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A Formalization of Floating-Point
Numeric Base Conversion

DAVID W. MATULA

Abstract-The process of converting arbitrary real numbers into
a floating-point format is formalized as a mapping of the reals into a

specified subset of real numbers. The structure of this subset, the set
of n significant digit base floating-point numbers, is analyzed and
properties of conversion mappings are determined. For a restricted
conversion mapping of the n significant digit base ,B numbers to the
m significant-digit base 6 numbers, the one-to-one, onto, and order-
preserving proper.ties of the mapping are summarized. Multiple con-

versions consisting of a composition of individual conversion map-

pings are investigated and some results of the invariant points of such
compound conversions are presented. The hardware and software
implications of these results with regard to establishing goals and
standards for floating-point formats and conversion procedures are

considered.

Index Terms-Accumulated error of successive conversions, base
conversion, "equivalent digits" formula, floating-point numbers,
mixed-base computational environments, round-off error, significant
digits.

I. INTRODUCTION AND SUMMARY
HE necessity of base conversion of numeric data dur-
ing some stages of computation on a digital computer
is a de facto component of practical numeric computa-

tion that must be recognized in any complete analysis of
digital computation. On the hardware level, the trend to-
wards establishment of computer networks with possibly
differently based machines and, on the software level, the
mixed-base flexibility inherent in the PL/I language specifi-
cations, both suggest that internal data of certain jobs may
be necessarily subjected to multiple conversions before job
termination. Thus, references to a purportedly constant
floating-point datum occurring at different points during
program execution might encounter altered datum values.
Both hardware and software designers must recognize this
problem, and each can benefit from the fundamental
principles obtained by considering base conversion as a

mathematical transformation. In this report we shall follow
the notation of our previous work [1 ]-[4], integrating the
mainstream of results from those articles with a general
formal development of base conversion, and providing new
results particularly in the area of multiple conversions.
A fundamental analysis of base conversion is concerned

Manuscript received December 12, 1969; revised January 4, 1970, and
March 2, 1970. This research was partially supported by the Advanced Re-
search Projects Agency of the Department of Defense under Contract
SD-302, and by the National Science Foundation under Contract GJ-446.

The author is with the Department of Applied Mathematics and Com-
puter Science, Washington University, St. Louis, Mo. 63130.

first with determination of the theoretical limitations in-
herent in any implementation of base conversion. The actual
algorithmic mechanics of any theoretically realizable con-
version procedure is then a secondary (albeit nontrivial [5 ])
problem which will not concern us in this paper. The formal-
ization we introduce provides the vehicle for studying the
properties and recognizing the inherent anomalies of the
conversion process, which must necessarily then guide the
performance specifications for floating-point representa-
tions and base conversions at both hardware and software
levels.

Converting integer and fixed-point data to an "equiva-
lent" differently based number system is generally achieved
by utilizing essentially log,, / times as many digits in the new
base ( as were present for representing numbers in the old
base /B system. This simplified notion of equivalence does not
extend to the conversion of floating-point systems. Actually,
conversion between floating-point number systems intro-
duces subtle difficulties peculiar to the structure of these
systems so that no such convenient formula for equating the
"numbers of significant digits" is even meaningful. Thus,
our formalization of floating-point base conversion is pre-
ceded in Section II by a careful analysis of floating-point
number systems.

Following our previous work [1]- [4], a system of float-
ing-point numbers of n significant digits to the base /3 is
characterized as a significance space, S7.., and in Theorem 1
the number of elements in S' relative to the number of ele-
ments in S' within a specified interval is shown to converge
to ((O - 1WM (I/((3 - 1) - )) log6 / as the interval grows to
include the whole real line. This relative density of "total
membership" of two significance spaces provides only a
gross comparison of the two number systems, for actually
there is considerable local variation in the relative density.
The gapfunction [1] Fn(X) is defined as the relative difference
between nearest neighbors of Sn at x. A comparison of the
graphs of Fn and F' provides more insight into the com-
parability of two differently based floating-point systems
than any simplified "equivalent digit" formula.

Having characterized floating-point number systems and
the gap function, the conversion of the real numbers into
Sn both by rounding and by truncation procedures are then
formalized in Section III. The order-preserving properties
of these conversion mappings are detailed, and the base
conversion theorem [2] is stated, which gives the necessary
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and sufficient conditions for a conversion mapping from
Sn, to S. to be 1) one-to-one and 2) onto.
The important problems associated with multiple con-

versions of a datum are analyzed in Section IV. The compo-
sition of repeated rounding and/or truncation conversions
is termed a compound conversion, and the associated in-
variant points (i.e., the points mapped into themselves) of
such a compound conversion mapping are analyzed. For a
compound truncation conversion, it is shown that the only
invariant points ofthe mapping are the numbers common to
all of the significance spaces involved. Thus, considerable
importance must be attached to the intersection of signifi-
cance spaces, and in Theorems 5 and 6 these intersections
are shown to exhibit a crucial dependence on the commen-
surability of the bases. Specifically, significance spaces with
commensurable bases will always jointly contain a common
significance space. For example, the six-digit hexadecimal
numbers and the eight-digit octal numbers both contain all
21-bit binary numbers. On the other hand, the members
common to significance spaces with incommensurable bases
(e.g., binary and decimal) will be finite in number and, for
cases of computational interest, these members will typi-
cally all fall in an interval much smaller than the interval
range provided by current exponent ranges on digital com-
puters.
As a consequence of the limited membership of points

common to two incommensurable significance spaces, the
multiple back-and-forth conversion of a "constant datum"
between two incommensurable significance spaces by
truncation conversion can accumulate error so as to in-
validate even the leading digit of the value of this "constant
datum." Practically, the process of updating a binary coded
decimal (BCD) tape on a binary machine might well subject
stored data which is never updated to multiple binary-
decimal conversions, so BCD tape updating is very sensitive
to such anomalies of compound conversions. Fortunately,
we can show that under very general conditions, iterated
rounding conversion of a datum between two significance
spaces quickly generates a stable pair of values, each of
which is a reasonable approximation of the initial datum.
Under the stronger conditions given in the in-and-out con-
version theorem [3 ], rounding conversion through an inter-
mediate significance space can be guaranteed to regenerate
the initial datum of the original significance space.

In the presence ofmore than two incommensurable bases,
the possibility ofcyclic conversions' accumulating error in a
datum is shown to exist even under rounding conversion.
Our final result resolves the problem of controlling the over-
all growth of accumulated conversion error within a mixed-
base computational environment by a process which stan-
dardizes a datum's value in each of the significance spaces
involved.

II. FLOATING-POINT NUMBER SYSTEMS
A formalization of floating-point number systems must

start with a characterization of the set of floating-point
numbers, preferably divorced from the cumbersome digit

sequence representational notation. In previous articles
[1]-[4] this set has been termed a significance space.

Definition: For the integers B. 2, called the base, and n> 1,
called the significance (orprecision), let the significance space
Sn be the following set of real numbers:

S= {bb = kf3j for some integers k, j where 1kl <fn3}.

For clarity we shall utilize the Greek letters ot, f,B and 3 to
denote bases; the English letters a, b, c, and d will denote
elements of a significance space, i.e., the so called "floating-
point" numbers; the letters, i,j, k, 1, m, n, p, and q will denote
integers; and x, y, and z will denote arbitrary real numbers.
For an element b= kf3je Sn the actual floating-point repre-

sentation of b can be visualized as having the fixed-point
integer portion k represented by a sign and n or less digits to
the assumed base f,, with the exponent portion then repre-
sented by the integer j. The floating-point representation
just described will not in general be unique, with digit se-
quence realizations of b corresponding to both "normal-
ized" and "unnormalized" forms possible in some cases.
Considerations related to the nonunique determination of
k, j in b = k/3d will be treated where necessary; however, our
main concern is with membership of b in the set of real
numbers Sn for which the form ofrepresenting b is irrelevant.
Note that the significance space S" differs from an actual
floating-point number system in that there is no bound on
the exponent portion j of the members b= kfljeSn. Thus Sn
is actually an infinite set. Since we shall not concern our-
selves with underflow and overflow problems, the signifi-
cance space Sn is a perfectly acceptable model of a floating-
point number system for our purposes.

It is easy to visualize the change in the set Sn caused by
varying significance, since increasing n to n +1 maintains
all members of Sn and adds ,B-1 new members uniformly
spaced between every neighboring pair of members of S.
The dependence of the membership of Sn on the base ft is far
more subtle. In practice it has been convenient to identify a
nondecimal floating-point number system with the "appro-
priate" decimal based system; however, we now show that
such a purported equivalence glosses over certain inherent
anomalies between differently based floating-point number
systems.
A gross comparison of two differently based significance

spaces can be obtained by determining the relative number
of members of each space over a comparable range. For
example, the 3 (significant)-bit binary numbers between
unity and one thousand are 1, 1.012=1.25, 1.102=1.5,
1.112=1.75, 10.02=2, 10.12=2.5, 11.02=3, 11.12 3.5,
1002 = 4, 1012 = 5, * , 11000000002 = 768, 11100000002
=896; and the 1 (significant)-digit decimal numbers over
the same range are 1,2,3,4,5,6,7,8,9, 10,20,30,40,50,60,
70, 80, 90, 100,200, 300,400, 500, 600, 700, 800, 900, 1000. In
Fig. 1 these members are indicated by tickmarks on the real
line plotted on a logarithmic scale so that the log periodic
nature of the spacing between floating-point numbers is
evident. The ratio of the numbers of members of these sys-
tems over this interval is 40/28 - 1.43. Now this ratio of
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Fig. 1. Tickmarks plotted on a log scale showing (a) the 40 3 (significant)-
bit binary numbers and (b) the 28 1 (significant)-digit decimal numbers
over the range [1, 103].

membership density will vary with the choice of interval;
however, a reasonable overall comparison of any two float-
ing-point systems can be calculated by determining the limit
of such a ratio as the interval grows to include the whole real
line.

Theorem 1: Let S' and S, be any two significance spaces.
Then letting ISI denote the number of members of the set S,

lim { l } A- 1log1. (1)
M blb E- So,,-M bl < M}

Proof: Let [x] denote the greatest integer in x. Then the
closed interval [1/M, M] may be divided into 2[log,M]
disjoint half-open half-closed intervals of the form
[flu, fJ+ 1) and two subintervals of such intervals. Each in-
terval [flu, /3J+) contains ( -_ 1)#n-' distinct members of
S. Noting that -beSnu'beS' we have for M> 1,

{bibSc j, .< lbl < M}

=2 {bbeS7 < b < M}

= 2(2[log, MJ + e)(fl - 1)n-f1 where 0 < E < 2
= 2(2 logpM + e')(,B- W)nl- where 1e'1 < 2,

the latter resulting from removal of the greatest integer
brackets. Finally,

= lim 2(2logM ± e2)(6 - 1)6m-1 where|1,121<2
M-+ 0 2(2logpM + g~(3 )3- hrf1,ej.

(/3 1)l"'og',3
In the folklore on conversion there is an often quoted

notion that a decimal digit is equivalent to log2 10 = 3.32...
bits. Thus a three-digit decimal system should be only
slightly less numerous than a ten-bit binary system. How-
ever, if we let ,S/S symbolically denote the limiting ratio
given in (1), then IjS3/S0IS = 0.529 , so that there are
actually only 53 percent as many real numbers representable
with three significant decimal digits as there are real num-
bers representable with ten significant bits. Furthermore,

the ratio of the number of members of S' to S'o over the
range shown in Fig. 1 was not atypical since fS3/s1 ol
= 1.476 ,attesting to the fact that there are about 50 per-
cent more 3-significant-bit binary numbers than 1 -signifi-
cant-digit decimal numbers, and providing a clear contra-
diction to the digit= 3.32-bits rule. This anomaly prevails
even with more digits, since for large integral m and n chosen
such that l10/2f approaches unity,

9
lim ISmO/Snl = log1o 2 =0.5418

in -+

i1O'"/2- W1.

The results just obtained are not inexplicable on intuitive
grounds. The relation "digit=log2 10 bits" comes from an
entropy argument where all different states (values) of the
system (digit sequence) are distinguishable. Despite the ap-
plicability of this notion to integer and fixed-point number
systems, floating-point systems have redundant representa-
tions for some numbers, generally resolved by normaliza-
tion, so that the ,Bn patterns of digits possible for k for
eachj in k/?j do not yield /n new different numbers for eachj.
Furthermore, the collection of normalized numbers cor-
responding to a fixed power of the base are spread over an
interval whose length depends on the base, and both of
these conditions are reflected in the final form of (1).
Now one approach for determining a floating-point

"equivalent digit formula" is to equate the right-hand side
of (1) to unity and solve for m in terms of n, ,B, and 6. Thus
if Sm is said to be more dense than Sn when ISmI/Sn > 1, then
from (1), the following occurs.

Corollary 1: Sm is more dense than Sn if and only if

m > n log, ,B + log65(( - 1)) -log6 log6 /3. (2)

Attributing meaning to a nonintegral number of digits,
one may propose that

m = n log,6 # + log, [6(/ - 1)1/(6 - 1)] - log6 log6 ,B (3)

is the '"equivalent digit formula for floating-point number
systems." For binary-decimal conversion we then would
have

# bits = 3.32... x (# decimal digits) - 0.884 . (4)

The variability of spacing of floating-point numbers of a
given Sn is such that the simplified formula (3) does not
really provide an adequate comparison of differently based
floating-point systems and more attention to local magni-
tude dependent variability must be considered. In studying
the internal structure of Sn, note that every one of its non-
zero members will have both a next largest and next small-
est neighbor in S.

Definition: The successor b' of beSS, b =0O, is given by

b' = min {dld > b, dE Sn}, (5)
and since distinct members of S, have distinct successors, b
may then be referred to as the (unique) predecessor of b'
in S.

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I

I I I 1 1 I , 1 1 I ' I I I I , , I , , , I I I I I I I I . I
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Fig. 2. The gap functions F40(x) and F46(x) for 0.00(1 <x< 1000.

be characterized as either a function or a mapping. Formal-
ization of conversion as a mapping appears preferable since
it is often useful to invert the question and refer to the set of

4 points which map into a given element of S", and this notion
\ is then readily available by considering the inverse mapping.

Certainly any conversion mapping of the reals to S, should
be the identity on S, and in addition it is desirable for this

1oo mapping to satisfy certain order-preserving properties.
Definition: A mapping M of a set R' of real numbers into

the reals is

Now the absolute difference, b'- b, will grow with b in S',
however, the relative difference is bounded [1].

Definition: The gap 17(x) in Sn at x #0 is given by

17(x) =
min {blb > x, beSn}-max {blb.< x, beSj}- for x>° (6)

r7(-x) for x<0.

Specifically then, 17(a) = (a'- a)/a for 0< ac S'. From the
structure of floating-point number systems it is evident that
17(/ix) = 17(x), so 17 will experience a log periodic behavior.
For 1 < x < ,B, the numerator of (6) will have the constant
value lu -n, so that on a log-log scale the gap function ap-
pears as a saw tooth function. In Fig. 2, sections of the gap
functions F'0 and F716 are illustrated. Note that the varia-
tion in the magnitude of the gap function is greater for larger
bases.
From Theorem 1 we can calculate that |S16/S401 = 5.66 .,

so that overall there are more than five times as many four-
significant-digit hexadecimal numbers as four-significant-
digit decimal numbers. Yet from the gap functions in Fig. 2,
it is apparent that over the interval (0.0625, 0.1000) there are
more four-significant-digit decimal numbers than four-sig-
nificant-digit hexadecimal numbers since F4o(x)<F46(x)
over that interval.
From the log periodic behavior of17 the following bounds

are immediate.
Theorem 2: The function 1F attains both a minimum and

a maximum value over the nonzero members of Sn given by
min {17(b)lbeSn, b # 0} = 1/(/n - 1)
max {17(b)Ib E Sn, b #A 0} = 1/in - 1,

1) weakly order-preserving (isotone [6], monotone) on R' if
x<y=r>M(x)<M(y) for all x, ye R'

2) strongly order-preserving on R' if x<y=oM(x)<M(y)
for all x, yeR'.

Furthermore, the mapping is said to be weakly (strongly)
order-preserving if it is weakly (strongly) order-preserving
on the reals.
No conversion mapping of the reals into Sn can be

strongly order-preserving; however, we can expect that a
conversion process should at least be weakly order-preserv-
ing in addition to being the identity on Sn. These latter two
conditions do assure that the inverse image of any beSn
under a conversion mapping is an interval containing b.
Formally we shall limit our discussion to the rounding and
truncation (sometimes called chopping) conversion pro-
cedures usually encountered in computerized numeric pro-
cessing.

Definition: The truncation conversion mapping Tn and the
rounding conversion mapping R' of the real numbers into Sn
are defined for all integers > 2, n> 1 as follows.

Truncation Conversion:

Tn max {b|b < x, b E S'}
T( {min {blb .

x, be Sn}
Rounding Conversion:

mn{bIb +b' > x~bc-Sn}

Rn(X) { b + b' }R/()='min {hl > x) bcS n

O~~~(7)

for x . 0
for x < 0. (9)

for x > 0

forx<0 (10)

for x = 0.
and over the nonzero reals the bounds on 17(x) are given by

inf{Fn(x)jx = 0} = 1/ (8)

max{F(x)Ix =# 0} = 1/ff-. (8
Thus the gap function presents a more complete picture

of the structure of a floating-point number system than any
"equivalent digit" notion, and simplified formulas such as
(3) and (4) must be used with extreme caution in any com-
parison of differently based floating-point number systems.

III. CONVERSION MAPPINGS
A conversion procedure determines a specific value in

S' for each real number x. Thus, a conversion process may

The effects of these conversion mappings in the neighbor-
hood of a power of the base are shown in Fig. 3. Note that
the distinctions in the definitions of the mappings of positive
and negative values are required to achieve the desired sign
complementary relations:

Tn(-x) = - Tn(x), R,(-x) = - Rn(x). (1 1)

Note that R'((b + b')/2)= b' for all positive beS,cS so that we
have not imposed the additional symmetric rounding condi-
tion for midpoints dependent on the "parity" of b that some
researchers prefer [7]. Although this refinement could be
added without materially affecting our results, we prefer the
definition above.
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Fig. 4. Sections of the gap functions F 6 for the 6 (significant)-digit
hexadecimal- numbers and F', for the 8 (significant)-digit octal num-
bers. Hexadecimal and octal are commensurable bases and share a

1+I-n) common period of 212 on the log scale, Note that the six-digit hexa-
- a(1+I3 decimal numbers and the eight-digit octal numbers are not equivalent

floating-point systems.

_ pi

_ oi(,_3-n)

Fig. 3. Conversion of the real numbers to the n (significant) digit base ,B
numbers in the neighborhood of a power of the base by truncation
conversion 1'f and rounding conversion Rf.

It is evident that T' and Rn both are weakly order-pre-
serving mappings which are identities on S as desired. In
practical numeric computation we often need to convert
data already expressed in floating-point form to a dif-
ferently based floating-point form. Thus we are interested
in the properties of the restricted mappings R|IS,-÷S' and

From consideration of the algorithmic mechanics of con-
version, there is evidently a considerable difference between
binary-hexadecimal conversion and binary-decimal con-

version. Since special relationships between bases do affect
the properties of restricted conversion mappings, there is
need to characterize this important "commensurability"
relationship between bases.

Definition: Let ft>2 be a root-free integer, i.e., has no

integral ith root for any i. Then the numbers ft, t2, f3,...

form a commensurablefamily of bases termed the ft-family of
bases. Two or more bases belonging to the same commensu-
rable family of bases are commensurable bases. Two bases
which do not belong to a common commensurable family
are termed incommensurable bases. Furthermore, two or

more significance spaces will be termed commensurable
when their bases are commensurable.
Thus two, eight, and sixteen are commensurable bases,

whereas base ten is incommensurable with any member of
the binary family of bases. The root-free condition on in
this definition simply assures that each base is in precisely
one family.
A useful equivalent characterization of commensurable

and incommensurable bases avoiding explicit mention of
the respective families to which the bases belong is provided
in the following.
Lemma 1: The bases and are commensurable if and

only if ti= bJ for some nonzero integers i, j.
Corollary 2: The bases and 6 are commensurable if and

only if log, is rational.

RIoS3
1l0

_1000

512_

256

128
100

64

32

16

-10
8

4

2

Fig. 5. Conversion by rounding of the 3 (significant)-bit binary numbers
to the 1 (significant)-digit decimal numbers over the range [1, 1000],
indicating that Ro S3 is neither one-to-one nor onto.

Thus, the gap functions 1n and Fm plotted on a log-log
scale will share a common period when ft and 6 are com-
mensurable, as in Fig. 4, and otherwise will not (see Fig. 2).

It is readily verified that the conversion by rounding or
truncation from a fixed-point number system with n ft-ary
digits to the right of the radix point to another fixed-point
system with m 6-ary digits to the right of the radix point will
be one-to-one ifm2 n log, ft and onto ifm< n log,, f. Thus a
conversion between fixed-point number systems must be
either one-to-one or onto; however, a conversion between
floating-point number systems need be neither one-to-one
nor onto, as seen in Fig. 5. The necessary and sufficient
conditions for rounding and truncation conversions be-
tween incommensurable significance spaces to be 1) one-to-

TRnEL
REALS AJ

bL _ _- i( 1 +3,B -n )

_ 3(1+231 -n)

- +i(+, '- n)

_ i

3i(1-20-n3)

- '(1-30-n)
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one mappings and 2) onto mappings have been determined
[2] in the base conversion theorem.
Theorem 3 (Base Conversion Theorem): For incommen-

surable bases ft and 3, the truncation (rounding) conversion
mapping of Sn to S, i.e., T,mISn_*Sm (RmjSn-÷S,5s)

1) is one-to-one if and only if bm-I > fn - 1

2) is onto if and only if ftn- I > bm - 1.

n
# bits

30

(12)

The details of the proof of this theorem are given in [2];
however, an intuitive understanding for the result can be
gleamed from comparing the gap functions (see Fig. 2). Cer-
tainly if F"' is uniformly less than 17, then the mapping of
Sn to S, should be one-to-one. Conversely, if the maximum
of Fm falls above the minimum (restricted to Sn) of Fn, then
from a theorem of Kronecker [8 ] (that the integer multiples
of an irrational number mod 1 are dense in the unit interval)
it can be shown that for some beSn, F m(b)> 17(b).

In summary, the essential effect offormulae (12) regarding
the conversion of the initial system Sn to the target system
Sm is that to assure one-to-one conversion a digit must be
sacrificed in the target system and to assure onto conversion
a digit must be sacrificed in the initial system.
The conditions for one-to-one conversion guarantee

another desirable property of the conversion mapping, since
it is readily shown that a weakly order-preserving mapping
on R' is strongly order-preserving on R' if and only if the
mapping is one-to-one from R' to the reals.

Corollary 3: For ft and 3 incommensurable, Tm and Rm
are each strongly order-preserving on Sn if and only if
bm-1> n_ 1.

It is instructive to consider the implications of the base
conversion theorem for decimal-to-binary conversion. It
follows that the mapping by rounding or truncation con-
version of a decimal-based significance space to a binary-
based significance space will be one-to-one (and strongly
order-preserving) if and only if

#bits > 3.32... x (#digits) + 1

and onto ifand only if

#bits < 3.32... x (#digits) - 3.32...

(13)

(14)

Relating these inequalities (13), (14) to the membership
density formula (1), we conclude that decimal-to-binary
floating-point conversion will be 1) one-to-one and strongly
order-preserving if and only if the decimal system has less
than 019 (log1o 2)=0.270 times the membership of the
binary system, and 2) onto if and only if the decimal system
has more than 18 (log1o 2)=5.418 times the membership
of the binary system. Thus conversions between floating-
point systems of nearly equal density will be neither one-to-
one nor onto.
The properties of decimal-binary conversion are suc-

cinctly presented in Fig. 6. The lattice point n, m corresponds
to the binary system Sn and the decimal system S7o. Lattice
points falling to the left of the line n = (log2 10) m+ 1= 3.32m
+ 1 correspond to decimal-to-binary conversions which are

one-to-one and strongly order-preserving, as well as binary-
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*
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*
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m
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Fig. 6. A summary of the properties of floating-point
decimal-binary base conversion.

to-decimal conversions which are onto. Lattice points
falling to the right of the line n= 3.32m- 3.32 correspond
to decimal-to-binary conversions which are onto and to
binary-to-decimal conversions which are one-to-one and
strongly order-preserving. Lattice points falling between
n= 3.32m +1 and n= 3.32m -3.32 correspond to decimal-
binary conversions which have none of these three proper-
ties. The equal density line n= 3.32m -0.88 separates the
lattice points so that those to the left correspond to binary
systems which are more dense than the decimal systems,
and lattice points to the right correspond to the decimal
system being more dense. An increase of one unit on the n
axis increases ISnI/Smol by a factor of 2, and a one unit in-
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crease on the m axis decreases this density ratio by a factor
of 10, so |S2/S1o0 may be easily estimated by determining
the distance of the lattice point n, m from the equal density
line.

IV. COMPOUND CONVERSIONS

The preceding section dealt only with the properties of a
single conversion mapping. We have indicated previously
that computing environments such as PL/I language pro-
gramming, multicomputer networks and BCD tape up-
dating on a binary machine present situations where data
may be subjected to multiple base conversions during over-
all job execution. Considerable care must be provided in
such mixed-base computing environments to avoid ex-
cessive accumulation of error in purportedly "constant"
data. To critically analyze this problem, the notion of com-
pound conversion is formally introduced.

Definition: For all n. 1, f 22,

1) T and R' are 1-fold compound conversions through Sn

2) for Q a k-fold compound conversion through S7J,
Sn2 . ..Snk, TpQ and RnQ are (k+1)-fold compound
conversions through Sni, S2, ..., Sn, Sn.

Furthermore, Q is a compound truncation (rounding) con-
version if all the individual conversions composing Q are
truncation (rounding) conversions.
Thus RnRm is a 2-fold compound rounding conversion

through S,, Sn, and R TaRmRn is a 4-fold compound con-
version through S', Sm, Si, Sm (see Fig. 7).
A compound conversion is a composition of mappings,

and many properties of individual mappings readily carry
over to compositions of such mappings. Thus the following
important properties of compound conversions are im-
mediate.
Lemma 2: If Q is a compound conversion, then Q(- x)
=- Q(x) for all x.

Lemma 3: Compound conversions are weakly order-
preserving.
An evident property of truncation conversion is that the

magnitude of Tn(x) is never larger than the magnitude of
x. Thus truncation conversion performs a contraction of the
reals towards zero [see Fig. 3].

Definition: The function M Reals -+ Reals is a contraction
if M(X) has the same sign as x and M(X)I < lxl for all x.

Clearly a composition of contractions is a contraction.
Lemma 4: Compound truncation conversions are con-

tractions.
The mappings R, and T' are identities on their image

space Sn; however, T4T20(1.8)= 1.75 and T4T20(1.75)
= 1.625, so that members of the image space of a compound
conversion Q are not necessarily carried into themselves
by the mapping Q. For the compound conversion Q illus-
trated in Fig. 7, note that q1, q5, and q6 are mapped into
themselves by Q, whereas q2 and q3 are points of the image
space of Q which are not mapped into themselves.

In general, the points mapped into themselves by a com-
pound conversion may be difficult to determine, but they
are nonetheless important, since the weakly order-preserv-

Rn nm T' Rm
REALS :-i,/ > 4S !-4S8

Qm

REALS * Ss

II1,

+q,

q2

Fig. 7. The composition of a compound conversion from successive con-
versions. (a) The sequence of conversions R,, 5, 7, R'. (b) The 4-fold
compound conversion Q= R' TRRR

ing property of compound conversions assures us that no
point in an interval between two such invariant points of a
compound conversion can be mapped outside that interval
by that compound conversion.

Formally points x such that M(x)=x are generally re-
ferred to [6] as fixed points of the mapping M. However, to
avoid confusion with the computational notion of fixed-
point numbers, we shall refer to fixed points of mappings
as invariant points.

Definition: Let M be a mapping of the reals to the reals.
Then the invariant set of M, denoted f(M), is given by

f(M) = {x|M(x) = x}, (15)

and for xef(M) we say that x is an invariant point of the
mapping M.
Our first result characterizing the invariant sets of com-

pound conversions states that any element common to
all significance spaces through which a compound con-
version passes is an invariant point of that compound con-
version.
Lemma 5: If Q is a k-fold compound conversion through

k

Snli ... , Snk then n Si C f(Q)
i= 1

Proof: For any xe r-Sni, each of the conversions com-
posing Q maps x into itself since Rni. and Tnii are identities on
Sni for i= 1, , k. Thus Q(x)= x, and xef(Q).

Furthermore, it is now shown that if Q is a compound
truncation conversion, then the points in the intersection of
the Sni are the only invariant points of the mapping.

Theorem 4: If Q is a k-fold compound truncation conver-
sion through Sn, S2, ..., Snk, then

k

f(Q) = n S .
i= 1
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Proof: For Q= T'kTYkk- I ... Tn,, by Lemma 5,
k

n S ci, f(Q).
i= 1

Now assume
k

x n S,i,
i= 1

and let us show Q(x) # x. From sign complementarity of
Q (Lemma 2), x> 0 may be assumed. Let j be some index
such that x S0.. Compound truncation conversions are
contractions and truncation conversion is weakly order-
preserving so that

x > T%(x) . T7j.(T.- .** Tel(x)) > Q(x).

Thus x # Q(x), proving the theorem.
Lemma 5 and Theorem 4 show the importance of the

intersection of significance spaces with regard to determin-
ing the invariant points ofcompound conversion mappings.
In turn, the character of the intersection of significance
spaces depends in large part on the commensurability or
incommensurability of the significance spaces involved.
Specifically, the base sixteen is in the binary family, and
every hexadecimal number may be easily converted to
binary by writing each hexadecimal digit as the appropriate
four bits. For be S66, the 24-bit binary representation of the
six hexadecimal digits of b may have up to three leading
zeros, or some 22-bit binary numbers may not be represent-
able in 1 e.g. (1+221)¢S66; however, every 21-bit
binary number will be contained in S66. In generalizing this
notion it is evident that if f,= 3P, then each base ,3 digit may
be represented by p base 3 digits. Thus an n-digit base ,B
integer yields an np-digit base 3 representation of which no
more than p-I leading digits may be zero. Setting
m=(n-l)p+1, we then have S,cS ,, S+1tSn, and the
following theorem is derived.

Theor-eii 5: Let ,Bl, f2,.*,' k be commensurable bases of
the 3 family. Then for m= 1 +min {(ni- 1) log fpi},

k k

SI c r) S'i and S+' tr+ Sn. (16)
i=l i=1

Actually Theorem 5 can be sharpened if we also consider
the different intervals [fli, 1Bj+ 1]. Reasoning as above, it can
be shown that by letting pi= log6 ,Bi, and setting m =1
+ min {pi(ni-1)+ (j mod pi)}, then we have
ik

k

S7r[f,BJ,+l] - n Snfitn [3p ] (17)
i= 1

Furthermore, if q is the minimizing value of i in the above
definition of mi, then also S' = S,q over the interval [/'Ji fi+ 1]

These observations along with Theorem 4 yield important
properties of certain compound conversions. If Q is a com-
pound truncation conversion through commensurable
significance spaces, then Q(x)ef(Q) for all real x. Hence
QQ = Q, and if Q* is any compound truncation conversion
through the same commensurable significance spaces as Q

but in any order, then Q* = Q. Furthermore, when Q=T1
T;k with f,l *,,Bfkin the same commensurable family,

then Ix- Q(x)I/x < maxi 17i(x), so accumulated conversion
error is effectively controlled.
Now it will be shown that the intersection of incommen-

surable significance spaces does not contain any common
significance space, for such an intersection has only a
finite number of elements.

Theorem 6: If,B and 3 are incommensurable, then SrnS'
has no more than 2(#n- 1)(3m-1) +1 members.

Proof: Let 9 be the following set of ordered pairs of
integers, Y= t(k, k*)IIk <fin, jkIk*j<3m and kk*. 1 or k=k*
=O}. Define a mapping P: Sn,nSm-- as follows. P(O)
=(0,O). Suppose beS rnS', bb#O. Then b=kf,B where k andj
may be chosen uniquely such that IkI <fin and ,B does not
divide k. Similarly, there are unique k*,j* such that b = k*3j*
where Ik*I <3m and 3 does not divide k*. In this case P(b)
= (k, k*). Thus P yields the normalized (right-shifted) integer
portions of the representations of any element common to
Sn and Sm'. It is now shown that P is a one-to-one mapping of
S nrSm into Y.

Clearly only zero is mapped into (0, 0), so let a, be S;nrSm
be any two nonzero elements where P(a)= P(b). Then there
must exist k, k* #0, and j, j*, i, i* such that a= k/J=-bJ%
and b = kf3' = k*3i* where ,B does not divide k and 3 does not
divide k*. Then k/k*=6j*/fJ =5i*/fii, so that bj*-i*=1fj-i
Thenj* = i* and j= i since ,B and 3 are incommensurable, so
a=b and P is one-to-one. Now SnrSm can have no more
members than Y" which has 2(fn-1)(bm- 1)+1 elements,
thus proving the theorem.

Utilizing the fundamental theorem of arithmetic (unique
prime decomposition), much more can be said about the
members of S'r-Sm for particular /3 and 3. If ,B and 3 are
relatively prime, then all members of SanSr' are integers,
with the largest such integer strictly less than flnbm. If the
greatest common divisor of the incommensurable f, and 3
is a prime number (as in the binary-decimal case), then the
smallest positive element of SnrSm can be shown to be a
negative power of that prime. This smallest positive number
exactly representable in both systems can be considerably
larger than the underflow bound on a typical computer, for
example 2-1 = 0.0009765625 is the smallest positive mem-
ber of S24r-S70.

For a compound truncation conversion Q through
St., j= 1,, k, we have shown that Q(x)=x if and only if x
is in the intersection of all significance spaces. Furthermore,
if at least one pair of the f,i are not commensurable, then the
intersection is finite and Q(x)# x for any positive x lower
than the minimum positive element of the intersection. For
such an x the compound truncation conversion Q would
have Q(x)>QQ(x)>QQQ(x)> ... >Q()(x)> -, and in
fact limi,, Q(')(x)=0 since zero is the only finite accumula-
tion point of Sfi. Thus for all i, Q Qi- ' for any compound
truncation conversion Q involving at least two incom-
mensurable bases, in sharp contrast to a compound trun-
cation conversion through commensurable significance
spaces where the iterated conversions immediately con-
verged. Practically speaking, the successive updatings of a

688



MATULA: FLOATING-POINT NUMERIC BASE CONVERSION

BCD tape [4] on a binary machine could cause some of the
"constant" floating-point data to be iteratively converted
back-and-forth with each updating. If truncation conversion
were adhered to as a standard, some of this data could
drift lower in value (see Fig. 8), losing all accuracy, with no
error indication provided by the system. Thus truncation
conversion should be avoided in mixed-base computation
unless all bases are in the same commensurable family.
With rounding conversion, the error accumulation upon

successive conversions of a datum among incommensurable
as well as commensurable bases is much better controlled.
For example, it has been shown [9], [3] that with suitably
high significance in the intermediate space S,', the 2-fold
compound conversions R,R' and R,T' can both reduce to
the identity on S'.

Theorem 7 (In-and-Out Conversion Theorem): For 3 and 3
incommensurable,

1) RnR' is the identity on S 3m- > /3n
2) R Tm is the identity onS>bml2 - 1.

Thus from Theorem 7 we see that for certain compound
conversions the invariant set will be the whole image space.

Corollary 4: For ,B and 3 incommensurable,

1) f(R'Rm) = S>3-' > fni1
2) f(RnTm) = Sn 3->m-2> -12 (1 )

The in-and-out conversion theorem [3] has been stated
for the case of incommensurable bases; however, incor-
porating the techniques of Theorem 5, a more general result
encompassing both commensurable and incommensurable
bases can be conveniently derived for the 2-fold compound
rounding conversion case.

Corollary 5: For 3, 3> 2, let y be the greatest common root
of / and 3 when ,B and 3 are commensurable, and let y = 1
otherwise. Then

R R, is the identity onSp7 am-.2 P. (19)

Proof: When ,B and 3 are incommensurable, y= 1 and
bm-1 0 /3n, so (19) follows from Theorem 7. Otherwise when
/3 and 3 are commensurable with greatest common root y,
then = y', /-= where i and j are relatively prime. Hence
Sn c Sjn and S(7-')' 'c Sm. Now y3m - 1 >l n implies that
(m - 1)i+ 1 .jn, so Sn3 c S, and RnRm is clearly the identity on
Sn. Alternatively, assuming ym-' </in means that (m- 1)i
+ 1 <jn. Now since i and j are relatively prime, there exists
a k such that k=j-1 mod j, k=0 mod i. But then Sn =Sin
over the interval [k, yk+1] and also S = S(tm-1)+ over
the same interval, so that (m- 1)i+ 1 <jn means Sm is con-
tained in but not equal to Sn over the interval [kI yk+ 1].
Thus RnRm' cannot be the identity on Sn, completing the
corollary.
When the condition ybm >. /3n is not obtained, then

clearly Snr-Sm cf(RiRm,)c S7, and it is of interest to give
some alternative properties sufficient to characterize an
invariant point of the compound conversion R,R,'.

In general, if the image space of the compound conversion

Tm

e n ~n emJ3<To

Fi. heposiledrf i vlu o a"cnsat atm"uneritrae
trnaincneso ewe nom esrbesgiiac pcs

Q were exactly equal to f(Q), then QQ = Q, and a desirable
situation controlling accumulated error is obtained. If the
k-fold compound conversion Q ends with a truncation
conversion, we have shown that QQ may not equal Q. Even
if the final conversion of such a Q is a rounding conversion,
the image space ofQ can Contain some points which are not
invariant points of Q. For example, let Q=RR. Since
24-1=8=32_1, by Theorem 3 the mapping R2S4__S2 is
onto, so Q covers all of S2. However, from Corollary 4,
f(R2R4) =A S3
Some detailed criteria for determining invariant points of

R,R' will now be considered.
Lemma 6: Assume that beS i, b# ±/3i for any i, and for

some deS-', R'(d)=b. Then R,R, (b)=b, i.e., bef(RnR).
Proof: Let /3 and 3 be commensurable of the y family.

Let beSn, b# ±/3l for any i and assume y. lbl jly". Over
the intervals [yi yj+1] and [-yj, J+ l ] either S.cS
or S, c Sn, and in either case with deSm', Rn(d)=b implies
that beSI n Sn. Therefore bef(RnRm,).

Alternatively, let us assume that /3 and 3 are incommensu-
rable. Let 0< b' E Snhave predecessor b and successor b", and
assume that b':A#'flfor any i. Then b" - b' = b- b. We assume
there exists a de S' such that Rn(d)=b', so

Id-b'l < (b' - b)/2. (20)

From the definition of rounding (10), it is evident that
|x-R '(x)|=minaes- {lIx-al}. Therefore with x=b

(21)lb'-n a(bf)a < lb'x-=dl,
and again with x= R,m(b')

jRm(b') - RnRm(b')j < Rom(b') - b'f, (22)
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and finally combining (20)-(22)

lb'- RnR(b')j < b' - b. (23)
If (23) were an equality, then d =# Rm,(b') and (20)-(22) would
all be equalities. Therefore Id- Rm(b') =b- b, and further-
more there could be no members of Sm between d and
Rm'(b'). Also then

b' = (d + Rm (b'))/2 (24)
so that Rm(b') would be the successor of d in Sm. Now any
element and its successor in Sm, must differ by an amount
3J for some j. Similarly, b'- b for some i, so that with
equality in (23), b6 =/3'. But then i =j= 0 since 6 and ,B
have been assumed incommensurable. Now b'- b= [30 = 1
only if b and b' are consecutive integers, and similarly d and
d' = Rm(b') would be consecutive integers, contradicting (24).
Therefore (23) must be a strict inequality, so that R'Rm(b')
must equal b'. The case for negative elements of Sn follows
from sign complementarity, and, of course, RnRm(0) =0,
completing the lemma.
As a consequence of this lemma, it is now shown that a

comparison of the gap functions 17 and Fm will suffice to
determine many of the invariant points of R,Rm

Corollary 6: Assume beS , b = ±+/' for any i, and
Fn (b)2Fm(b). Then bEf(Rn Rm).

Proof: If 0<b'eSn with b'#/f' for any i, then b'-b
=b"- b', and the interval mapping into b' under Rn is the
half-open half-closed interval [(b'- b)/2, (b"- b')/2]. Sup-
pose no member of Sm falls in this interval. Then

max {dld < b', deSl} < (b' -b)/2
min {dld 2 b', deSm} > (b"b')/2

so that evaluating Fm at the real number b' (see (6))

r,m(b') > (b" - b')/b' = Fn(b').

Thus if F7(b').Fm(b'), then some member of Sm must map
into b' under Rn, and by Lemma 6 b'e f(R nRm). The result
for negative be Sn, b # /i, then follows from sign comple-
mentarity.
Thus it is readily possible to find sequences of invariant

points of RnRm from a gap function comparison.
Corollary 7: For /3' <6bj, assume that F.1Fm over the

open interval (,Bi, min {/i1, 6i}). Then

(,Bi min {/i± 1, b}) r- Sn c f(RnRm').
Referring back to Fig. 2, it is evident from Corollary 7

that all members of S46 greater than 0.0625 and less than
0.1 are invariant points of R16R1o. Generally not all mem-
bers of Sn from an interval I where 1n < Fm will be members
of f(RnRm'), but certainly any point of R n(Sm') other than a
power of must be an invariant point of RnRm. Since Rn
restricted to S,mnrI is one-to-one to Sn, we may surmise
that the number of members of f(RnRm) in a neighborhood
of x is comparable to the lesser of the numbers of members
of Sn and Sm in that neighborhood. Hence although the
members of f(R, R,') are more erratically spaced, the rela-
tive difference between neighboring points of f(R'R') will

still be bounded with a bound perhaps larger but not by an
order of magnitude than the largest value attained by
17 and F7.
The preceding lemma and its corollaries do not quite pro-

vide the full story about f(RnR,'), since the integral powers
of / and 6 represent break points in their respective gap
functions, and by the preceding theory they must be treated
separately. We have already pointed out that the image space
of Q need not be identical to f(Q) even for Q = RnR'/, so the
question of whether the iterates of Q, namely Q, QQ,
QQQ,., Q(k),..., will converge is still unanswered for
Q=R nR,'. This question is a very practical one since we
would like to know if iterated rounding conversion between
binary and decimal based systems will allow indefinite drift
in the value of a "constant" as did truncation conversion, or
if a stable pair of values must be achieved after a fixed
number ofrounding conversions back and forth. The follow-
ing theorem is a surprisingly general and reassuring answer
to this question.

Theorem 8 (Iterated Conversion Theorem): Let Q= R%Rn
where m, n>2. Then QQQ = QQ. Furthermore, this result
is best possible in the sense that there exists 3, 6, n, m>2
such that R'QQ ORnQ.

Proof: For any real x, R'RnR,'R n(x)= R5Rn(x) unless
Rb'Rn(x)= ±6i for some i by Lemma 6. Similarly, with
Q=RR QQQ(x) = QQ(x) unless QQ(x)= + 6 with j# i.
Assuming QQQ(x) O QQ(x), the definition of rounding con-
version assures that

IRmR'(x) - Rn(x)I 2 JRnR'R n(x) - R'mRn(x)I
RmRnRmRRn(X) RnRmR-na X,

so that with IQ(x)=bi6, IQQ(x)H=j#6i
IQQ(x) - Q(x) < 2IRmR(n(X)- R(X)I < 6i(l + 61-M) 6i

and also

IQQ(x) - Q(X)I = 6'_il = 6il1 _ 6i-i

and since m. 2 by assumption in the theorem,

11 - 6i'l < 61-m < 1/6 < 1/2.

Now |1 6i -'i has a positive integer value for j > i, and for
j<i, the smallest value of |1-6i-iI is 1-1/161/2, and this
is a contradiction. Hence QQQ(x)= QQ(x) for all x.

The remainder of the theorem demonstrating that R nQQ
ORnQ for some n, m, /3, 6.2 is shown in the example of
Fig. 9.
Computer hardware involving the bases 2, 8, and 16 of

the binary family and the base 10 is in popular usage. Our
results so far discuss accumulated error under compound
conversion 1) within a commensurable family and 2) be-
tween two incommensurable significance spaces. The mod-
ification of our results to cover compound conversion be-
tween more than two significance spaces, all from just two
different commensurable families, is straightforward, so
that our theory does cover the current situations where one
might expect to encounter mixed base computation.
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S4
S2

(1.001)2x220 = 11 79648 -

(1.000)2x220 = 10 48576

S2
10

T 12 00000

R22R4R2 (x) 10 00000
R4R ~~(x 2RR2R4R2 (x) 42 9 90000

(.1111) X,20 = 9 83040 _ 0 2 9 80000

R4R2 R4R2 R4R2 (x) 9 70000
9 60000

Fig. 9. Iterated conversions of x =1 120 000 by the compound conversion
R2R10, showing R1 R2#R2R2R10R2R10.

If a suitable three-state device were perfected for use in
computer hardware, a ternary based floating-point system
would undoubtedly be implemented and the possibility of
mixed base computation among the bases 2, 3, and 10 would
ensue. Our final thoughts will then be concerned with com-
pound conversion through a collection of incommensurable
significance spaces.
For the significance spaces S51, S14, and S7, we have

1 960 563 ==(11 IA000)11 E S5 1, 1 960 576=(1 11011 11010
10100 00000)2 eS24, and 1 960 500=(10002 14000)5eS7, and
the absolute difference between an element and its successor
in this neighborhood is 121, 128, and 125, respectively (see
Fig. 10). Thus the iterates of the compound rounding con-
version Q = R7R14RR1 in this neighborhood will be different
for a number of cycles. As seen in Fig. 10, Q(7)(1 960 563)
= 1 961 375, and Q(k)(l 960 563)= 1 961 500 for k> 8, hence
Q(k) 6 Q(k-1) for at least all k <8. Examples such as this one
show that utilizing rounding conversion is not enough to
successfully restrict the drift in value of a constant datum
under compound conversion. From the generalized result
on in-and-out conversion given in Corollary 5, a resolution
to the problem of controlling overall error growth in the
presence ofmore than two incommensurable bases by inter-
mediate reconversions to a standard significance space is
feasible.

Specifically, let S'i, 1< i< k be a collection of significance
spaces representing the different floating-point data formats
of a mixed-base computational environment. Suppose we
introduce an intermediate space S' with the significance m
small enough such that RmRni is the identity on Sm for all i.
Then let all data introduced into the mixed-base computa-
tional environment first be converted by rounding to Sm,
and let subsequent conversions from S'i to S'j be preceded
by a reconversion to S', (i.e., R mRi|Sni+Snj). Note that the

19 61652 I.
11 00000

19 61531

19 61410 -

19 61289

19 61168 -

19 61047 -

19 60926 -

19 60805 -

19 60684 h z

19 60563 -2

19 61600

19 61472

19 61344

19 61216

-19 61088

19 60960

19 60832
_

19 60704

19 60576

19 61625

19 61500 = Q(k)(19 60563),
k > 8

19 61375 = Q(7)(19 60563)

19 61250 = Q(6)(19 60563)

19 61125 = Q(5)(19 60563)

19 61000= Q(4)(19 60563)

19 60875 = Q(3)(19 60563)

19 60750 = Q(2)(19 60563)

19 60625 = Q(19 60563)

19 60500

19 60442 .. c*_ 160448

Fig. 10. Iterates of the compound rounding conversion Q=R5,R14R7
showing the drift in value of a "constant datum" under successive
conversions.

conversion from S7i to S' always regenerates the same value,
RW(x), in S' for an initial datum x, since RmRni is the identity
on Sm. Thus the value of the initial datum x whenever en-
countered in SL, even after numerous intermediate conver-
sions, is given by RniRm(x), and this standardization of a
constant's value with regard to each Sni provides a highly
desirable property for mixed-base computation.
Now the range of possible values achievable in Sni is

RX'(Sm), and it is of course desirable to have as large an m
as possible so that the conversion through Sm does not intro-
duce too much error. Yet it should be kept in mind that if
m is chosen so large that one of the RmRn is not the identity
on SW, then conversion error may accumulate and generate
a greater overall error than if a smaller m (meaning less
initial accuracy) were chosen. These observations can be
formalized as an additional corollary to Theorem 7 and
Corollary 5.
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Corollary 8: For Sn', 1< i < k, let yi be the greatest com-
mon root of 3 and f3i when they are commensurable, and let
yi be unity otherwise. Let

m < min {(ni- 1) log flpi + logj yTi (25)

and let Qi=RiR,' for 1<i<k. If Q=Q.Q' for any 1<j<k
where Q' is composed from the mappings Qi, 1< i< k, then
Q = Qi.
The fact that m must be bounded from above in (25) in

order to guarantee control of accumulated error and avoid
situations such as that exhibited in Fig. 10 demonstrates
that the phrase "carry more digits" does not always mean
that greater overall accuracy will follow, and such cliches
should not be used as a substitute for a true understanding
of the formal structure of floating-point number systems and
base conversion.
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The Correspondence Between Methods of

Digital Division and Multiplier
Recoding Procedures

JAMES E. ROBERTSON, MEMBER, IEEE

Abstract-This paper relates previous analyses of the binary SRT
division to the theory of multiplier recoding. Since each binary quo-
tient digit has three possible values, the quotient resulting from the
SRT division is in recoded form; in this paper it is shown that the
recoding is a function of the divisor, and the method for determining
the characteristic Boolean function of the recoding is presented. The
relationship between the division and the recoding is established by

scaling the division in such a way that the scaled "divisor" becomes a
constant. Higher radix results are also discussed.

Index Terms -Binary arithmetic, division, minimal representa-
tions, multiplication, multiplier recoding, redundancy.

INTRODUCTION
STATISTICAL analyses of the so-called SRT' method

of binary division have been conducted by Freiman
[1 ]2 and Shively [8]. At each recursive step of this di-

vision procedure, three alternatives are possible; shift left,
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1 The earliest published description of a binary division involving re-

dundancy in the representation of the quotient is contained in [4].
2 Numbers in brackets refer to articles listed in the Reference section.

add and shift left, or subtract and shift left. One may there-
fore take the point of view that each quotient digit corre-
spondingly has one of the three values 0, -1, or + 1. Thus
the division procedure results in a quotient in redundant re-
coded form. It is the first purpose of this paper to establish
the correspondence between the quotient recodings and a
class of multiplier recodings.

It is first necessary to review some aspects of the theory of
multiplier recoding. For the binary case with recoded digital
values of + 1, 0, or -1, a recoding can in general be char-
acterized by the choice of two Boolean functions. For the
important class of arithmetically symmetric recodings
(defined below), the two Boolean functions are duals of one
another; hence this class of recodings is characterized by
the choice of one Boolean function. A third class of recod-
ings is next defined by restricting the Boolean functions in
such a way that each function can be determined by the
choice of a single binary numerical parameter in the interval
0 to 1. It is this third class of recodings that corresponds to
the quotient recodings of the SRT division.
The next step in establishing the correspondence is that of

scaling. It is obvious that the value of the quotient remains
unchanged if both the divisor and dividend are multiplied
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