
1106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 8, AUGUST 1990

An Algorithm for Redundant Binary Bit-Pipelined
Rational Arithmetic

PETER KORNERUP AND DAVID W. MATULA

Absfmct- We introduce a redundant binary representation of
the rationals and an associated algorithm for computing the
sum, difference, product, quotient, and other useful functions
of two rational operands, employing our representation. Our al-
gorithm extends Gosper’s partial quotient arithmetic algorithm
and allows the design of an on-line arithmetic unit with compu-
tations granularized at the signed bit level. Each input or output
port can independently be set to receivehroduce operandshesult
in either binary radix or our binary rational representation. We
investigate by simulation the interconnection of several such units
for the parallel computation of more complicated expressions in
a tree-pipelined manner, with particular regards to measuring
individual and compounded on-line delays.

Index Terms- Arithmetic unit, continued fraction, fine
grained parallelism, on-line, radix, redundancy, signed bit.

I. INTRODUCTION

HIS paper introduces redundancy into the representation T of operands to be used as digit-serial input and produced
as output of an on-line arithmetic unit for rational arith-
metic. Previous investigations of an on-line rational arithmetic
unit by several authors ([2], [7], [8], [12]) have considered
only operands in nonredundant representations. As with well-
known results for on-line units employing radix representation
[l], [13], it is essential to introduce redundancy to bound the
delay between input and output of such a unit.

The basic idea of this type of on-line rational arithmetic unit
was suggested in a 1972 memo from MIT’s AI lab by Gosper
[2], [5, p. 3601, [12] as an algorithm operating serially on the
partial quotients of a continued fraction expansion [3], [41.

The arithmetic unit envisioned supports the standard oper-
ations of addition, subtraction, multiplication, division, and
many other useful functions of two variables, expressed as

axy + b x + c y + d
exy + f x + g y + h z (x , Y) =

where a, b, c, d , e, f, g , and h are arbitrary prespecified
integers. The unit thus operates as a digit serial, precision
demand-driven cell, several of which can be interconnected to

Manuscript received November 2, 1989; revised March 1, 1990. This work
was supported by the Danish Natural Science Research Council under Grant
11-7319 and by a grant from the Cyrix Corporation, Dallas, TX. Some of
the results of this paper were presented at the 9th Symposium on Computer
Arithmetic, September 1989, Santa Monica, CA.

P. Kornerup is with the Department of Mathematics and Computer Science,
Odense Universitet, Odense, Denmark.

D. W. Matula is with the Department of Computer Science and Engineer-
ing, Southern Methodist University, Dallas, TX 75275.

IEEE Log Number 9036145.

compute more complicated arithmetic expressions, in general
in a tree structured pipelined computation.

A unified arithmetic algorithm providing the foundation for
this unit may be described by just three steps related to the
coefficient 8-tuple Q = (a , b, c , d , e , f, g, h):

I) Initiation: Q is initiated corresponding to the desired
arithmetic operation (e.g., a = h = 1 and b = c = d = e =
f = g = 0 will make the unit a multiplier).

2) Transition Determination: A function Zrange(Q) de-
termines whether an element (bit or digit) is available for
appending to the output stream, otherwise dictating input from

0
3) Execution: Each element of output to the stream for

2, or input from the stream for x or y, is accompanied by a
simple transformation of the 8-tuple Q.

Such an algorithm gives precedence to output over further
input to speed up computational throughout in a pipelined
sequence or interconnected network of units, each employing
the algorithm. To bound the delays between input and output
of each unit, it is necessary that the operands and results for
the algorithm use a redundant representation.

The principal result of this paper is the design of a redun-
dant binary version of this unified arithmetic algorithm. Input
and output to our algorithm are given by signed bit string rep-
resentations of x, y, and z which are processed left-to-right.
Any rational is shown to have a finite length bit string repre-
sentation, so that the computation cell will always terminate
without cycling. The evaluation of Zrange(Q) is efficient and
all transformations of Q in our algorithm reduce to elementary
shift and addhubtract operations on the elements of Q. This
provides that given sufficient register lengths, each unit can
operate in constant time at each step of processing arbitrary
long input/output bit streams.

The generality of our algorithm is further demonstrated by
showing that with only a small change in the transition rules
for transformations of Q, input streams for x and y, in an
appropriately self-normalized form of binary radix or redun-
dant binary radix representation, may be directly input to the
unit with implicit conversion. Output in redundant binary radix
representation is similarly realizable, however, with the caveat
that cycling must ensue for nonfinitely representable rational
output.

In Section 11, we derive a course grained version of our
unified arithmetic algorithm. The input and output streams
are here composed of integers, interpreted as signed partial
quotients of redundant continued fraction expansions of the
operands and result. The principal purpose of establishing this

the input stream of x or y .

0018-9340/90/0800-1106$01 .M) O 1990 IEEE

KORNERUP AND MATULA: ALGORITHM FOR REDUNDANT BINARY BIT-PIPELINED RATIONAL ARITHMETIC 1107

algorithm is to provide a rigorous foundation for computation
of the Zrange(Q) function. The resulting transformations to
be applied to Q are shown to be elementary linear transforma-
tions conveniently illustrated by 2 x 2 matrix multiplications.

In Section 111, a redundant binary continued fraction rep-
resentation is introduced. The signed bits are shown to be
in one-to-one correspondence with a refined factoring of the
2 x 2 linear transformations of the course grained algorithm.
Resultant factors are limited to a set of eight particular 2 x 2
matrices, each containing only entries from (0, 1 , f i, f 2)
and corresponding to a shift and addhubtract operation on the
8-tuple Q. The redundant binary algorithm is then described,
and the variations for incorporating redundant binary radix
input and/or output summarized.

Regularity of input/output delay for a unit employing this
algorithm is investigated by simulation in Section IV. The
compounded on-line delay of a tree structured pipelined com-
putation is illustrated. Section V concludes with some open
questions and directions for future research.

II. SERIAL RATIONAL ARITHMETIC

The serial rational arithmetic algorithm developed in this
section in extension of [2] , [8] provides the essential foun-
dation for our subsequent binary algorithm, and requires a
suitable notion of redundant continued fraction representation.

Herein we allow a redundant continued fraction expan-
sion of a rational number x to be given by any sequence of in-
teger valued signed partial quotients ao, a] , . . . , ak , denoted
by x = [ao /a l / . . . /ak], for which x has the value

1
1

x = a o +

1

- . + -

a1 +
a2 + ~ 1

ak
subject to the constraint that the fractional part f i at level i
satisfies

where V;. I < 1 for 0 5 i 5 k .
1

1
1

ai+2 + ~

. . + -

f i =
ai+l +

1
ak

(1)

The requirement that the fractional parts f; have magni-
tude less than unity assures that the truncated values xi =
[ao/al/ . . . /ai] are good approximations, corresponding to
rounding up or down by less than one ULP (unit in the last
place). The fractional parts f i may be more tightly bounded,
resulting in fewer allowed redundant continued fraction rep-
resentations as summarized here.

Observation 1: Imposing alternative fractional part
bounds in (1) results in allowed redundantlnonredundant con-
tinued fraction expansions for rational values x as follows.

a) V;. I < p for 0 < p 5 5: Some values x would have no
allowed expansions, e.g., x = i +

b) Ifi I 5 : All values x would have either one or two al-
for any integer i .

lowed continued fraction expansions, the latter corresponding
only to a last partial quotient being f 2 .

c) I f i I < p for $ < p 5 1: Progressively more redundant
continued fraction representations would be allowed paramet-
rically with increasing p, so that for p = 1 every nonintegral
rational x would have at least two, but no more than a finite
number of allowed redundant continued fraction expansions.

d) I f i I 5 p for p 2 1 : Undesirable expansions would be
allowed, such as nonunique zero 0 = [O] = [1 /I], and embed-
ded strings carrying no information as shown by the identity

0
Our requirement Ifi I < 1 in (1) thus allows maximal redun-

dancy in continued fraction representation without the anoma-
lies noted in Observation 1 d). Recall that anomalies in re-
dundant radix representation are similarly avoided by requir-
ing that truncation after any digit position yields a remaining
fractional part of less than one ULP (this condition leads to
the derived constraint that all digit values have magnitude less
than b in a base b system). Redundant continued fractions
still may contain arbitrarily large individual partial quotient
values. Certain important restrictions on allowed subsequences
of signed partial quotient values derive from the fractional
part constraint (l), and should be noted for the purpose of
recognizing a redundant continued fraction from a presumed
sequence of partial quotients.

Observation 2: A sequence of integers ao, a1 , ' ' . , ak,
k 2 0, form the partial quotients of a redundant continued
fraction [ao/al/ . . . /ak] if and only if

[a0 / 1 /I/ 1 / 1 /I/ 1 / a 1 1 = [a0 l a 1 1 .

a) only a0 may have the value zero, and
b) lai I = 1 for 1 5 i 5 k - 1 implies ai and ai+l have the

c) lakl 2 2 whenever k 2 2 . 0
The set of all redundant continued fraction expansions of
is then

same sign, and

13/41
Note that ai+l is always given by [l/fil or Ll/fiJ, so the set
of continued fraction expansions available for x is the result of
a process allowing the choice of one of two successive integers
for the next partial quotient (given the previous quotients)
except for the last partial quotient, which is unique and of
magnitude 2 2 for k 2 1.

We now investigate the design of an algorithm for the eval-
uation of the expression

axy + b x + c y + d
exy + f x + g y + h z(x, Y) =

under the assumption that x and y are given by redundant
continued fraction expansions, and that the value of z (x , y)
will be serially computed as such an expansion. The desired
algorithm extends to signed partial quotients the procedure in-
troduced by Gosper [2] as formalized in [8] for nonredundant
continued fraction input and output. We here review the salient

1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 8, AUGUST 1990

features of the algorithm developed in [8] with principal con-
cern for the modifications necessary regarding signed partial
quotients. We then illustrate the mechanisms of the modified
algorithm by an example computation.

Any redundant continued fraction x = [ao/al /a2/ . . . /akl
has a leading signed partial quotient a0 which is an inte-
ger, and a tail x’ = [a1 /a2/ . . . /ak] which is the continued
fraction composed of the remaining signed partial quotients,
where then

1
x = a ~ + ~ .

X
(3)

The algorithmic step of entering the leading signed partial
quotient p = a. of x into z(x, y) corresponds to a substitution
of the variable x by the expression (3) into (2),

(4)
Similarly entering the leading signed partial quotient q of y
corresponds to substituting y = q + l/y’ into (2) obtaining

Note that the resulting expressions in (4) and (5) both have
the same form as (2), where the eight (integral) coefficients
have been updated by simple linear transformations using only
the leading signed partial quotient of x and/or y as input. The
coefficient 8-tuple (a, 6 , c , d , e , f , g , h) is now observed to
provide the basis for our algorithm design, with the dynamics
of the algorithm specified in the updating of this 8-tuple. We
then term the transformations dictated by (4) and (5) input
transformations on this coefficient 8-tuple.

To complete the description of serial rational arithmetic,
we now describe the process of determining and extract-
ing the leading signed partial quotient of the output value
z(x, y) = [ao/al / a 2 / . . . /akJ also by its transformation of
the coefficient 8-tuple. Letting r = a. denote an allowed lead-
ing signed partial quotient, we rewrite z in the form

1
z(x, y) = r + ___

z’(x, Y)
and from (2) solve for the tail z’(x, y) obtaining

exy + f x + g y + h
(a - re)xy + (b - r f)x + (c - rg)y + (d - rh) z’(x’ =

which again is seen to have the same form as (2). Expression
(6) describes the output transformation on the coefficient
8-tuple, and may be recognized as a step of the Euclidean
algorithm applied concurrently to the four pairs (a, e) , (b , f),

In contrast to the expressions z1 (x’, y) in (4) and z2(x, y’)
in (5) which have maintained the same value as A x . v) bv

(c , g) , and (d , h).

Input q output I
from y for 2

c-a

l ‘ g L \ e

Fig. 1. The coefficient cube and its transformations by partial quotient input
and output.

compensatory changes in arguments and coefficients, the value
of the tail z’(x, y) in (6) becomes the inverse of the “frac-
tional part” z(x, y) - r . To confirm for output the value r
as a leading partial quotient of z(x, y) , it is necessary that
Jz’(x, y)l > 1 to satisfy (1). Before analyzing this condition
to ascertain a suitable recursive algorithm design for the step
of extracting the next signed partial quotient for output, let
us introduce a notation to depict the 8-tuple of coefficients of
z(x, Y) .

An appropriate apparatus to describe the mechanics of the
transformations is the coefficient cube illustrated in Fig.
1, where the eight coefficients of z(x, y) are placed in a
2 x 2 x 2 array. The 4-tuple b , a, e , f of the coefficient cube
identifies the leading x-face, c , a , e , g the leading y-face,
and h, f , e , g the leading z-face. The transformation (4)
which inputs the leading partial quotient p of x effects a lin-
ear transformation of coefficients in the x-direction creating
a new leading x-face p b + d , pa + c , p e + g , p f + h . Equa-
tion (5) similarly yields a new leading y-face and (6) a new
leading z-face.

As we shall be describing a recursive process, in the fol-
lowing, x and y will be taken to denote the continued fractions
given by the remaining tails of the initial x and y , and z is
the yet to be determined tail of the original z having deleted
the leading partial quotients of z already extracted as output.
Similarly, a , b , c , d , e , f , g , h will denote the coefficients of
the updated coefficient cube.

The new selection procedure we now describe will deter-
mine a next partial quotient of z , again utilizing only the up-
dated coefficient cube 8-tuple of integer constants as in [8] . To
select the next signed partial quotient of z(x, y) it is necessary
to determine the range of z(x, y) over appropriate domains
x E D, and y E D,. Initially D, = D, = R, the set of real
numbers, but whenever the first partial quotients of x and
y have been read, 1x1 > 1 and IyI > 1 since their continued
fraction expansions are redundant, hence D, c (1, - 1) and
D, c (1 , - 1). Here (1, - 1) denotes the open affine interval
{xlx > 1 or x < - l}, which includes the single point at
infinity, 00 = +00 = -00. Since laj I = 1 implies that a; and
a;+l have the same sign, then if say the last partial quotient
input from x was a; = 1, then D, = (1, 00). Referring to
the definition of the continued fractions, it may be seen that
for a terminated exoansion the corresoonding variable x or v

KORNERUP AND MATULA: ALGORITHM FOR REDUNDANT BINARY BIT-PIPELINED RATIONAL ARITHMETIC 1 1 0 9

may just be considered “stuck at infinity,” i.e., D, = {CO}

or D, = {CO}.

Note that if the range of the function z (x , y) is within the
interval r - 1 < z (x , y) < r + 1 over the domain x E D, and
y E D,, then certainly the next partial quotient (say ai) may
be chosen to be r. After the output transformation, the “tail”
z’ (x, y) then satisfies Jz’(x, y) (> 1 so we shall always obtain
the necessary condition of (1) on the remaining fractional part
z (x , U) - r corresponding to the yet to be determined tail
z’ (x, U) = [ai+l/ai+2/. . /akI .

Thus, if there exists an r such that

{z(x, y)lx E D, and y E D,} c (r - 1, r + 1)
then a next partial quotient for z (x , y) of r can be output, oth-
erwise more input will have to be taken from the x-direction
and/or y-direction to reduce the range of z. Notice that the sets
D, and D, are “state-dependent,” but normally they will be
of the form D, = (1, -1) and D, = (1, -1). Most such do-
mains are infinite, open domains which have to be interpreted
in the affine sense, i.e., through infinity. Since the intervals are
open at finite endpoints we must assure that z (x , y) is well de-
fined on the intervals closed at such endpoints, e.g., [l, -11.
Then if say D, = D, = (1, -l), the range of z (x , y) can be
determined from the four values:

a - b - c + d - a + b - c + d
- e + f - g + h z(-1, -1) = e - f - g + h z(1, -1) =

- a - b + c + d a + b + c + d
- e - f + g + h ‘ (19 1) = e +f + g + h ’ z(-l, 1) =

As numerators and denominators are treated separately,
it is sufficient for these considerations if either z (x , y) or
l / z (x , y) is well defined and monotone. This is the case if
either the numerator axy + bx + c y + d or the denomina-
tor exy + f x + gy + h is nonzero over the domain x E D,
and y E D,. An analysis of the root curves of the numera-
tor or the denominator shows that it is possible to determine
the well definedness of z (x , y) or l/z(x, y) by the signs of
their denominators at the endpoints of the intervals D, and
D,, e.g., at the four points (-1, -l), (1, l), (-1, l), and
(1, - 1). From the values at these points it is possible to con-
struct a function Zrange(Q). Given as input the 8-tuple of
integers of the coefficient cube Q and the state of the input
x and y (i.e., D, and D,), Zrange(Q) determines the range
of values of z (x , y) over the domain D, x D,. To determine
Zrunge(Q), first compute the values of the numerator and de-
nominator at the endpoints, and if their signs indicate that
z (x , y) or l/z(x, y) is well defined and hence monotone on
D, and D,, return their minimum and maximum ratio as the
interval:

Zrange(Q) = {z(x, y) (x E D, and y E D,}
where the interval is given in the affine sense. The value of
Zrange(Q) will normally be an open interval; however, if
z(x , y) is constant, the interval reduces to a single point. If
necessary, the process of computing Zrange(Q) will request
more input from x or y thus restricting the domains D, and
D, to assure the well definedness of z (x , y) , and perform the
appropriate transformation on Q as a side effect.

If either x or y but not both become exhausted, only two ra-
tios determine the range of z(x, y). So if say x is terminated,
and D, = (1, -l), the values of ~ (c o , -1) and ~ (c o , 1) de-
termine the range of z (x , y). And if both x and y terminate,
the range of z(x, y) reduces to the value ~ (c o , CO) = a / e . In
this case, Zrange(Q) reduces to the single point ale .

The procedures we have just described for computing
input and output transformations on the coefficient cube
(a, b , c , d , e , f, g , h) utilizing the Zrange(Q) function can
be summarized as follows.

Algorithm SRA (Serial Rational Arithmetic) :
Given input queues of signed partial quotients for the

variables x and y and the initial values of the coefficients
(a, b, c, d , e , f , g , h) forming the coefficient cube Q, this
algorithm serially computes an output queue of signed partial
quotients for

axy + b x + c y + d
exy + f x + g y + h a z(x, U) =

Input from x or y:
Whenever Zrange(Q) is not the point at infinity and there

is no r such that Zrange(Q) c (r - 1, r + l), input a partial
quotient from either the x or y queue, update the coefficient
cube Q, and compute the new Zrange(Q).

{Corresponding to the variable substitution x = p + l/x’
to be performed when a leading partial quotient p from x is
consumed, the input transformation for x may be described
as

where a generalized notion of matrix multiplication has been
applied to 2 x 2 x 2 arrays. The transformation correspond-
ing to the substitution y = q + l/y’ may similarly be
expressed as a multiplication by the array
properly transposed version of the coefficient cube array (see
Fig. l).}

{: b , On a

Output for z:
1) Whenever Zrange(Q) is the point at infinity, output the

endmarker to the output queue and terminate.
2) Whenever Zrange(Q) c (r - 1, r + 1) for some r, out-

put one such r to the output queue, update the coefficient
cube Q, and compute the new Zrange(Q). {The transfor-
mation corresponding to the out 2 t)of r can be effected by

, again on a suitably multiplication with the matrix
transposed version of the coefficient-Lube Q. }

The mechanics of Algorithm SRA are illustrated in Fig.
2, where a computation of Q + e with = [2/3/a] and

= [1 /4/3] is displayed in terms of coefficient cube trans-
formations. Each transformation creates a new face in the x ,
y, or z direction. The new face along with the preceding face
in that direction constitute the coefficient cube values at that
point in the serial computation process.

In summary, we conclude that it is possible to construct an

I : , 0

1110

+ I 2 -3 4

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 8, AUGUST 1990

satisfying the range constraint
In-1-2

Fig.

4

-3

. -11
Y

2. Coefficient cube transformations for the computation E =

yielding for output the redundant continued fraction [3, if] = S.
+L?

I I '

algorithm, which takes two rational operands x and y , given
as redundant continued fractions, and produces as output the
value of the function z(x, y) in the same representation. This
algorithm allows for performing the standard arithmetic op-
erations +, -, x , / in an integrated manner by a common
arithmetic unit. The algorithm is on-line at the partial quotient
level, most significant partial quotient first. As the output of a
very large partial quotient potentially requires an unbounded
number of (small) partial quotients to be input, we must mea-
sure the granularity for on-line delay at a level other than
the number of partial quotients. For this purpose a signed bit
binary version of this algorithm is now developed.

HI. THE BINARY-LEVEL ALGORITHM
To provide more uniform throughput and bound the on-line

delay of the serial rational arithmetic algorithm of Section
11, it is necessary to be able to consume input and produce
output in small "granularized units," e.g., to operate with
redundancy at a bit level. The LCF representation [7]-[9],
[1 13 and the "continued logarithm" [2] provide useful models
of serial binary rational representation without, however, the
essential feature of redundancy. We now introduce a signed bit
redundant binary representation of the rationals following the
construction of the LCF representation [8]. Our representation
demonstrates the viability and usefulness of including implicit
self-normalization in the signed bit string interpretation.

Let b] 2 = b,,b,-] blbo where bi E { i , O , 1) de-
note any redundant binary radix representation of the inte-
ger p, allowing arbitrary many leading zeros. Correspond-
ing to [PI2 and using the extended four-letter "signed
bit" alphabet {U, I, 0, 1) we term the even length string
u"-'bnbn--l . . . blbo for n 2 1 a selfdelimiting signed bit
string of value p.

An admissible redundant binary signed bit string R(p) is
then given for any integer p # 0 by any self-delimiting string

R@) = ~ " - l b , b , - ~ . . .b lbo with lbnl = 1, (7)

and for p = 0 by the single bit R(0) = bo = 0.
We term u"-l the unary part of R@) = un-lbn

b,-l . . . blbo, and b,b,-l . . .blbo the binary part of R(p).
The unary part serves as a counter to determine n, hence the
range within a factor of four for any p # O . The condition
(7) admits a minimal notion of redundancy in the range de-
termining part u"-l while avoiding the inefficiency attendant
to processing the equivalent of an extended string of leading
zeros, e.g., 111 . . . I = 00. . . 01. The admissibility condition
(7) affects restrictions on the leading bits of the binary por-
tion of R@) that are relevant to the problem of recognizing
admissible signed bit strings.

Observation 3: For n 2 2, a self-delimiting signed bit
string u"-'b,bn-l . . .blbo is admissible if and only if when
b,b,-l = i i or Ti, the sign of bn-2bn-3...b0 agrees with
that of b,. 0

For any redundant continued fraction x = [ao/al / - - /ak]
we then obtain by concatenation an admissible string for x,

whenever R(ai) is an admissible string for ai for 0 I i I k .
= [2/3/4] we ob-

tain as one admissible string
For the redundant continued fraction

Note that lOTIul00 is a shorter admissible string also deter-
mining the redundant continued fraction [2/3/4]. The string
1 I1 flOuf00 determines the sequence of admissible partial
quotient values 1 , 1, 2, -4, which constitutes an alternative
redundant continued fraction of value {. In choosing an ad-
missible string representation for : there is redundancy in
both choosing the partial quotients, and in the representa-
tion of the partial quotients. The reverse process is, however,
unique, reading any admissible string from left to right allows
for determination of a unique sequence of partial quotients,
and then determination of a unique real value. If a bit string
is not known to be admissible, Observations 3 and 2 may be
employed during a left-to-right scan to confirm admissibility.

As noted in Algorithm SRA, the following matrix product
expresses the transformations for x = [ao/al / . . . /ak],

1 a k

corresponding to the input of x into the computation cube in
terms of partial quotients. We shall show that this factorization
may be further refined into a product of primitive "shift-and-
add" transformations. } has the following fac-
torization in one-to-one correspondence with the elements of

Observation 4: The matrix {

KORNERUP AND MATULA: ALGORITHM FOR REDUNDANT BINARY BIT-PIPELINED RATIONAL ARITHMETIC 1111

the representation R @) = d""bnbn-1 ' . . b l b o for p # 0:

P l } = { :

{ i :}. (8)

Note that the factorization in (8) involves just seven prim-
itive matrices which may be categorized into three groups,
depending on whether the signed bit of R @) for p # 0 is 1)
in the unary part, 2) in the leading position of the binary part
denoting the switch from unary to binary, or 3) in a trailing
(nonleading) position of the binary part.

Unary transform:

Switch bit transforms:

Trailing bit transforms:

{i -$ {i O } , {; "). (9)
0 1 0 1

Observation 5: Given an admissible string for a rational
1x1 2 1,

1 n2-1b2 b2

. . . bg. . .
R (x) = U"'-lbA,bA,-l * . . bou n2 n 2 - l

bnkbik - 1 . . . b i ,
0 1

the matrix product nfy1 { ~ } has a factorization into the
seven primitive transformation'matrices (9) in one-to-one cor-
respondence with the signed bits of R (x) ,

1 b & 1 & {; ; }...{; ; } . (10)

For (x 1 < 1, an admissible string for x is given by prepend-
ing a 0 to an admissible string for l / x , i.e., R (x) =
0 o R (l / x) . The factyiFation for x then has an initial "re-
ciprocating " factor { , o } corresponding to the leading 0 bit,
followed by the factorlzation corresponding' to R(1 / x) . 0

The factorization (10) provides an algorithm for the
(signed) bitwise input of information from the bit streams for
x and/or y. Each matrix of (10) corresponds to a variable
substitution, in general the substitution

y +ax ' 6x -y
6 + P X ' a - p x

yielding x' = - X z -

can be performed by multiplying the coefficient cube Q in the

x-direction by an appropriate matrix

Q ' = Q X * { ~ Y a ").
Similarly input from y may be performed bitwise, by multi-

plication in the y-direction with similar matrices, correspond-
ing to a factorization of the matrix representing the variable
transformation y = q + l/y'.

It is here essential to observe that successive leading signed
bits from x or y may be read in any order between x and
y, and thus the corresponding matrix multiplications in the x-
and y-direction may similarly be interleaved. This is due to
the fact that the variable transformations of x and y may be
interleaved in any way.

It is also important to notice that each matrix multiplication
is no more than some simple shift-and-addhubtract operation,
which internal to the unit may be performed in parallel on four
register pairs in constant time. The matrices just represent a
convenient notation for some simple register level operations,
which allow us to express their individual and combined effect
in a rigorous way.

The output of a partial quotient r of z (x , y) may also be
performed serially at the signed bit level, corresponding to a
multiplication in the z-direction employing the factorization

1 -r 2 -2bn

{; 1 -rS-}...{ bn-1 i -!} (1 1)

where R (r) = U"-lbnbn-l . . .bo. Notice that it is now possi-
ble to emit leading signed bits of the R(.) representation of r.
before r is completely determined. For each signed bit emit-
ted, the appropriate transformation on the coefficient cube is
performed by multiplication with the corresponding primitive
matrix in the z-direction, yielding a new value for z as follows.

A transformation by multiplication in the z-direction by a
matrix

corresponds to a rewriting

i.e., z (x , y) is substituted by z' (x , y). In particular, we have
transformations {: :} yields z' (x , y) = z (x , ~ U)

2 ,

. 1 b ,

1112

where the possibly necessary initial reciprocal transformation

1 {: i} yields z' (x , y) = ~

z(x, Y) '

After emitting a signed bit of r , it may be possible to de-
termine another signed bit of r, and the cycle is repeated,
otherwise more input from x or y will have to be taken. From
the transformations of z (x , y) above it follows that it is per-
missible to interleave output transformations with input trans-
formations in any order between x, y, and z.

We are now ready to formulate an algorithm which will
determine the signed bits of R(r) , where r is a leading partial
quotient of z (x , y) , and where repeated application of the
algorithm will determine R(z (x , y)). The process is similar to
the quotient selection process of SRT type division, however,
tied to the process of reading operands in such a way that input
is only requested when necessary to determine the next signed
bit of output. It will utilize the function Zrunge(Q), which
given the coefficient cube Q will return an interval such that
z (x , y) c Zrange(Q) for all permissible values of the tails
of x and y. If necessary, the function Zrunge will as a side
effect request more input from x and y, to assure that such an
interval can be returned. The following algorithm uses a loop-
construct, where, however, the guards must be tested in the
order listed. If true, the following statement will be executed
and the loop repeated, testing from the top again.

Algorithm RPQ
{This algorithm determines a string u"-'bnbn-1 . . . bo which is
an admissible representation R(r) of the next partial quotient
r of z(z, y), as specified by the given coefficient cube Q, and
admissible input strings R(z) and R(y).}
n:=l;
loop
Zrange(Q) c (-1,l): {output 0; n:=O;

perform transf. { ! k } ;
exit 100~1:

- , I

Zrange(Q) c (-4,O): {output I;
perform transf.

exit loop]: - ..
Zrange(Q) c (0,4): {output 1;

perform transf. { : :2 };
exit loop};
{output U; n:=n+l;

perform transf. { }I;
{take more input from x or y};

Zrange(Q) c (2, -2):

true :
end loop;
Assert{Zrange(Q) c (1,-1) }
loop

n=O : {exit loop};
Zrange(Q)c (--00, -1): {output I; n:=n-l;

perform transf. { f 3 }I;
0 1

Zrange(Q)c (1,m): {output 1; n:=n-1;

perform transf. { - 4 }I;
0 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 8, AUGUST 1990

Zrange(Q) c (2, -2): {output 0; n:=n-1;

perform transf. { }I;
true : {take more input from x or y};

end loop;
Assert{Zrange(Q) c (1, -1) }

After completion of the algorithm, Q will have been
transformed into a new cube Q' representing z'(x, y) =
1 / (z (x , y) - r) in agreement with the factorization (1 1).

Lemma I: The output R(r) = u"-lbnbn--l . . . bo of
Algorithm RPQ is an admissible string for the inte-
ger r. Repeated application of Algorithm RPQ yields
R(ao) o R (a l) o . . . o R(ak), which is an admissible string
for z (x , U).

Proof: Consider first a single application of Algorithm
RPQ. If the initial loop outputs first a 0 then the algorithm
just switches the role of numerators and denominators (recip-
rocates), having emitted the admissible string for a0 .

or 1 is emitted then the first loop exits with
n = 1, and the computation will proceed to the second loop
where one more signed bit will be output. Any of the resulting
strings IT, TO, 11, IT, 10, 11 are then admissible.

If the initial loop emits at least one U, then n 2 2 and
either b, = 1 or 6, = I upon exit from the first loop. In
case b, = 1, then the new Zrange(Q) c (1 , -2). If the first
output of loop two is either b,-l = 0 or 1, the final result
is readily seen to be admissible. If the first output of loop
two is b,-l = I, then the next Zrange(Q) c (1 , 00). From
this condition it follows that bn-2 = 1 must subsequently be
emitted, thence yielding an admissible string for r. The result
is symmetric for the case b, = f , completing the proof that
R (r) is admissible.

Repeated application of Algorithm RPQ yields the sequence
of admissible strings R(uo), R(al) , Both x and y input to
the cell must terminate (as indicated by the end marker) and
the unit will itself terminate in a finite number of steps. Recall
that ale of the coefficient cube determines the output when
input has terminated; hence, e = 0 indicates that the complete
continued fraction has been extracted. At that point, a string
of completed partial quotients R(a0) o R (u l) o . . . o R(ak)
has been output. As the assertion Zrange(Q) c (1, - 1) holds
after emitting R(ai) for all i, [a o / a l / . e . / a k] is a redundant
continued fraction for z (x , y) and the output an admissible

A computational unit employing this algorithm can uti-
lize a transition lookup table to assist the computation of
Zrange(Q). There are several states to consider when com-
puting Zrange(Q) , corresponding to different D, and D, do-
mains for the tails of x and y. Initially D, x D, = W x W,
and after the endmarker (symbol e) on both strings has
been processed finishing all input we shall have D, x D, =
{co} x {co}. Inputs from x and y are each independently in
one out of two major states corresponding to reading the
unaryhwitch, respectively, the balance of the binary part.
These major states are each refined into five recognized sub-
states corresponding to intervals D of possible values of the
tail of each of x and y. Table I describes the state transitions

If either a

string for z (x , y). 0

KORNERUP AND MATULA: ALGORITHM FOR REDUNDANT BINARY BIT-PIPELINED RATIONAL ARITHMETIC

~

1113

TABLE I
EVALUATION-STATE LOOKUP TABLE

and the associated intervals pertaining separately to each of
Dx and D,.

A computational unit (cell) employing Algorithm RPQ as
described above will thus repeatedly apply the algorithm to
its coefficient cube as long as output is requested, implicitly
ingesting input when needed and available. Hence, it will run
in a “precision demand-driven” mode.

We conclude this section with some observations generaliz-
ing the integer representation R(p) and the factorization (8) of
Observation 4 to nonintegral finite precision binary numbers,
i.e., standard binary radix represented numbers.

Observation 6 (Radix Input): If [xlz = bnbn-1
bo.b-1 . . . b-k is a (possibly redundant) binary radix repre-
sentation of x = p + f, where p is integral and If1 < 1,
then the integer R(p) representation may be generalized into
R’@ + f) = U“-lbnbn-I . . .bob-l * . . b - k . The unary part
here serves as a scale factor, i.e., “exponent part,” used to
position the radix point. Correspondingly the input of x in
(redundant) radix form may be performed by the following
sequence of matrix multiplications:

{; ;}n-l{; 2;n}{i T} . . .

1 1 I
The product of these matrices is { 2y i I} which contains
nonintegral entries. A compensatory scaling by 2k does not
affect the value of z (x , y) of (2).

Just as it is possible to receive input in either rational or
radix form, it is also possible to produce the result in both
forms. 0

Observation 7 (Radix Output): If in the first (and only)
execution of Algorithm RPQ the output is not terminated when
n = 0, but is allowed to continue until n = k for some
k < 0, the algorithm will continue to emit signed bits of the
R’(-) representation of z (x , y) as defined in Observation 6.
It is necessary that output be terminated (and possibly with a
rounding) since the R‘(.) representation of rationals in general

Summarizing the results of this section we have the follow-
ing.

Observation 8 (Rational and/or Radix On-Line
Computations): Each computation cell can compute an ex-

is infinite (cyclic). 0

pression

axy + b x + c y + d
exy + f x + g y + h z (x , Y) =

where the input arcs to the cell can be initialized independently
to receive and accept x and y in either rational R(.) or radix
R’(.) representation. Similarly the result can be produced in
either one of the two representations.

Several cells can be combined into an expression tree where
operations in the cells may proceed in parallel, in a precision
demand-driven on-line computation. Operands and results can
be represented in the R(.) and/or R’(.) redundant form in any
combination. 0

IV. ON-LINE DELAY AND BIT-PIPELINING

An on-line arithmetic unit is intended to operate by inputting
digits of the arguments and outputting digits of the result with
little delay and considerable regularity. One characterization
of the on-line property [11, [131 is that to generate the kth digit
of the result, it is necessary and sufficient to input up to k + 6
digits of the operands where 6 is some small positive integer.
Typical values for 6 are of the order 1 to 4, depending on the
arithmetic operation (+, -, x , /) and base of the redundant
representation employed. Units based on this property will
impose an initial delay of 6 digits and then produce output
on a regular basis, with one output digit per input from each
operand.

An on-line unit modeled on our Algorithm RPQ will al-
ways favor output. A bit pipelined sequence of operations
will then have units downstream initiated earlier in the com-
putation process. Some loss of regularity occurs in this model.
The availability of output given additional input can vary, even
though the average number of output bits per input bit is close
to unity. Regularity can be quite simply measured by investi-
gating the distribution of local delay, that is, the frequency of
the size 0, 1, 2 , . . . of the number of additional bits of input
between successive output bits.

Delays due specifically to the nature of our rational repre-
sentation can be analyzed by considering the conversion of a
binary radix string R’(x) to an admissible string R(x) . Em-
ploying Observation 8, our unit is implicitly a binary radix-
to-rational converter when adding R’(0) = Oe to R’(x) with
rational string output R(x) . A simulation of Algorithm RPQ
for the conversion of 55005/65536 = 0.1 10101 101 101 1101,
where signed bits are from the alphabet {U, 0, 1, m, e} with
m denoting T and e denoting termination, yielded:

a>Oe
b> .. 0.1 .. 1.0.1.0.1.10 . . . 1..101..1..10.1...e
c> 0 lm U 1 1 m U u10 mm mO uu U lml lmlmullmlm

Note that the gaps between the 21 output bits of R(x) be-
fore input termination showed one 3-bit delay, two 2-bit de-
lays, nine l-bit delays, and eight 0-bit delays (no further input
before output). The percentage distribution of such radix-to-
rational on-line delays for lo00 conversions of 16-bit numbers
(selected randomly over [i, 1 - 2-16]) is shown in Table 11.

For comparison we have also included delay distributions
for conversion to two nonredundant binary rational representa-

1114 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 8, AUGUST 1990

TABLE I1
ON-LINE DELAY DISTRIBUTION (IN %) FOR BINARY RADIX-TO-RATIONAL

CONVERSION

I I Redundant I , Non Redundant I

13.2 11.6 11.3

0.9 0.9

tions. Note that the LCF [7] and continued log [2] binary rep-
resentations both show k-bit delays occurring with frequency
near 1/2ki' for k 2 2. This distribution is characteristic of
nonredundant binary delays as illustrated by the equivalent of
the wait to determine (parametrically in k) which of the two
k-bit strings, 011 . . . 1 or 100.-.0 is next to be output. Our
redundant admissible strings show quite reasonable regularity,
with no delays over 4 bits, and delays over 2 bits in less than
3% of all output. This performance approaches that of redun-
dant binary radix representation, where delays over 2 bits can
be shown never to occur.

The delay will become somewhat more irregular when ra-
tional representation R(.) is used both for input and out-
put with varying arithmetic operations, particularly for units
downline in a tree-pipelined computation. This is best shown
by some examples, the first being a simple multiplication E *% = B. Here the operands employ the following rep-
resentations

R - = i i i i i iUi i I i i i i io (E)
R ~ = o i i i i i i U i i i . (:o:)

A simulation of Algorithm RPQ then gave the following
output:

a>.l . . 1..m ... 1. .. m.m .. u...1.1....m.l...l.m.lm.O.e
b>0.1 .. l...l...m..l.l...u..m.m....m...e
c> 1 m U m 0 1 1 0 U u10 00 U U m 0 mluummmllle
123456789 123456789 123456789 123456789 123456789 123456789

Each line here represents the flow along the arcs into or
from the cell, where the horizontal position represents the time
step at which the signed bit is on the arc (i.e., consumed).
E.g., at step 4 the first bit of the result is produced, based on
the 1-bit consumed from operand b. The periods indicate that
a signed bit is available, but has not been consumed. As may
be noticed, if both operands are available the individual cells
are servicing their input arcs in a round-robin manner. A sim-
ple strategy for the optimal selection of input is an interesting
open problem.

As the second example, we consider a tree-pipelined com-
putation of the expression + $ x 5 = $, as pictured in x

the tree below :

Ig
The redundant signed bit representations of the operands

used are

The computation in the cells performing multiplications
may proceed in parallel, producing the input operands for
the cell doing the addition. In each cell, the eight registers of
the coefficient cube are initialized to realize the appropriate
operation for that cell. The result of our simulation illustrates
the flow of information in and out of the cells.

a>.l.m .. 1.m . . l....m........lOe
b>l.m..l.O..e
c> 1 1 . . . m .l..m..O l.O.e
d>.O 1.m . . . l.....l....l...Oe
e>O .. u...l.l...m.....e
f> 0 .U ul . . . 0 m.1 .mO u.1 00..e
g>:: : ::: u10 m m 0 : umOOuu uu e
123456789 123456789 123456789 123456789 123456789

Note that at step 37 the last signed bit of the result has
actually been produced, but since not all information produced
on arc f has been consumed the add-node continues to emit
U'S until all information on arc f has been input. This is due
to the algorithm preferring to do output when possible, rather
than reading more input. The colons indicate that the cell is
idle, waiting for input and not being able to output. Note that
the final cell was idle only for 7 of the 45 cycles, and only
once after initiating its own output.

As a final example, we will repeat the first example
= m; however, this time producing the result in

radix representation:

a>.l .. l..m...1..m.m..u..1...1..rn..1...1..ml.m.Oe
b>O.1 .. 1...1..m..1..1..u..m..m...m..e
c> 1 m 0 m m 0 m 1 0 m 0 m 0 10 m 1 lmmlmllllllmm
123456789 123456789 123456789 123456789 123456789 123456789

V. CONCLUSIONS

In the preceding sections, it has been demonstrated that it
is possible to implement an arithmetic unit, in the form of
a cell which will take two operands x , y signed bit serial,
and product the result ~ (x , y) signed bit serial in an on-line
fashion. The representation of rational or radix operands and
result is redundant over a four-letter signed bit alphabet, and
our algorithm allows for a smooth flow of information through
a network of such units.

Regarding hardware realizations, the procedures for updat-

KORNERUP AND MATULA: ALGORITHM FOR REDUNDANT BINARY BIT-PIPELINED RATIONAL ARITHMETIC 1115

ing register contents for input/output in the RPQ Algorithm
is fairly straightforward to implement, utilizing parallel op-
erations on the appropriate four pairs of registers when per-
forming the simple shift-and-add type operations. The integer
contents of each register can be kept in redundant form allow-
ing for true parallel addition (i.e., no carry propagation) with
resulting constant input/output processing time. The problem
areas lie in the design of the Zrange function. An implementa-
tion of the Zrange function might use a PLA lookup, based on
leading bits of the contents of the eight registers. However, a
straightforward lookup would require much too large a PLA,
so a “factoring” is necessary. One way of factoring would be
two parallel PLA’s dealing separately with numerator and de-
nominator followed by one determining the range. A number
of other architectural issues have been raised in [8] which also
need further investigation.

Regarding applicability, further testing is now needed to
demonstrate that larger networks of cells can run in a highly
parallel mode, to provide final results efficiently. Tests of ra-
tional versus radix based computations in the cell are needed
to measure the overall efficiency implications of finite termina-
tion of all rational subcomputations. Further theoretical work
to minimize local and compounded delay rates is also needed
here.

ACKNOWLEDGMENT

The authors express their gratitude toward S. Johansen for
developing the simulation tool, performing numerous exper-
iments with the algorithm, and for working out details of
the Zrange computation as illustrated in the Evaluation-State
Lookup Table. This tool implements the RPQ Algorithm with
flexibility for experimenting with a variety of decision rules,
such as those in the extension of the unit to allow radix or
rational representations. The simulator allows for extensive
composite computations, including computations of standard
functions and the use of feedback in computations, and thus
provides a vehicle for the next step of measuring applicability
and aiding development of a hardware realization of this type
of arithmetic unit.

REFERENCES
[l] M. D. Ercegovac, “On-line arithmetic: An overview,” SPIE Vol. 495,

Real Time Signal Processing VII, pp. 86-93, 1984.
[2] R. W. Gosper, “Item 101 in Hakmem,” AIM239, MIT, Feb. 1972,

pp. 3744 , further developed in an unpublished manuscript.
[3] C. H. Hardy and E. M. Wright, An Introduction to the Theory of

Numbers, 5th ed. London, England: Oxford University Press, 1979.
[4] A. Y. Khinchin, Continued Fmctions, 1935, Translated from Russian

by P. Wynn and P. Noordhoff Ltd., Grooningen, 1963.
[5] D. E. Knuth, The Art of Computer Progmmming, Vol. 2, Seminu-

merical Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1981.

P. Kornerup and D. W. Matula, “Finite precision rational arithmetic:
An arithmetic unit,” IEEE Trans. Comput., vol. C-32, no. 4, pp.
378-387, Apr. 1983.
- , “Finite precision lexicographic continued fraction number sys-
tems,” in Pnx. 7th IEEE Symp. Comput. Arithmetic, 1985, pp.

- , “An on-line arithmetic unit for bit-pipelined rational arithmetic,”
J. Pamllel Distributed Comput., vol. 5, pp. 310-330, 1988.
- , “LCF: A lexicographic binary representation of the rationals,”
submitted for publication.
D. W. Matula and P. Kornerup, “Foundations of finite precision ra-
tional arithmetic,” Computing, Suppl., vol. 2 , pp. 88-111, 1980.
- , “An order preserving finite binary encoding of the rationals,”
in Pnx. 6th IEEE Symp. Comput. Arithmetic, 1983, pp. 201-209.
R. B. Seidensticker, “Continued fractions for high-speed and high-
accuracy computer arithmetic,” in Proc. 6th IEEE Symp. Comput.
Arithmetic, 1983.
K. S. Trivedi and M. D. Ercegovac, “On-line algorithms for division
and multiplication,” IEEE Tmns. Comput., vol. C-26, no. 7, pp.

207-214.

681-687, July 1977.

Peter Kornerup was born in Aarhus, Denmark, on
April 29, 1939. He received the mag.scient. degree
in mathematics (numerical analysis) from Aarhus
University in 1967.

After a period employed as a consultant for the
university computing center, from 1969 he was in-
volved in establishing the computer science curricu-
lum at Aarhus University, and the founding of the
Computer Science Department in 1971. Through
most of the 1970’s and 1980’s he served as Chair-
man of the Department. In 1975-1976 he spent a

leave at the University of Southwestern Louisiana, Lafayette, and the Spring
of 1979 another leave with Southern Methodist University, Dallas, TX. Since
1988 he has been Professor of Computer Science, Odense University, Odense,
Denmark, in charge of building up a new graduate program. His research in-
terests include computer architecture, in particular computer arithmetic, and
number representations.

Mr. Kornerup has served on the program committies for a number of IEEE
and ACM sponsored meetings and is Coprogram Chairman for the upcoming
10th IEEE Symposium on Computer Arithmetic.

David W. Matula was born in St. Louis, MO on
November 6, 1937. He received the B.S. degree
in engineering physics from Washington University,
St. Louis, MO, in 1959 and the Ph.D. degree in en-
gineering from the University of California, Berke-
ley, in 1966.

He has been Professor of Computer Science and
Engineering at Southern Methodist University, Dal-
las, TX, since 1974, where he served as Department
Head from 1974-1979 and again in 1988-1989. He
has held visiting positions at IBM Research Center,

Yorktown Heights, NY, Stanford Univ&ity, Aarhus University, Frankfurt
University, and at Odense University. He currently serves as a consultant to
Cyrix Corporation on arithmetic unit design. His research interests include
computer arithmetic, algorithm design, graph algorithms, random structures,
and cluster analysis.

Dr. Matula is on the editorial boards of the Journal of Classification and
the journal Random Structures and Algorithms. He has served on the
program committees for a number of IEEE sponsored meetings and is
Coprogram Chairman for the upcoming loth IEEE Symposium on Computer
Arithmetic.

