
From Skiena and Revilla, PROGRAMMING CHALLENGES: The Programming Contest Training Manual Springer-Verlag, New York, 2003. ISBN: 0-387-00163-8

111206 (2/3/4)-D Sqr/Rects/Cubes/Boxes?

How many squares and rectangles are hidden in the 4×4 grid below? Maybe you can count it by hand for such a small grid, but what about for a 100×100 grid or even larger?

What about higher dimensions? Can you count how many cubes or boxes of different size there are in a $10 \times 10 \times 10$ cube, or how many hypercubes and hyperboxes there are in a four-dimensional $5 \times 5 \times 5 \times 5$ hypercube?

Your program needs to be efficient, so be clever. You should assume that squares are not rectangles, cubes are not boxes, and hypercubes are not hyperboxes.

Input

The input contains one integer N ($0 \le N \le 100$) in each line, which is the length of one side of the grid, cube, or hypercube. In the example above N = 4. There may be as many as 100 lines of input.

Output

For each line of input, output six integers $S_2, R_2, S_3, R_3, S_4, R_4$ on a single line, where S_2 denotes the number of squares and R_2 the number of rectangles occurring in a two-dimensional $(N \times N)$ grid. The integers S_3, R_3, S_4, R_4 denote similar quantities in higher dimensions.

Sample Input	Sample Output
1	101010
2	5 4 9 18 17 64
3	14 22 36 180 98 1198