
SHORT NOTES

A Division Algorithm for Signed-Digit Arithmetic
CHIN TUNG

Abstract-The application of a fast division algorithm, particu-
larly suitable for floating-point axithmetic, to signed-digit number
systems is described. This method, based on the method of A. Svo-
boda, is performed in two steps: 1) the divisor is adjusted to be of the
form (1 +e) where e is a fractional quantity, while the dividend is
adjusted accordingly, and 2) the generation of each quotient digit is
determined by only one digit in the partial remainder together with
the transfer digit (or carry/borrow) emanating from it. A working
example of radix 16 is given.

Index Terms-Deterministic generation of quotient, division,
redundant number system, nonrestoring division, signed-digit arith-
metic, signed-digit number system, Svoboda's division method.

1. INTRODUCTION

In previous papers, A. Avizienis used a division algorithm based
on Robertson's method [1] for signed-digit (S-D) arithmetic [2]- [4].
This note proposes another algorithm which is primarily derived from
Svoboda's method [6]. S-D number representations are redundant
positional representations. Some important and relevant properties
of S-D representations are briefly described in the following.

In an S-D representation of radix r, each digit can assume values
from a sequence of (2a+ 1) integers:

{a, * * * , 1, O, 1, * * * , a}
I (ro+ 1) < a < (re- 1) for odd radices r0> 3 (1)
(jre + 1) .a < (r.- 1) for even radices r.> 4,

where the overbars are used to designate negative digit values. S-D
numbers having minimal or maximal redundancy refer to the cases
in which a in (1) assumes the legitimate minimal or maximal values,
respectively.

The algebraic value Z of an S-D number z, (Z-n, Z-n+l1 . . .

Z-I, Zo, Zi, * * Zm), is given by
m

Z = E zir-i (2)
i-rn

and Z=0 if and only if zi= 0 for all i. The sign of Z is given by the
sign of the most significant (left-most) nonzero digit in z. To form the
representation of the additive inverse -Z, the sign of every nonzero
digit zi is changed individually.

The addition and subtraction of two S-D operands x and y satisfy

Si = f(-i, Yi, Xj+1, Yi+i)

for all i, where
s=x+y or s= x-y.

This in turn implies that there is no carry-propagation chain in
S-D addition or subtraction. Hence, the time of addition or subtrac-
tion of S-D numbers is independent of the length of the operands. The
digit addition algorithm is performed in two steps. First, an interim
sum wi and a transfer digit ti1 are computed by

Wi = Xi + yi - rti_l (3)
where

ti.5=O if Jxi+yil <a
=1 if xi + yi > a
= I if xi+y J< a.

Manuscript received April 3, 1967; revised May 24, 1968. The work reported
here was supported by the Office of Naval Research and the Atomic Energy Com-
mission under Contracts Nonr 233(52) and AT(l1-1) Gen 10, Project 14, and by the
Advanced Research Projects Agency under Contract SD 184.

The author was with the Department of Engineering, University of California,
Los Angeles, Calif. He is now with IBM Research Lab., San Jose, Calif. 95114

Second, the sum digit si is obtained by

Si = wi + ti. (4)

Previous design studies have shown that maximally redundant
S-D systems contain "pseudonormal" forms which demand special
handling and increase the complexity of floating-point algorithms
[5] and that maximally redundant forms have a wider range of mul-
tiplier digit values which needs a more complicated recoding of the
multiplier for efficient multiplication; hence, minimally redundant
S-D systems are used throughout the rest of this paper.

2. SVOBODA's DIVISION METHOD

Svoboda's division method consists of two steps. In Step 1, the
input divisor, assumed normalized, is adjusted to be of the form
(1 +e) where e is a positive fractional quantity, while the dividend is
adjusted accordingly and normalized if necessary. Step 2 is described
in Table I.

In Table I, the test of the equality of xj+,i+-=xi+si is to check if
x,+si, the prospective quotient digit, is correct or has caused over-
shoot. If this test turns out to be negative, the deviation caused by
the overshoot must be compensated for in the immediately following
step by an addition/subtraction of r-(i+)1e if the last step was a sub-
traction/addition. The requirement that this compensation be pos-
sible in one step puts a constraint on the range of e.

At the end of n iterations, the left n digits of x" are those which
have been used as if they were quotient digits, denoted as q, and the
rest of x", denoted as d, may be considered the remainder. The arith-
metic relation which characterizes the above algorithm is

xn = x- qe = q + d (5)
or equivalently

xo = q(1 + e) + d = qy + d. (6)

Thus the above computation is verified to be a division.
An example of radix 10 where e is found to be less than 0.1 is given

in Table II. It should be pointed out that the compensation is done,
if needed, in a "restoring" manner. In his paper, Svoboda, employing
complement forms for subtraction and detecting the carry (borrow)
which changes the value of xj+li, performs the division in a "non-
restoring" manner. Thus, the total number of additions in Step 2 is
minimized to n, the length of the single-length operand. The "re-
storing" manner description of this method is used here solely for the
sake of easier understanding.

3. A MODIFIED SVOBODA'S METHOD FOR THE S-D ARITHMETIC

3.1. The Range of e

The properties that the S-D numbers can be redundantly repre-
sented and each digit carries its own sign make Svoboda's method
rather attractive to the S-D arithmetic. The range of e is determined
in the following. As stated previously, the allowed digits of the mini-
mally redundant S-D representations are

(2r + 1), (2re), * * *, 1, 0, 1, * * *, (jr.), (sr. + 1)

for even radices r, > 4,

(I(ro + 1)), (j(r0+ 1)-1), . . ., 1, 0, 1, . . .,
(7)

(j(r. + 1) - 1), (2(ro + 1)) for odd radices r7 > 3.

3.1.1. Upper Bounds: The most misleading case which would
result in a wrong estimate of the prospective quotient digit arises
when the partial remainder assumes the format where for even radices
the trial digit is (Jr.+1) and all the digits to its right are (lre+ i), or
the inverse of this format. In order to correct in one step the deviation
caused by such a wrong estimate, the following relation must be satis-
fied (assuming e is a positive fractional quantity):

887

IEEE TRANSACTIONS ON COMPUTERS, SEPTEMBER 1968

TABLE III
THE ALGORITHM OF THE MODIFIED SVOBODA'S DIVISION METHOD

(STEP 2) FOR THE S-D ARITHMETIC
TABLE I

SVOBODA'S DIVISION METHOD (STEP 2)

1) j=O.

2) xi+l= xi- r(i+l) xj+li e.

3) If x,+ii+ = xj+1i go to 5); otherwise go to 4).

4) xi+ =sgn(xj+ir)r-Q+1) e+xi+l.

5) Ifj=n-1 go to 7); otherwise go to 6).

6) j=j+l; go to 2).

7) Stop.
r: the radix; xi: thejth partial remainder; sgn(xi) =xjl/ Ix

Entry
-+ j4-O

-->X4--(toxi)*e+(I 8 x)

q<-1 85 q

qn<- X_1

j: (n-1)

q<-1 8 q < -

Exit

Note: *: multiplication
k 8 x: left shift by k digits
j n: comparison of j and n.

TABLE II
AN EXAMPLE OF SVOBODA's DIVISION METHOD (STEP 2)

Radix 10
Dividend: 0.6500
Divisor: 1.0400

0.6 5 4 2 0 0 0 0

-) 0.0 2 4 0 0 0 0 0

0.6 3 0 2 0 0 0 0

-) 0.0 0 1 2 0 0 0 0

0.6 2*9 0 0 0 0 0

+) 0.0 0 0 4 0 0 0 0

0.6 2 9 4 0 0 0 0

-) 0.0 0 0 3 6 0 0 0

0.6 2 9 0 4 0 0 0

-) 0.0 0 0 0 0 0 0 0

6-e-10-1 . . .6

3-e-10-'

3-1=2

1 *e.10-2

9 ee 10-3 ..9

O.e.10-4 . *.O

0.6 2 9 0 4 0 0 0

0.6542/1.0400=0.6290+0.4000. 10-4

* 3 is changed to 2.

j(t-12r + 1) + r-2(+r+ 1) +(*e*.(8)
-(2r +)eI < (I + e).

Thus, the upper bound of e is

eeu = (r. - 4)/r.(r. - 1) for even radices. (9)

Similarly, for odd radices

-(r-1(r+ 1 r-i(r+ 1) ++ .+ - (r + 1)e I < (1+ e). (10)
Thus, the upper bound of e is

eOU = (rO- 3)/(rO- 1)2 for odd radices. (11)

3.1.2. Lower Bounds: Let h be a positive fractional quantity and
e be -h. The most misleading situation in this case is that for even
radices the trial quotient digit and all the digits to its right are
(ir.+ 1), or the inverse of this format. Hence, the following relation
must be satisfied:

TABLE IV
ONE IMPLEMENT OF STEP 1 OF THE MODIFIED SVOBODA S
DIVISION METHOD FOR THE S-D ARITHMETIC (RADIX 16,

MINIMAL REDUNDANCY)

Divisor Factor Divisor Factor

0.19-0.16 18.0 1.69-1.64 2.5

0.15-0.11 11.0 1.63-1.61 2.6

0.12-0.24 9.0 1.62-1.69 1.9

0.23-0.35 6.0 1.56-1.50 1.8

0.34-0.49 3.9 1.51-1.49 1.7

0.56-0.84 2.2 1.48-1.40 1.6

0.83-0.99 1.4 1.41-1.36 1.5

1.35-1.33 1.4

1.34-1.21 1.3

1.20-1.15 1.2

1.14-1.16 1.1

1.17-1.09 1.0

I(r-'(-r + 1) + r-(-r + 1) + * .*)
-2Qr+1)(-h) < (1 - h). (12)

Thus, the lower bound of e is

eel= - he..a = - (r. - 4)/(r, - 1) (r. + 4) for even radices.

Similarly, for odd radices

I (r11(r+ 1) + r'-i(r + 1) + * * *)

(13)

1A)
- I,(r + 1)(- h) < (I - h). 1)

Thus, the lower bound of e is
e0z = - ho.m.. = - (rO - 3)/(r. - 1)(ro + 3) for odd radices. (15)

3.2. The Algorithm
Assume, without loss of generality, the input divisor is positive

and normalized.

888

SHORT NOTES

TABLE V
AN EXAMPLE ILLUSTRATING THE ALGORITHM IN TABLE III

Assume dividend = 0.9926, 1 +e= 1.0900, then

q=0.8283 and d=0.6599-16-4

qo lq2q3q4 X XlXOXX2X3X4 to j Next Action

0 0 0o 0 0 0 9 0 25 0 0 form-9 * e

0 0 5 10 0 x -l-Ix

0 9 2 5 0 add

08 2 1 50 1 q 1aq

O 0 0 0 0 q4 X-1

0 0000 1 form-(T2) *e

0 0 8 2 0 0 x<-I6x

82 1 500 add

8 2 9 5 0 0 0 q4-1q

O OOOO q4< X-

0 0 0 0 8 2 form-9 * e

0 0 5 I 0 0 xl- x

2 9 0 0 0 add

2 8 3 100 I q I-1 q

0 0 0 8 0 q4-x-1

0 0 0 8 2 3 form-(T3)* e

00 7500 x+-lx

8 3 1 0 0 0 add

83 6500 q-18q

0 0 8 2 0 q4 X-1

0 0828 q<15q

0 8 2 8 0 q4< xO

0 8283

Step 1: Multiply the divisor by a series of appropriate constant
factors such that it becomes (1 e) and e is bounded by (9) and (13)
or (11) and (15) while the dividend is adjusted accordingly and nor-
malized again. The actual process certainly depends on the individual
implementation environment. An example is shown in the next
section.

Step 2: For deeper understanding of the digit-wise operations
involved this step is described by a program written in Iverson's
language [7], [81 shown in Table III in which all words (operands)
are treated as vectors. At the end of Step 1, the divisor is of the form

Ile1e2*. * en,
and the dividend is

X = X_1Xo.-XX2 ... Xm

with x-i = xo=0; m may be n or 2n, where n is the length of the single-
length operand. q is the quotient and to is the transfer digit or carry/
borrow into the 0th position and can be 1,0,1.

3.3. A Working Example

An example of radix 16 and minimum-redundancy is given here to
illustrate this algorithm.

1) The bounds adopted here for e are 0.0375 (0.0999... in
radix 16) and -0.0375 (0.0000 * in radix 16). The bounds are
symmetrical and are within the theoretical bounds derived above.
The divisor is brought into this required range in two substeps. In
each substep the first two fractional digits are examined and an ap-
propriate factor is multiplied to the divisor. This is shown in Table
IV. The bounds and substeps used here are by no means the best or
optimum ones. They only serve the purpose of illustrating how Step 1
of this algorithm can be implemented.

2) Table V shows how Step 2 can be mechanized according to the
rules in Table III.

4. CONCLUSION

A division algorithm, particularly suitable for floating-point
arithmetic, has been described for S-D number systems. The speed
of Step 1 of this algorithm is independent of the length of operands;
however, the speed of Step 2 is nearly proportional to the length of
operands. The introduction of Step 1 makes the fast generation of
quotient in Step 2 possible. Generally speaking, the advantages of
this method will be more appreciated when longer operands are dealt
with.

In comparison, Robertson's method does not have the preprocess-
ing of the divisor as does Step 1 of this method but it requires com-
parisons of the multiples of the divisor and the partial remainder for
the generation of each individual quotient-digit-a process that is
certainly more expensive than Step 2 of the modified Svoboda's
method. Therefore, the modified Svoboda's method will be preferred
when the economy gained in Step 2, with respect to Robertson's
method, can more than compensate for the complexity introduced
by Step 1.

ACKNOWLEDGMENT
The author wishes to express his sincere thanks to Prof. Svoboda

and Prof. Avizienis for their enlightening suggestions and warm
encouragement.

REFERENCES
[1] J. E. Robertson, 'A new class of digital division method,' IRE Trans. Electronic

Computers, vol. EC-7, pp. 218-222, September 1958.
[2] A. Avizienis, "Signed-digit number representations for fast parallel arithmetic,'

IRE Trans. Electronic Computers, vol. EC-10, pp. 389-400, September 1961.
[3]-, "On a flexible implementation of digital computer arithmetic," in Informa-

tion Processing, C. M. Popplewell, Ed. Amsterdam, Netherlands: North-Hol-
land Publishing Co., 1963, pp. 664-670.

[4] -, Arithmetic microsystems for the synthesis of function generators," Proc.
IEEE (Special Issue on Computers), pp. 1910-1919, December 1966.

[51 A. Avizienis and D. Kimble, "A general building block for digital arithmetic,"
Proc. Nat'l Symp. on the Impact of Batch Fabrication on Future Computers (Los
Angeles, Calif., April 6-8, 1965), pp. 173-180.

[61 A. Svoboda, "An algorithm for division," Information Processing Machines
(Prague, Czechoslovakia), no. 9, 1963.

[71 K. Iverson, A Programming Language. New York: Wiley, 1962.
[8] , "Programming notation for systems design," IBM Sys. J., vol. 2, pp.

117-128, June 1963.

An Analysis of High-Speed, Linear-Passive
Binary, READ-Only Stores
RODGER L. GAMBLIN

Abstract-A general analysis of conventional high-speed, linear-
passive, binary, READ-only stores is performed by the application
of the scattering-matrix formalism. It is found that for a broad class
of cases, which include most READ-only stores that have been dis-
cussed in the literature, the maximum transmission of power from a

Manuscript received November 22, 1967; revised May 27, 1968.
The author is with IBM Corporation, Systems Development Division, Endicott,

N. Y.

889

