This is LaTeX code:

[latex]
\displaystyle \lim_{n\to \infty} \frac{n}{\sqrt{n!}} = \sqrt { \lim_{n\to \infty} \frac{n^2}{n!}} = \sqrt { \lim_{n\to \infty} \frac{n}{(n-1)(n-2)\dots \cdot 2\cdot1}} =\sqrt { \lim_{n\to \infty} \frac{n}{n-1} \cdot \lim_{n\to \infty} \frac{1}{(n-2)(n-3) \dots \cdot 2 \cdot 1} }= \sqrt{ 1 \cdot 0} = 0
[/latex]