\quad (2n-1)!! = \frac{(2n)!}{2^n n!} \\
\Leftrightarrow 2^n n! = \frac{(2n)!}{(2n-1)!!} \\
\Leftrightarrow 2^n n! = 2n(2n-2) \cdots 2 \\
\Leftrightarrow n! = \frac{2n}{2} \cdot \frac{2n-2}{2} \cdots \frac{2}{2} \\
\Leftrightarrow n! = n(n-1)\cdots 1 |