Multiprecision Integer Division Examples
Using Arbitrary Radix
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In Knuth’s algorithm for multiprecision integer division, the estimated quotient digit may differ from
the correct value by 2 in rare cases. We derive the entire range of cases in which this situation can
occur for a given radix. The results are expected to be useful in testing realizations of the algorithm
in computer algebra systems and elsewhere.
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G.4 [Mathematics of Computing): Mathematical Software—certification and testing, verification;
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1. INTRODUCTION

We present examples that are useful in testing realizations of Knuth’s algorithm
[1, p. 237] for division of nonnegative integers using an arbitrary radix. We derive
the entire range of situations in which the seldom-executed special cases of the
algorithm are performed.

We use the notation

n
[am; Aty oo oy an] = 2 a,b""’,
Jj=m

where b is the radix. We assume throughout that b is even and b = 6. We also
write lxJ) for the greatest integer less than or equal to x and lx1 for the least
integer greater than or equal to x.

The algorithm divides s = [s—1, ..., 8] by v =[vo, ..., V), form,n= 1,5, =
0, so > 0. It is assumed that vy = b/2; if it is not, it can be made so by multiplying
both s and v by Lb/(vy + 1) L.

The only tricky part of the algorithm is the estimation of the successive digits
q. of the quotient. For a given quotient digit ¢, the procedure is as follows,
assuming m = n:

(1) Estimate g by § = L[s-,80)/vo). (If § = b, we may adjust it immediately to
b-1)
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(2) Adjust § to § = L[s-1s081])/[Vov1]] by subtracting 1 or 2 if necessary.
(3) Perform the division, replacing s by s — guv. If this quantity is negative,
subtract 1 from g, producing the true quotient digit q.

Knuth proves that the given conditionsg<§d=<qg+2andgsg§=<gq+ 1. He
also shows that Step 3 will be performed with a probability (in some sense) of 3/
b. If b is as large as the size of a computer word, as it is in the usual applications,
this probability is very small. Therefore, it is important to test any realization of
the algorithm with cases in which Steps 2 and 3 are both executed. For example,
for b = 10, s = 4791, and v = 599, we have ¢ = L4791/599] = 7, while § = 1479/
59] =8 and § = 147/5]1 = 9.

We show how to find all cases in which § = ¢ + 2 for a given radix b, first
without and then with the additional condition that § = q + 1.

2. RESULTS

We first investigate the conditions under which § = q + 2 alone. Looking at the
most significant digits only, we assume a three-digit dividend s and a two-digit
divisor v = [vev, ). If § = g + 2, then s must satisfy s, < § < Spax, Where

Smin = UOb(q + 2), Smax = U(q + 1) - L
Elaborating the condition $;.x = Smn gives
vi(g+ 1) = veb + 1. (*)

The maximum value of ¢, 82y ¢umax, is b — 3 since we want § to be less than b. To
find the entire range of v and ¢ which is of interest, we solve the following
problems:

A. Find the range of possible v for a given q. Setting v; = b — 1 in (*), the
maximum v is

max vy = \‘(b—l)(q+1)—1J = [q+1—q—+2J =q.

b b
For a given q and vy, the minimum v, is obviously
. [Uob + 1]
min v, = .
g+1

If vp is maximum for a given q, then

bg + 1
g+1

minv1={ ‘l=b—1=maxvl.

B. Find all possible v for ¢ = qqx. Obviously, max vy = @uex = b — 3. For a

given vy,
. b+1
min v; = {Uz—_"é:l = Uy + [2U0+1] =y + 2,

since b/2 = v, = b — 3.
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C. Find g, the minimum of q, and the associated range of v. From (), letting
o= b/2 and v, = b — 1, we have

_ v0b+1_1"_{b2+2_1]_"b—1+ 3 _ b
Gmn = 77, T2 -1 2 T2b-1| "2’
since we assume b is greater than or equal to 6 and even. From Part A, if ¢ =

Qran, then Upay = Umin = [b/2, b — 1].

Now we investigate cases in which § = ¢ + 2 and ¢ = ¢ + 1. We must give s
four digits and v three digits, v = [voU,02]. The maximum value of s is, as before,

Smax = V(g +1) — L
The minimum value of s depends now on two conditions. Define
to = vob*(q + 2),
t1 = (Lob + V1)}b(g + 1) = Spax — U2(g + 1) + 1.

In order for § = ¢ + 2, we must have s = &, while § = ¢ + 1 implies s = ;.
Therefore, in this case, sm,, = max(ty, t,). However, since t; < &, is equivalent to

vi1(g + 1) < veb,
which is inconsistent with (*), we must have s,.., = ¢, in the cases of interest.
The condition s,.x = t; implies only that
g+ 1)=1,
and therefore, that v, = 1. On the other hand, from sy, = &, we get
(b + v2)(g+ 1) = veb® + 1. (x%)

Solving problems A, B, C again from this inequality, we find no further restriction
on the results derived from (x). In fact, no condition is imposed on v, beyond
ve = 1. So for problem C, if ¢ = @ = b/2, then

Umax = [6/2, 6~ 1,6 — 1], Umn = [6/2, 6 — 1, 1],

We illustrate with examples for b = 10 and 1000, labeling the results derived
from (*) with B and C, and those from (=) with B’ and C’.

Example 1. b =10.

B. ¢=qmax=T: Umax = 79, Smax = 631 and sp,,n = 630.

C. qd=qun= 5: Umax = Umin = 59, Smax = 353 and Smun = 350.

B'. q = Qmax = 7: Umax = 799, Smax = 6391, and Smin = 6320.

C. d = qmun <= 5: Umax = 599, Smax = 3593 and Smn &= 3540;
Urnin = 591, Smax = 3545 and sy, = 3540.

Example 2. b = 1000.

B. ¢ = uax=997: Upnax = 997,999, $pax = 996,003,001 and spin = 996,003,000.
C. ¢ = gumn=500: Unyay = Uun = 500,999, 5,0, = 251,000,498
and sy,m = 251,000,000.
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B’. ¢ = quax=99T: Umax = 997,999,999, s,.x = 996,003,999,001
and s, = 996,003,002,000.

C’. ¢ = gmin= 500: Unax = 500,999,999, s,.0x = 251,000,999,498
and spin = 251,000,499,000; vpin = 500,999,001,
Smax = 251,000,499,500 and s, = 251,000,499,000.

The user may determine an appropriate range of v for any g between g, and
Qmax, then verify the quotients for values of s between s,,,, and syax.
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