A o _ ca _ db

(n) a_ b _o A c _d _o =* o _bd _ac
A o _ db < ca

(o) a _ b _o A o _c _d ad _bc _o
A da _ cb _o

(p)a>o A b>o= a/b _o
(q) a <o A b > o *a/b _ o A b/a _ o
(r)a<o A b<o a/bbo. o

The proof is left to the reader. See [11], [13]. The theorem
can be summarized. In a ringoid the same rules for the
minus operator hold as in the real number field. In an or-
dered ringoid for all elements which are comparable with
o with respect to _ and _ the same rules for inequalities
hold as in the real number field.

Applications: Let R be a division-ringoid.
IfMR denotes the set of r X r matrices with components

out of R and in MR the equality, addition, and multipli-
cation are defined by the usual formulas for the compo-
nents then MR is also a ringoid.

IfPR denotes the power set ofR and in PR operations
are defined by (1) then PR also becomes a division-
ringoid.

Let CR denote the set of pairs of elements ofR and let
in CR an addition, multiplication, and division be defined

by the same formulas as in the complex number field; then
CR also becomes a division-ringoid.

If R is a weakly ordered division-ringoid and in MR,
respectively CR, an order relation is defined component-
wise thenMR is a weakly ordered ringoid, respectively CR
a weakly ordered division-ringoid.

If furthermore R is an ordered ringoid than MR is also
an ordered ringoid.
For the proofs of these results see [11] and [23].
If in Fig. 1 R is an ordered division-ringoid then by these

results the structure is also known in the first elements of
the lines 3, 4, 6, 7, 9, 10, and 12.
We are now going to discuss the theorems which allow

us to transfer these structures to the subsets on the right-
hand side.

Theorem: Let R be a ringoid with the special elements
{-e,o,e ,-R,} a complete lattice, and IT,_} a symmetric
screen (S1),(S2),(S) (respectively, a symmetric lower screen
respectively a symmetric upper screen), 0: R - T an an-
tisymmetric rounding (R1),(R3), and let in T operations
i, * E {+, }1, be defined by formula (R).

1) In T the following properties hold: (D1), (D2) for o,
(D3) for e, (D4), (D5) for -e, and

(RG1) A (a*b e T =*a b=a* b),
a,beT

* E {+,-, .

(RG3) A -a = (-e) El a.
aeT

2) If 0: R - T is monotone (R2)

(RG2) A (a * b _ c *d
a,b,c,de T

==>a i b _ c i d), * E {+,-, }.

3) If o:R -k T is upwardly, respectively downwardly,
directed (R4) >

(RG4) A a iO b _ a * b, respectively
a,beT

A a*b_af[Jb,
a,beT

* E $+) -, ).

4) If R is weakly ordered (OD1), (OD2) and 3:R , T
monotone T is weakly ordered, i.e., (ODI), (OD2)
hold.

5) If R is ordered (OD3) and o :R - T monotone in
T (OD3) holds. 0
Theorem: Let R be a division-ringoid with the special

elements {-e,o eR,-R,I a complete lattice, and {T,_ a
symmetric screen (respectively a symmetric lower screen,
respectively a symmetric upper screen), o3:R - T an an-
tisymmetric rounding and let in T operations'3, * E
{+*,/- be defined by formula (R).

1) In T the following properties hold: (Dl), (D2) for o,
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(D3) for e, (D4), (D5) for -e, (D7), (D8), (D9) for -e,
(RG1) for * E {+,-,* ,/l and (RG2).

2) If 3:R T is monotone =-> (RG2) for *
E {+,-, * ,/.

3) If i3:R T is downwardly respectively upwardly,
directed = (RG4) for * E I+,-, *.

4) If R is an ordered division-ringoid and o:R T
monotone sin T (OD4) holds. o

All statements of these theorems are easily verified. As
an example we prove the properties (D5c) and (OD1):

(D5c): (-e) E a = a (-a) = -Oa = -a & T (17)
(R) (R3) (R1) (S)

(-e) El (a ED b) = o3((-e) - 3(a + b)
(R) (R3)

- (D(-(a + b))) = o(-(a + b)) =
(Rl) -(D5c)R

= O((-a) + (-b)) = (-a)s(-b) =

(R) (3)
- ((-e) El a) Ei((-e) E0 b).

(ODi): a-_b=*a+c-_b+c=o 3(a+c)
(OD1)R (R2) _ +

(R)
a E c _ b E c.

The proofs of these two properties show already that our
assumptions (S),(R1),(R2),(R3),(R) are really necessary
in order to get the desired structure in T. If we change
these properties or do not realize them strictly we get a
different structure in the subset T.
The last two theorems show that if we proceed as stated

we get nearly again the structure of a ringoid in the subset
T. The only property which cannot be proved by a general
theorem is (D6). The proof of this property is a difficult
task in all cases of Fig. 1. Concerning to these proofs we
refer to the literature [11]-[14], [16], [20].
We still indicate the proof in the case of the first line of

Fig. 1. As usual we call an ordered set linearly ordered if
(04) holds:

(04) A (a < b v b _ a).
a,beR

Theorem: In case of a linearly ordered set JR,-< (D6)
is no- independent assumption, i.e., (01),(02),(03),
(04),(Dl),(D2),(D3),(D4),(D5),(0D1),(OD2),(0D3)
(D6). °

This theorem guarantees that the structure of the
floating-point numbersa S and T (first line of Fig. 1) is that
of a linearly ordered division-ringoid.
We are now going to define the structure of the "higher

dimensional spaces" listed in Fig. 1. We shall later see that
the structure of a weakly ordered, respectively an ordered,
vectoid under the assumptions (S1),(S2),(S),(R2),(R3) and
(R) describes the structures in the lines 2,3,5,6,8,9,11,12
of Fig. 1.

Definition: Let R be a ringoid with elements a,b,c, *
and the special elements I-e,o,eI and {V,+} a groupoid with
elements a,b,c, - * * and the properties

(Vi) A a+b=b+a
a,be V

(V2) V A a+o=a.
oev ae v

V is called an R-vectoid IV,R if there is a multiplication
R X V -* V which, when defined, with the abbrevia-

tion

A -a:= (-e)-a,
ai v

fulfills the following properties:

(VDI) A A (a-o=oAoa=o)
aeR aeV

(VD2) A e- a = a
aeV

(VD3) A A -(a*a)=(-a)*a=a*(-a)
aeR aeV

(VD4) A -(a + b) = (-a) + (-b).
a,beV

An R-vectoid is called "multiplicative" if in V also a mul-
tiplication - V X V - V is defined with the properties:

(V3) V A a-e=e-a=a
ee V\IoI aeV

(V4) A a-o=o-a=o
aeV

(VD5) A -(ab) = (-a)b = a(-b).
a,beV

An R-vectoid is called "weakly ordered" {V,R,_} if {V,_}
is an ordered set and

(OVi) A (a_b=a+c_b+c)
a,b,ce V

(OV2) A (a b=*-b_ -a)
a,be V

A weakly ordered vectoid is called "ordered" if R is an
ordered ringoid and

(OV3) A A (o asbAo a=*a-a
a,beR a,beV

_ b- a A

o_a A o_ a ab-a _aa- b).
A multiplicative vectoid is called "weakly ordered" if it is
a weakly ordered vectoid. A multiplicative vectoid is called
"ordered" if it is an ordered vectoid and

(OV4) A (o_ a_ bA o_ c=a - c _b c
a,b,ce V

A c-a_c-b). o

Definition: In a vectoid we define a-subtraction by
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A a-b:=a+(-b). o
a,beV

Again in general there do not exist inverse elements of the
addition within a vectoid. But nevertheless the subtraction
is no independent operation. It is defined by the multi-
plication with elements of R and the addition.
Theorem: In a vectoid IV,R} the following properties

hold.
(a) o is the only neutral element of the addition.
(b) o- a'= -a.
(c) -(-a) = a.
(d) -(a - b) = -a + b = b - a.
(e) (-a )(-a) =a - a.
(f) -a = o a = o.

In a multiplicative vectoid {V,R we get further
(g) e is the only neutral element of the multiplication.
(h) -a = (-e) - a = a - (-e).
(i) (-a) * (-b) = a- b.

In a weakly ordered vectoid the following hold.
(j) a _ b A c < d==> a + c _ b + d
(k) a < b ==>-b< -a.

In an ordered vectoid, respectively ordered multiplicative
vectoid, we get the following.

(1) o _ a _ b A O C d * o ac _ bd
(m) a _b _ 0 A c _d _o o _bd _ac
(n)a b<o A O C_ d=ad bc o
(o) o _ a _ b A c _ d o bc _ ad _ o
(p) o _ a _ b A o _ Cc d=-> o _ ac _ bd A 0 < ca

_ db
(q) a _b _o A O_ Cc d= ad _ bc _ o A da

cb_ o
(r)a bo A C_ d o o bd acA o db
cca. 0

The proof is left to the reader. See [19], [13]. The theo-
rem can be summarized. In a vectoid the same rules for the
minus operator hold as in the real vector space. In an or-
dered vectoid for all elements which are comparable with
o with respect to < and - the same rules for inequalities
hold as in the real vector space.

Applications
Let IV,R} be a vectoid. Then the power set IPV,PRI is a

vectoid as well as IPV,R} is a vectoid.
Let R be a ringoid with the special elements I-e,o,el.
If VR:= R X R x ... x R denotes the set of vectors with

components out ofR and in VR the equality, addition and
multiplication by elements of R are defined by the usual
formulas for the components then I VR,R is a vectoid.

IfMR denotes the set of r X r matrices with components
out of R and in MR the equality, addition, and multipli-
cation as well as the multiplication by elements of R are
defined by the usual formulas for the components then
IMR,R) is a multiplicative vectoid.

If VR again denotes the set of n-tuples over R and in VR
the equality, addition, and multiplication by elements out
ofMR are defined by the usual formulas for the compo-
nents then IVR,MR} is a vectoid.

If R is a weakly ordered, respectively an ordered, ringoid
then also IVR,R, _ I as well as {VR,MR, < } are weakly or-
dered, respectively ordered, vectoids. {MR,R _ I is a weakly
ordered, respectively an ordered, multiplicative vectoid.
The proof of these results is left to the reader. See [19]

and [13] or [23].
If in Fig. 1 R is an ordered ringoid then by these results

the structure is also known in the first elements of the lines
2, 3, 5, 6, 8, 9, 11, and 12.
We are now going to discuss the theorems which allow

us to transfer these structures to the subsets on the right-
hand side.

Theorem: Let {V,R} be a vectoid and o its neutral ele-
ment, IV,<} a complete lattice, and jT,_} a symmetric
screen (Si), (S2), (S) (respectively a symmetric lower
screen, respectively a symmetric upper screen), 0: V - T
an antisymmetric rounding (Ri), (R3), and S a screen-
ringoid of R. In T let an operation-f:T X T -- T and a
multiplication E: S X T - T be defined by formula (R).
Then

1) IT,S} is also a vectoid with neutral element o and

(RG1) A (a + be T==a b= a + b) A
a,beT

A A (a-a T=*a Ea=a-a)
aeS aET

(RG3) A Oa--a.
aET

2) If 3:V - T is monotone (R2)

(RG2) A (a+b_c+dd afflb_cmd)
a,b,c,de T

A A (a - a _ b - b= a E a _ b El b).
a,beS a,beT

3) If o:V T is downwardly, respectively upwardly,
directed (R4) -

(RG4) A aimb_ a+b,
a,beT

respectively A a + b _ aEflb,
a,be T

A A aEa_a-a,
aeS acT

respectively A A a*acas a.
aeS acT

4) If IV,R, } is weakly ordered (OV1),(OV2) and
o:V - T monotone => $T,S,_} is weakly ordered, i.e.,
(OD1),(OD2) hold.

5) If IV,R, } is ordered (OV3) and 0:V - T monotone
IT,S,-< is ordered, i.e., (OV3) holds. o
Theorem: Let V,R} be a multiplicative vectoid with

neutral elements o and e, V,_} a complete lattice and
IT,-< a symmetric screen (respectively a symmetric lower
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screen, respectively a symmetric upper screen), 0: V o T
an antisymmetric rounding and S a screen ringoid of R. In
T let operations J:T X T -T, * e{+, } and a multipli-
cation 8:S X T - T be defined by formula (R). Then

1) fT,S} is a multiplicative vectoid with neutral elements
o and e and (RG1) holds for all operations as well as
(RG3).

2) If 0:V T is monotone (RG2) for all opera-
tions.

3) If 0: V T is downwardly, respectively upwardly,
directed * (RG4) for all operations.

4) If IV,R, _ I is weakly ordered and 0: V - T monotone
IT,S, ' } is a weakly ordered multiplicative vectoid.
5) If {T,S, _ is an ordered multiplicative vectoid and

0:V -T monotone {T,S,_-is also an ordered multi-
plicative vectoid. o

All statements of these theorems are easily verified. The
proofs show that our assumptions (S1),(S2),(S),
(R1),(R2),(R3),(R), respectively (R4) are really necessary
in order to get the desired structure in T. If we change
these properties or do not realize them strictly we get a
different structure in the subset T.
The last two theorems show that the structure of a

weakly ordered or ordered vectoid is invariant with respect
to monotone and antisymmetric roundings into a sym-
metric screen if the operations in the subset are defined by
formula (R). This describes all structures in Fig. 1 in the
lines 2, 3, 5, 6, 8, 9, 11 and 12.
A few words still have to be said about the interval

structures. This section is the most interesting one of the
whole theory. It cannot, however, be treated within this
paper. See [12], [13]. In every interval set listed in Fig. 1 we
have two order relations. With respect to < the structures
are ordered, respectively weakly ordered, in the complex
case and the rounding is monotone. This guarantees that
finally we will get the same structure on the upper screen.
The other order relation is the inclusion c with respect to
which the upper screens are defined. The rounding is an-
tisymmetric, monotone, and upwardly directed with re-
spect to the inclusion.

Further with respect to the inclusion all operations are
monotone, i.e., the property

A (AcB A C'D- >A*C B*D)
A,B,C,D

is valid for all operations * E ({+,-, -,/} and not only for the
addition.

At the first view some of our interval spaces in Fig. 1
seem to be unrealistic. Actual interval computations are
not done in the set of intervals of vectors or matrices IVR,
IMR, respectively IVC, IMC, but in the sets of vectors and
matrices with interval components VIR, MIR, respectively
VIC, MIC. It can, however, be shown by not at all trivial
theorems that the spaces IVR and VIR, IMR and MIR,

IVC and VIC, IMC andMIC are isomorphic with respect
to the algebraic structure and the order relation _. See
[13]. This finally shows that the structures which we have
derived also in the interval cases are realistic.
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Floating-Point Computation of Functions with Maximum

Accuracy
GERD BOHLENDER

Abstract-Algorithms are given that compute multiple sums and
products and arbitrary roots of floating-point numbers with
maximum accuracy, The summation algorithm can be applied to
compute scalar products, matrix products, etc. For all these func-
tions, simple error formulas and the smallest floating-point inter-
vals containing the exact result can be obtained.

Index Terms-Accuracy, errors, floating-point computations,
multiple-length mantissas, roots. of floating-point numbers,
rounding.

I. INTRODUCTION

OUR AIM is to approximate functions'
0J f: Rn - RP on a floating-point system T. For b,l e
N, b _ 2, 1 _ 1, the floating-point system Tb,l with base b
and l-digit mantissa is defined by

Tbj: = {°} U {x = *m - be; *EI+,-}, m = 0 - m[1*

m[i] E{0,1, - - - ,b-1}, m[l] 0, e E Z}. (1)
x is then called a floating-point number with sign * =
sgn(x), mantissa m = mant(x), and exponent e = exp(x).
As the base b will be kept fixed throughout the paper, we
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The author is with the Institute of Applied Mathematics, University

of Karlsruhe, Karlsruhe, Germany.
1 N, Z, and R denote the sets of nonnegative integers, integers and

reals, respectively. For any given set S, SP denotes the set ofp-tuples with
components out of S. {xi; P(x)I denotes the set of all elements x with
property P(x).

will suppress the index b and write shortly T1 or T. For the
present, we do not consider the finite exponent range that
is available in practice, as this would necessitate compli-
cated exponent overflow and underflow discussions. In-
stead, we give remarks on the influence of limiting the
exponent range on our algorithms.
The best possible approximation for f(x) is Df(x),

wherein 3: RP - TP denotes a rounding.2 We will restrict
ourselves here to the roundings V, A and 3,. (A = O(1)b).
For p = 1 these roundings are defined as follows:

A vx: = max{y E T;y _ xI
xeR

A Ax: = minly e T;x _ys = -v(-x)
xeR

A 3bx: =Vx AA 3bx: = ax
x o x<o

A 3ox:A= xA A 3ox:= vx
xeo x<O

and for y = 1(1)b -1

A aIVx: forx E [vx,S,(x))
X=o xi x for x E [S (X), Ax]

(2)

(3)

(4)

(5)

(6)A D3x: = -0,(-x),
x<0

2 As regards general definitions, we refer to Kulisch [5].
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