\int {\sqrt{\sin x} \over \cos{x}} dx = \frac{2 \,
_2F_1\left(\frac{1}{4},\frac{1}{4};\frac{5}{4};\sec
^2(x)\right) \sqrt[4]{-\tan ^2(x)}}{\sin
^{\frac{1}{2}}(x)} \\
= \frac{B_{\sec ^2(x)}\left(\frac{1}{4},\frac{3}{4}\right)
\sqrt[4]{-\tan ^2(x)}}{2 \sqrt[4]{\sec ^2(x)} \sin
^{\frac{1}{2}}(x)} |