
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-23, NO.1, JANUARY 1974

Citroen, Paris, as a Research Engineer working with the control of
machine tools. In 1956 he joined the Societe Sciaky, Paris, as Head of
the Electronics Laboratory, to design and develop circuits for welding
machines. He spent 1959 and 1960 with the Compagnie Generale de
Telegraphie sans Fil (CSF), as Head of the Technology Department.
From 1961 to 1963 he was a Teaching Assistant at Carnegie-Mellon
University. In 1963 joined the University of Alabama, Huntsville, as an
Assistant Professor of Electrical Engineering; he became Professor in
1967. He teaches and conducts research in the area of communications
and data processing.

Dr. Polge is a member of the Societe Francaise des Electriciens and
Sigma Xi.

B.K. Bhagavan was born in Mysore, India, on
February 15, 1947. He received the B.E. degree
in electrical engineering from the Bangalore
University, Bangalore, India, in 1967, the M.E.
degree in electrical power engineering from the
Indian Institute of Science, Bangalore, in 1969,
and the Ph.D. degree from Southem Methodist
University, Dallas, Tex., in 1971.

Presently he is a Research Associate with
the Research Insitute of the University of
Alabama, Hunstsville. His current interests

include optimal control, digital processing of image data, and simula-
tion and analysis of radar systems.

James M. Carswell was born in Bishop, Calff.,
on January 19, 1922.

His major field of interest is mechanical
engineering, although he has had considerable
experience in electrical engineering. For the last
15 years his work has included trajectory
analysis; in particular, digital simulation of six-
degree-of freedom trajectories, Monte Carlo
analysis of trajectory variables, and special
problems in flight mechanics. Until June 1973
he was with the University of Alabama, Hunts-

ville. Currently he is with North American Aviation, Downey, Calif.

Floating-Point Arithmetic Algorithms in the

Symmetric Residue Number System
EISUKE KINOSHITA, HIDEO KOSAKO, MEMBER, IEEE, AND YOSHIAKI KOJIMA, SENIOR MEMBER, IEEE

Abstract-The residue number system is an integer number system
and is inconvenient to represent numbers with fractional parts. In the
symmetric residue system, a new representation of floating-point
numbers and arithmetic algorithms for its addition, subtraction,
multiplication, and division are proposed. A floating-point number is
expressed as an integer multiplied by a product of the moduli. The
proposed system assumes existence of necessary conversion procedures
before and after the computation.

Index Terms-Cyclic mixed-radix system, exponent part,
floating-point arithmetic algorithms, floating-point representation,
mantissa, normalized form, number of precision n, symmetric residue
number system.

Manuscript received September 10, 1971; revised August 4, 1973.
The authors are with the Department of Electronics, University of

Osaka Prefecture, Osaka, Japan.

I. INTRODUCTION

THE residue number system is an integer number system.
At present, the techniques known make it inconvenient

to represent fractional quantities. It is to be desired that
numbers with fractional parts can be handled as easily as
integers in the residue number systems.
A few studies on the floating-point arithmetic in the residue

system have been published [11, [21. In these reports a power
of 2 or 10 is used as an exponent.

This paper deals with floating-point arithmetic with an
exponent which is a product of moduli in the symmetric
residue number system. This number system has the following
advantages: 1) finding the additive inverse of a residue digit is
fairly easy, 2) sign detection by mixed-radix conversion is
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easy, and 3) the result of scaling is rounded to the closest
integer. A cyclic mixed-radix system will be introduced first.
Then, based on this system, a new expression of floating-point
numbers and algorithms for addition, subtraction, multiplica-
tion, and division will be described in terms of normalized
operations.

II. NUMBER SYSTEM

In order to provide the appropriate foundations and
motivation for the normalized floating-point format proposed
here, a cyclic mixed-radix system will be introduced first.

Cyclic Mixed-Radix System
Consider a weighted number system in which any real

number is expressed in the form

h
± E w.W.
i=-°°

(1)

where { ci } is a set of permissible digits, I wil a set of weights,
and a.h is the most significant digit of the number. From a
practical point of view the series (1) should be approximated
by its appropriate partial sum. Here we assume that there are
given n radices ml, m2, , mn. We denote by ii n the least
positive (integer) remainder of the division i/n, and by [i/n]
the largest integer less than or equal to i/n, where i is an
integer.

Then the approximate value of a given real number may be
represented in the form

I+n-1
± E niwi

i=l
(2)

instead of (4). As an example, Table I lists the weights and the
permissible digits of the cyclic mixed-radix system with ml =
3,m2 = 5,andm3 = 7.
Now consider the numbers of precision n, in a cyclic

mixed-radix system, expressed in the form

I+n-1

z
i=l

a .w. .
I I

Let

e= [i/n]

S= ill
n

a.=I±+j-1I +1=ls+j-lI +±1
I n n

(7)

(8)

(9)

= 1, 2,---,(n).
(10)

Then, these numbers can be represented in the following form:

kXMe XM

where k is an integer such that kI< (M-1),M= rH1in,
e is an integer, and

s

= 11J MP.s i= 1

Ms= 1,

(s #0)

(s = 0).

Proof: From (5) and (9),
w1=M=M

and moreover, using (10),

w . I=m -.m imn w Ij-I 2

with n digits in succeeding positions, where

ai = aii 1 ilI +1n

) < a +i + 1 < mI i n+ 1 I

wi= M/nml il m2m
n

(3)

(4)

i-V inn=te ma W0,
v=l p

On the other hand, by (3) and (IO),5
(liin 0)

(I iln =0) (5)
(j= 15, 2, , n).I11+j-1=OL 1+;-1 In + 1

= aaj.

and et is the least significant digit, and whereM = flH1 in. If
a number X is expressed in the form (2), we call X a number
of "precision n." It should be noted that numbers in the
binary or the decimal system are expressed by the form (2).

Number systems in which the weights are not powers of the
same radix are called mixed-radix systems. A cyclic
mixed-radix system is defined as a mixed-radix system
consisting of all numbers of the form (2). In the following
discussion it will be assumed that the radices are odd positive
numbers so chosen that ml < m2 <.. < mn and the digits a,
are restricted so that

Mlil +1-M1 l l +(6)
__ n2 S t1il +1 2 6

n

Hence

l+n-1 n
E Oliwi = E rL+j_ 1Wl+j_l
i=lj=

±t+ E 'a( I min)MeMs. (11)

Here consider the expression (11). Let

(12)
n /j-i

k = ±a+ Ea( in0)a
j=2 1 v=l v

Then, since the a0 are integers such that

10
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TABLE I
WEIGHTS AND PERMISSIBLE DIGITS OF CYCLIC

MIXED-RADIX SYSTEM WITH ml = 3, M2 = 5, AND m3 = 7(n = 3)

i [ i/nl i Ifn 1
w

-5 -2 1 -2<__<2 7-2x5-2x3-
= -5=2 - -

-4 -2 2 -3<a <43 7-2 x5-1 x3-
= -4=1 - -

-3 -1 0 -1<ct <1 7-lx5-lx3-
= -3=

-2 -1 1 -2<a_ <2 7- x5-2=

-1 -1 2 -3<_a <3 7-1

0 0 0 -1<cL <1 1
= 0 -=

1 0 1 -2<ac <2 3

2 0 2 -3«a <3 5x 3

3 1 0 -1<a <1 7 x 5 x 3

4 1 1 -2<ca <2 7 x 5 x 32

s 1 2 -3_<a <3 7 x 52X 32: 7x::3

m -1a.

2

mn-ia.

a. 2I

between -E and E, say. We call the integer k and the pair (e, s)
the mantissa and the exponent part, respectively, of the
floating number (13). Exceptionally, zero is defined as
follows:

O=OXM° XMo.

Theorem: The proposed normalized floating-point format
is unique.

Proof: By contradiction.
It suffices to prove the theorem for positive numbers. For a

positive number A, let A = k1MeiMs, and A = k2Me2Ms2
with k, # k2, el 0 e2, or s1 : s2. Assume that the theorem is
false; then it must be possible to find an A = k Me, Ms, =

k2Me2Ms. with kl, el, sI, k2, e2, and s2 meeting the
preceding restrictions. Without loss of generality we may
assume that e2 = el + Ae, where Ae is an integer such that Ae
> 1. Then it follows that

kM =kMAMI 1 2 82

which in turn implies
k1M8

MAe =~ 1
k2MsS2

where
Me >M. (14)

we obtain

klI<

Since

(15)_1 )+
E -±)) mu)

Therefore,
lk< (m m " ma -1I).a -a1 a1n n 1

In view of (10) it is easily seen that the sequence o1, a2, ... agn
is a permutation of 1, 2, , n. Hence,

Ikl (M-1).

This completes the proof.
It should be noted that (7) can generate negative numbers

as well as positive numbers or zero because of the restriction
(6).

Normalized Floating-Point Format

In floating-point operation proposed here, the set of
numbers consists of 0 and the set of all numbers of the form

kXMe XM

where k is an integer,

I(M/m8+ 1)S IkI.(M-1), (s 0)

(13)

1(MMn + 1)-6 k <(M-1) (s = )

normalized by the condition that the most significant digit
aa in (12) is not zero, and where e is an integer ranging

and
(i = 1, 2)

then
(M-1l)Ms

AfAe S

M +m
2

Further, since

(M-l)MS
<m M AM

+1
m82

then
MAe<M

But this contradicts the assumption (14).
Hence,

el = e2.

Next we assume that s1 < s2 without loss of generality.
From (15),

- ki M-1

k2 M + I
m 82

11

I (M/m .<I(11 s
+ 1) < ki"Im 1)

i

I S<M,
si
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Since
M-1

8~~~2+ 1
m

(16)

then

ki <m
k2 82

On the other hand, whether sl = O or #0,

ki
k = M1S+1ms +2 2ms22

but

m m~~~~~8al+1 8sl+2 8s>m2
hence

ki
k2 82

This contradicts (16).
Hence

SI = S2.

Consequently,

k, =k2.

This completes the proof of the theorem.
For any real x we denote by fl (x) either of the two

numbers of the form (13) which minimize fl(x) -x I , except
that if

MMM<M I x I < MM (M+ m +l1)

then

I1a(M + I MeM+, (sin-1)
fl(lxX)=

+IMl)Me+,M0 (s=n-l)

The value fl(x) will be called a normalized floating-point
representation of x.
We defme the range of floating-point numbers to be the

interval

D= [M-1 MEM, 2M- MEMl
2 n ~~2 n 1~j

Let fl(x) = kMeM. be the normalized floating-point
representation of x for x e D, Ixl > ((M/m,) + IW-E.
Then, since

2m MeM < Ixl< MAme, (SOO)
s

2 MeM8. lxI< MMl M8, (S=#O) (17)
n

it is easily seen that e, s, and k can be determined in the
following manner:

e = [logm2mf Ixl -1.

The integer s is found as follows. First compute

21x1
° Me+l

This quantity is used in the relationship

Gi_
M m.

to obtain G,, G2, , etc. This iterative procedure is continued
until [Gi] = 0. If this occurs on the ith (i = 0, 1, ), then

s = i.

Finally k is defined by

k= (
\MeMS

Here the R refers to correct rounding in fixed-point
arithmetic. If e is outside the interval -E < e < E, we shall
only say that an overflow or an underflow has occurred and
shall not proceed further.

Conversion to the Residue Representation

For the integer k in (13) the least remainder in absolute
value when divided by mi may be computed. This quantity,
denoted by /k/mi, is referred to as the symmetric residue of k
mod mi, and the radices mi are called bases or modull. For any
given set of moduli the residues of k may be formed into an
n-tuple

Ik/ml J, klm2 Iklmn

This n-tuple is called the symmetric residue representation of
k. The integer 1k/rm is called the ith symmetric residue digit

-M-1 M-l
2 to 2

may be uniquely represented.
Now consider the conversion from a fixed-radix system

such as decimal or binary to the residue system. The integer k
is specified in a fixed-radix system as

k=d,r±+d, r-1 + +dir+do

where r is the radix and 0 < di 6 r -1. Then, taking this
expression modulo mi, the following equations are obtained:

km =/dllr'lm + d_1 Ir'-'/mi+ +d,Irlmi+ do/ml

(i= 1,2, ,n).

12
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Thus, if the powers of r modulo mi are directly available from
the memory, lk/m, may be computed by repetitive addition
(modulo mi,) of those powers of r.

Before going into the main argument, residue interacting
operations of mixed-radix conversion, base-extension, and
scaling will be briefly described. (For detailed information on
these operations, see [3].)

Mixed-Radix Conversion

Mixed-radix conversion process is used to convert from the
residue system to the mixed-radix system. The particular
mixed-radix representation of interest here is of the form

k=anm1m2 ...mn-1 +-..+a2m1 + a1

where the ai are the mixed-radix digits which are to be
determined by this procedure. Any integer in the range

M-1 M-1
2 to 2

may be represented in this form and hence this representation
has the same range as a residue system of moduli ml, m2, ,
mnn.

The mixed-radix conversion is a fundamental operation,
from which other important operations such as base extension,
relative magnitude comparison, and sign determination can be
derived. In the symmetric residue system, the sign of an
integer is given by the sign of the most significant nonzero
digit of the mixed-radix expression of the number.

By successively subtracting ai and dividing by mi in residue
notation, all the oi can be determined, starting with al. A
simple example of this procedure is given in the Appendix.

Base Extension

Base extension is used to find the residue digits for a new
set of moduli, given the residue digits relative to another set of
moduli. In most cases, one or more moduli are added to the
original base. The procedure is a mixed-radix conversion with
an additional final step. A simple example of base extension is
given in the Appendix.

Scaling

In conventional fixed-radix arithmetic, scaling up or down
by a power of the radix is simply a series of right or left shifts
and is a fast economical operation. In the residue number
system, because multiplication is a simple operation, scaling up
is no problem. Scaling down is, in general, a difficult
operation. However, it is easy to scale down by a product of
the mi; for example, permissible divisors are mi1 X mi2 X m5 or
m2 but not mi1 X M2 2 X m5 or M2 2. This restricted operation
is referred to as scaling. A simple example of scaling is given in
the Appendix.

Ill. FLOATING-POINT ARITHMETIC

Let X = kxMexMsx and Y = kYMeYMsy be two
floating-point numbers in the range D, where the subscripts x

andy represent X and Y, respectively. We define by Z = fl(X *
Y) the desired result of a floating-point operation, where Z is
of normalized form and the * symbol represents addition,
subtraction, multiplication, or division of two floating-point
numbers.

Adjustment and Overflow or Underflow in Mantissa Part

In the proposed floating-point number system, some
adjustment of a mantissa part is needed before computation in
multiplication or division as well as in addition or subtraction.

Overflow or underflow occurs any time the mantissa ofX *
Y would fall, in absolute value, outside the interval

+[f( I ),(M-1)] (s* )

I1=

I

mn ) '(m 1)] (s= 0).

Then, special methods are needed to detect the occurrence of
overflow or underflow and to normalize the result.

Addition or Subtraction

We assume, without loss of generality, that
e e
M XM >M YM

s Sx
(18)

The exponent parts of X and Y must be made equal before
addition or subtraction. To align the exponent parts, we
rewrite Y as

exY=KMxM
Sx

where e -e
kM Y xM

K M
x

Then, we can express the sum or difference ofX and Y as
e

k M ZM
z sz

where

kz =kXKR± e5=e ,s =s

It should be noted that, in general, the floating-point number
is not in the normalized form at this point.
Now in order to know how to get KR, consider the

relationship between ex and ey, or sX and sy.
1) IfexZ>ey +2,

IK I< I k IJM-2Ms IMs < I ky I(Mm ) < 1 /(2mn)Hencex y n n

Hence

KR =0.

2) If ex = ey+ l and sX >sY,

13
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Hence
IKI= Iky 1M M /MI .I<IkI/M< 1/2.

SY

KR =0.

3) If ex=ey+landsx <sy,
kym1m2 nm8

K=k M1M8 /M8 = m
y Sy Sx m0ml .. ms MIM2 "' Mn

ky

m0m1 s
m

s +1ms+2 mnx y y

where mo = 1. In the symmetric residue system the result of
scaling is rounded to the closest integer, hence KR is obtained
by scaling ky by mom . mSxmsy+ims +2 ... mn- Here, by
the assumption that all the moduli are odd, KR- K < 1/2.

4) If ex = ey and sX > sy,
k

K=k M -/M_=Y
y Sy x msY+1 mS +2 msy y x

Hence KR is obtained by scaling ky by m,y+1m8Y+2 m.sx
5) If e = ey and sX =sy, then evidently

KR =ky.

Note that the only remaining case ex= ey and sX < sy never
occurs by virtue of the assumption (18).

After making necessary arrangement for an alignment of
exponent parts as is previously stated, we compute k. = kx +
KR. Then, since 0 < Ikz8I M - 1, an overflow or an
underflow may have occurred, and a test is required for
overflow or underflow detection.

Consider the symmetric residue system with moduli mi,
M2, -- mMn and a redundant odd modulus mn +,wheremn+
is pairwise relatively prime to all the other moduli and satisfies
the conditions

M-1.ia(Mm1n+-1), min <Mn+1' (19)

Suppose we have the residue representations of kx and k
for all moduli, including mnl,l If k_ is expressed in its
mixed-radix form, we have

kz an+1m1m2 ... mn + tnmImn2 ... mn1 +*-±+a2mi1 +a 1.
Define au to be the most significant mixed-radix digit which is
not equal to zero. The' subscript u will be equal to some
integer from n + 1 through 1. Then, u is equal to n if and only
if 4((M/mn) + 1) < S 4(M - 1). Hence an overflow has
occurred if u = n + 1. If u < n, then

(Mn ) 4(S )

which implies that an underflow has occurred. The only
remaining case is if u = n. In this case it is not possible to

know from u alone if an underflow has occurred, and another
test is required.
A method for the underflow detection requires the

availability of the quantities '((M/m,z) + l)(sz = 1, 2, , n-
1) modulo m1(i = 1, 2, , n). If s = 0, ((M/msz) + 1) <
Ik I, which implies that no underflow has occurred. The
quantities :((M/m, ) + 1) are constants and can be
permanently stored in the residue form. If sz # 0, Ikz-
1((M/msz) + 1) is formed in its residue code and converted to
its mixed-radix form. If the sign of the most significant
nonzero digit of this form is negative, an underflow has
occurred.

After these tests, kz is replaced, if necessary, by the integer
obtained by scaling or multiplying kz by a factor, and the
exponent part (ez, sz) is corrected.

In scaling kz, it is desirable to choose m,z+l as the factor,
taking account of the definition of MsZ, and increase sz by 1.
If sz has reached n, sz is set to zero and ez is increased by 1. It
can be shown easily that kz falls into the interval I after
being scaled by m,z+i.

In multiplying kz by a factor, if u < n, since kzMeMZMS can
be expressed as

s +n

kz/ Hn minMz
.=S +U+ 1

s +u
z

Hl M.
j=1i

we choose I=SZ+U+1 mi as the factor, decrease ez by 1 and
increase sz by u, where i is a modulo n number when i> n. If
sz has reached n, sz is set to zero and ez is increased by 1. The

Sznquantities r1=.sz+u+1zi are constants determined by s and u
and can be permanently stored in the residue form. If u = n,
we choose msz as the factor and decrease sz by 1. The
quantities msz(sz = 1, 2, , n - 1) are constants and can be
permanently stored in the residue form. It can be shown that
kz is normalized after a finite number of this multiplicative
iterations. In the case of u = 1 or u = n only one iteration is
required.

Thus we have the desired result fl(X ± Y) = kZMeZMS8
which is the floating-point representation of X ± Y.

Multiplication

It will be assumed, without loss of generality, that sX > s
We first consider the case of sy = 0 or 1. In this case, the
product ofX and Y can be expressed in the form

e
k M zM
z sz

where

k =k k M , e =e +e , s =s .
z x y sy z x ys z x

Obviously this is an unnormalized number. If sy = 0,

i m + I) Ikz8<2(M- 1)2

14
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the case of sy = 0 or 1. A similar procedure is applicable to
the case of sy # 0 and sy # 1, using the following
modifications. In this case we can express the product of X
and Y as

If we suppose that

(M+l)d(M ±+1)

then multiplicative overflow occurs always in computing kz.
To cope with this difficulty, consider the symmetric residue
system with redundant odd moduli mn+2 Mn+3 , mn+p in
addition tornl, n2, , mn+l, where m.(i = n + 2,n+3,n
+ p) are pairwise relatively prime to all the other moduli and
satisfy the conditions

p nn

k(M- l)2in1.<(Mm +1mn+2 -n+ 1),

m+ <m+2 < < n+ (20)

e
kzM ZM

where

kEk
k = (= x1 n R' e=e±+e±,IS =S

First of all, we extend the base to include mn+2, mn+3,
mn,Ppfor the residue representations of kx and ky. and then
compute kxky. Scaling kxky by ms +1msY+2 - mn, we have
kz. It can be easily shown that i ) + 1) < kI . Hence
kz must be normalized by the aforementioned scaling
algorithm.

Division

Before computation of k5, we extend the base to include
Mn+2, mn,3, -, mn+p for the residue representations of kx
and k1 . The multiplier M1 required for getting k5 when s = I
is constant and can be permanently stored in the residue form.
Now to normalize k5, define ao.to be the most significant

nonzero mixed-radix digit of k_. Then, if u is greater than n,
overflow has occurred, and therefore kz must be replaced by
the result of scaling k_ by a factor. The scaling factor is chosen
as follows.

For u such that u > n + 2, we choose Il[j=ZzJ+.l as factor
and increase sz by u - n, where i is a modulo n number when i
> n. Ifs has reached n, sz is set to zero and e_ is increased by
1. It can be shown that the value of u decreases to u = n + 1
after a finite number of this scaling iterations when u > n + 2.

If u has reached n + I, kz is scaled by msz+1 and sz is
increased by 1. If sz has reached n, sz is set to zero and ez is
increased by 1. It can be easily shown that

(M
s +1
S (MRm +1

and

11(M 1< n(>1)

which implies an overflow may have occurred.
At this point, to detect an overflow Ik_,I - (M - 1) is

formed in its residue code and converted to its mixed-radix
form. If the sign of the most significant nonzero digit of this
form is positive, an overflow has occurred, then kz is scaled by
m, +I and the exponent part is corrected. The quantity (M -
1) can be permanently stored in the residue form modulo mp(i

1,2, ;-n+ 1).
Thus we have the desired result fl(X X Y) = kzMezM inS5

Consider the division of X by Y. If Y = 0, division is not
defined. Otherwise, since kx I, ky <. (M- 1), it is
impossible to get the desired precision of the quotient kx/ky
by merely dividing kx by ky.

To increase the precision, we define the following function
A which is a multiplier to kx.

1) IfsX >sy and sy = 0,

X kxM e -e -1MX Y M.

y

Hence A is defined by
A =M.

2) IfsX > sy andsy *O,

k BCM
Xx XMex y
Y k Ms BC

k BCMkyMCsx e -e

kkMC MX

k BC e -e -1M
-k MX yy

where

n

B-= HI mi
i=sy+ 1y

sx

Xn
i=sx-sy+l

(21)

(22)

Mi..

Hence

A =BX C.

Note that if sX = sy and sy * 0, then A = M.

is

and if s = 15
y

m m 1<1(I + I + I m < Ik , M- 1)2M4
m m 1 z 4 1,

1 n-1
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3) If sx<sy,
kXMs B

=
x

x e -e
Y kM B

y sy

kM Bx s8 e -e

= kM MX y
y

kM Bx sx e -e -1

X
Mx

y
y

k M BDx s e -e -2
= x~Mx Y M

ky n+x - y

where
n

D= f[ Mi.
i=n+s -S +1

x y

Hence A is defined by

A=M XBXD.
s
x

The quantity A is a function of sX and sy and is a product
of n moduli. It can be easily seen that A has a maximum

(Mnmn - 1 *- (n+ 3)/2 M(n+1)/2 (n is odd
Am =
max (mnmn_ *m 1m)2' (n is even)

nn - I (n/2)+1

when SX = ° and sy = [n12] .

It follows that IkxIA < 4(M - l)Amax. Therefore, the
previous redundant moduli mn+2, mn+3 ,, n+p are chosen
so that they further satisfy the following condition:

~(M-l)Am2m(Mx n+1mn+2 --imn+p 1). (24)

Before the computation, we extend the base to include
mn+2, mn+39 Imn+p for the residue representations of kx
and ky. Then we form the product of kx and A and divide
kxA by ky. The value ofA is a constant determined by sX and
SY and can be permanently stored in the residue form. It is to
be desired that the integer quotient kz = (kXAIky)R should be
found by applying the division algorithm proposed by the
authors [4].

The equations required for calculation of exponent part is
given as follows.

Ifsx >sy, from (21) and (22),

ez =ex -e -1 sz =s, -s ,

and if sX < sy from (23),

e5 =e --e -2, sz =n±s -s.

Thus we have an unnormalized floating number
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kzMZMs

It can be shown that no underflow has occurred and an
overflow may have occurred in computing k.A/ky. If an
overflow has occurred, the same discussion and procedure as
described in the case of multiplication may be applied to
normalization of kz.

IV. SAMPLE RESIDUE NUMBER SYSTEM

As a sample residue number system, consider the symmetric
residue system consisting of moduli ml = 13, m2 = 17,m3 =
19, m4 = 23, and ms = 29 (M = 2800733). Then, for the
mantissa of the floating-point number (13), the interval of

(23) definition is, in absolute value,

[ 48289,1400366]
[107721,1400366]
[ 82375,1400366]
[ 73704,1400366]
[ 60886, 1400366]

(s = 0)
(s= 1)
(S= 2)
(s= 3)
(s= 4).

The redundant moduli which satisfy (19), (20), and (24)
are chosen asm6= 31,m7= 37,m8= 41, m9 = 43, and mlo
= 11.

In floating-point add operation, underflow detection
requires a table of the quantities Lsz = T((M/ins) + l)(sZ = 1,
2, 3, 4). This can be accomplished by storing, in a special
memory, a table such as Table II. The symbol (( ))5 stands
for the residue representation, for instance, ((L l))5 <->

I/Li/ l , , / l /1m t - Normalization requires
tables of HlsZ m. (for u K:n) and msi (for u = n) such as
Tables III and IV.

For floating-point multiplication, the quantity M1 must be
provided to get kz = kXkyMsy when sy = 1. This can be
accomplished by storing ((ml ))1 0 in a special memory.
Overflow detection requires the residue representation of
(0'(M- )) 6.

To have the desired precision of a quotient in floAting-point
division, we must provide a table of multipliers A, such as
Table V.

V. ALGORITHMS

From Section III, we may summarize the algorithms for
floating-point residue arithmetic as follows.

Suppose kx and ky to be represented by symmetric residue
digits ((kx))n + 1 and ((y)n + 1 -

Floating-Point Add or Subtract Operation

Assume that X = kXMeXMsx and Y = k3,MeYMSy are the
augend (minuend) and the addend (subtrahend), respectively,
and that 4eXMe > s,eyM

1) Compute Ae = ex-ey . IfAe> 2, fl(X ± Y) = X.
2) If Ae = 1, check whether SX > sy. If this is true fl (X_

Y) = X. Otherwise, scale ky by mom, *- Ms Msy+lMsy+2
mn and let the result to be KR.
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TABLE II
TABLE COMPOSED OF LS = W/ms ) + 1)

s L
z S z

1 ((L1))5

2 ((L2))5
3 ((L3))5
4 ((L4))5

TABLE III
TABLE COMPOSED OF HiI=Zz+2+l m1

Z °0 1 1 2 3 4

((m2m3m4m5 1)6 (( M34m5m1 ) 6 (m4m5m1m2 ))6 ((m5m1m2m3 ))6 (( 1m 2m3m4 ))6

2 (( m3m4m5 ) 6 (Im4r5mr1 ) 6 ( m5m1m2 ) 6 mlr m2r3 ) 6 ( m2m3m4 ) 6

2 ((rn3rn4m5 6 (( m5rn1 ) 6 ((r 1r2 ) 6 2(mr23 ) 6 (r 3m4 ) 6

4 (( m5 6 ((m1 )6 ((r m2 6 (( m3 ) 6 m((4 64 (n (n (n (n

TABLE IV
TABLE COMPOSED OF MS

s inz s
z

1 ((rin1) 6

2 ((In2 )

2F,

3 (( m3 )) 6

4 ((m4 )) 6

TABLE V
TABLE COMPOSED OFA VALUES

S X 0 1 2 3 4

0 (( A )) 10 10 1 0 ( 0 ( 0

m
2 m2m I 2m 2n1 (( rn2 3r4i5 ) 10 (( 10 ( r2 n3m4 n5 ) 10 (t 3rn4r5n )) 34mn 10

2 2
m

2 ((-1mm2 ( m22II3((m3m4m5 )) 10 1(mlm3 4mb )) 10 1( i )) 10 2 3 4mS ) 10 (( r3r4 )5 10

((m3In4ms ) 10 (( m14ff5 )) 10 1
rn 2r4r5 )) 10 2 3 4 ) 10

m
2

m
2

m
2

m
-2 A4 | (( m2m34 5 ) 10 | (( m34 5 10 (( 2 4n5 10 3 1 (( :4 10

_ (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3) If Ae =0, check whether sX = sy. If so, set KR = ky.
Otherwise (if sx > s ), scale ky by m y+.m..+2 m. and let
the result to be KR.

4) Compute kz = kx ± KR and set ez = ex, sZ = sX.
5) Find the mixed-radix digits cal, a2, .',an+, of kz

which are associated with the symmetric residue system ml,

m2 , mn+l1 If all the digits a(i= 1, 2, , n + 1) are zero,
set ez = 0, sz = 0.

6) Otherwise, denote by au the most significant nonzero
digit. If u = n + 1, scale kz by m,z+l and increase sz by 1. If
sz has reached n, set sz= 0 and increase ez by 1.

7) If u < n, multiply ky by HIzs=! fl+u+imi which can be
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read from the table by means of u and sZ, decrease ez by 1,
and increase sz by u. Then, if sz < n, return to Step 5). If sz >
n, after increasing ez by 1 and decreasing sz by n, return to
Step 5).

8) If u = n, check whether sz = 0. If so, kz has been already
normalized. If s, * 0, form kz - ((M/ms ) + 1) and find
the sign of the result through the mixed-radix conversion,
where ((M/ms3) + 1) is read from a memory. If the sign is
negative, multiply kz by msz and decrease sz by 1.

Thus we can get the desired result fl (X ± Y) = kzArzMszM.
Example 1: In the same residue system in Section IV,

suppose we add X-= 1398046M'M4 and Y = 1258463M1M2.
Examining these two numbers we find ex -ey = 0 and sX >
sY. The mantissa of Y must be scaled by m3m4. This gives

K ( 1258463 2880KR=(19X23 )R=80

Adding kx and KR, we get kz = 1400926, then we set ez = 1,
sz = 4. Replacing kz by (kz/m_)R and correcting the exponent
part, we get

k2 = 48308, e = 2, s = 0.

The desired result then is

fl (1398046M1 M4 + 1258463M1M2) = 48308M2Mo0.

Floating-Point Multiply Operation

Assume that X = kxMeXMsx and Y = k1MeyMsy are the
multiplicand and the multiplier, respectively, and that sX > s,.

1) Perform the base-extension operation on kx and ky and
find the symmetric residue digits /kxlm i and /ky/m i (i = n +
2,n+3, , n+p).

2) Set ez = ex + ey, sz =sx.
3) If sy = 0, compute kz = kxky, and if sy = 1, compute

kz = kxkyml, where ml is fetched out from a memory.
Otherwise, increase ez by 1, compute the product kxky and
scale this result by m3 +1msY+2 -- mn to get kz =
(kxky/(ms +IMsy8+2 nn)R -

4) Find the mixed-radix digits a1, a2, an+p of k . If all
the digits cxi are zero, set ez= 0, sz = 0. Otherwise denote by
au the most significant nonzero digit.

5) If it > n + 2, replace kz by (kz/IlY=z2+lnmi)R and
increase sz by u - n, where i is a modulo n number when i>
n. If sz = n, set s to zero and increase ez by 1. Return to Step
4).

6) If u = n + 1, replace kz by (kIc/m22+1 )R and increase sz
by 1. If sz = n, set sz to zero and increase ez by 1. Compute
Ikz -I(M - 1) and find the sign of this result by means of
the mixed-radix conversion, where f(M - 1) is fetched out
from a memory. If the sign is positive, replace kz by
(kz/msz+l )R and increase sz by 1. If sz = n, set sz to zero and
increase ez by 1.

Thus we can get the desired result fl (X X Y) = kIMezM22.

Example 2: In the preceding residue system, suppose we
multiply X = 310418MAM4 = fl (2.99792 X 1010) by Y=
1141783M-5MO = fl (6.6256 X 10-2 7).

First, we set e =0+(-5)=- 5,s =4. Sinces =0,

k = k k = 354429995294.
z x y

We can easily know that the value of u is 10. Hence, scaling kz
by M, we have kz = 126549, ez =-4, sz = 4. This mantissa is
in the normalized form. Thus we have

fl (310418AfM4 X 1141783M-5MO) = 126549M-4M4.

Floating-Point Divide Operation

Assume that X = kXMeXMSx and Y= kyMeyM3y are the
dividend and divisor, respectively.

1) Perform the base extension on kx and ky and find the
symmetric residue digits /kx/l and /ky,/m(i= n + 2, n +
3, , n + p).

2) Multiply kx by A, which can be read from a memory by
means ofsX and sy, and set ez = ex-ey- 1, sz = S -s.

3) If sX < sy, decrease ez by 1 and increase sz by n.
4) Compute kz = (kXA/ky)R (check if k,y = 0; if so,

division is not defined).
Hereafter, follow from Step 4) to Step 6) in the multiply

algorithm.
Example 3: Let

X= 126549M-4M4

Y= 87955M-4M4 = fl (1.38054 X 10-16).

Then, since sX = sy= 4,A =M.

ez -4-(-4)-1=-1, sz2= 0.

kI= ( A) =4029674.

The subscript a for 4029674 is 6. Hence, scaling kz by ml, we
have kz = 309975, ez =-1 sz = 1. Thus we have

fl (126549M-4M4 /(87955M-4M4)) = 309975M-'Ml.

VI. CONCLUSION

A new residue floating-point number expression and
arithmetic algorithms based on it have been proposed.

The main advantage of the residue system is that in
addition, subtraction, and multiplication any particular digit
of the result is dependent only on the corresponding operand
digits. This property eliminates carries from digit to digit for
all three arithmetic operations previously mentioned and
removes the need for partial product formation in
multiplication. In contrast to conventional digital systems,
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these three operations can be executed in the same time as
required for an addition operation, while the following
operations have been criticized as awkward in residue
computers: detecting sign and the occurrence of overflow,
relative-magnitude comparison of two numbers, extending the
range of the number system, and shifting the operand.

For residue arithmetic, the use of matrix units is most
attractive for implementing addition, subtraction, and
multiplication modulo mi. This method of implementation has
the advantage of the absence of carries inside as well as among
residue digits. However, a disadvantage arises when
mechanizing the matrices. In general, I-out-of-mi coding is
used to drive the matrix; therefore, the number of components
required for each matrix is large. The use of the symmetric
residue notation permits folding the arithmetic matrices,
which results in a decrease in matrix component. A desirable
form of logical implementation would be the use of the
arithmetic matrices realized with LSI techniques. Such matrix
units would give extremely high speed to the three residue
operations.

The proposed expression is basically different from the
other residue floating-point number expression. It represents a
residue floating-point number as an integer multiplied by a
product of the moduli. As a result the newly proposed
expression has the advantage of efficient application of residue
interacting operations to the floating-point arithmetics. These
interacting operations are split into base extension, scaling,
and mixed-radix conversion and are closely connected with
conventional residue arithmetic operations. There is much
possibility of this advantage being regarded conversely as
disadvantage because these interacting operations are usually
taken as time consuming. The proposed algorithms have the
obvious advantage of entire performance of multiplication and
division as well as addition and subtraction, under a certain
condition of the moduli used.

The algorithms make good use of the interacting operations
which can cope with the awkward operations mentioned
previously. The main disadvantage of the residue interacting
operations is that these operations are relatively time
consuming because of the cascaded process used. This
disadvantage, however, would be little worth consideration
when the aforementioned LSI logic matrices are used, because
the residue interacting operations consist of residue addition,
subtraction, and multiplication.

Conversion before or after the computation will be
discussed in another paper under preparation.

The material of this paper forms an investigation of the
applicability of residue number system to the floating-point
arithmetics.

APPENDIX

Solution

Moduli 7 11 13 17

Residue representa-
tion ofX

Subtract cea

Multiply by / I1/ri

Subtract ax2

Multiply by /Al /m.I
Subtract 13

2 -5 2 -2
2 2 2

4 0 -4
-3 2 5

-1 0 -3
-1 -1

1 -2
6 -3

6 6
6

a1 = 2

a2 = -l

03 = 6

0

At this point, it should be apparent that the remaining
mixed-radix digit a4 must be zero. Hence the process can be
terminated. Thus we have

X= 6(7 X I1) + (-1)(7) + 2(l) = 457.

In the preceding, the quantity of the form /m is called
the multiplicative inverse of a mod mi. The quantity /-/m
exists if and only if (a, mi) = 1 and lalm/ i 0 and satisfies

mi- 1
- 6I-/

2 a mrn
< 2 and /t/lM. X a/mi= 1.

B. Example ofBase-Extension

Given the residue representation X =37 - 2,41 for the
base with moduli 7 and 11, find /X/1 3 and /X/l 7 .

Solution

Moduli 7 1 1 13 17

Residue representa-
tion of X

Subtract ail

Multiply by /7/rm i

Subtract a2

2 4 0 0 a,1=2
2 2 2

2 -2 -2
-3 2 5

5 -4 7 12 = 5
5 5

4 2

Then

A. Example ofMixed-Radix Conversion

For ml = 7,m2 = l1, m3 = 13, andm4 = 17, find the
symmetric mixed-radix digits ofX < ) 2, -5,2, -21.

/- X /X/l 3 + 4/13 = 0

/ X/X11 7+ 2/17 =0.
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Hence
I
X /X/l 3/13 =-4,

-X /X/I 7/17 =-2.

Consequently,

/X/ 3 =-2

/X/l 7 =3.

C Example ofScaling

For ml = 7, m2 =11, m3 = 13, an
6826 - {1, -5, 1, -8 1 by the scale fa
the result by Z.

Solution

Moduli

Residue representation ofX
Subtract/X/I1 =-5
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Multiply by /lA /m.

Subtract x/ /=--/8

Multiply by /'-m i

Enter 0 into missing columns
for extension of base
Subtract 2

Multiply by / 71/r

Subtract 5

-1 6 -3
2 6 -3

-2 -3
-1 5

-1 5
-2 -3

2 0 -2

-8

0

2 2 2

-2 -4 -2
-3 2 5

-5 5 7
5 5

1
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2

Then / X /Z/II + 1/1 I = 0 and /- X/Z/I 7 + 2/17 = 0.
Hence /Z/, = 4 and /Z/1 7 = 3. Therefore, the residue
representation of 6873/(11 X 17) -37 is 12,4,-2,3[.Note
that 6826/(11 X 17) - 36.503 and hence it was rounded to
37, the closest integer;rather than to 36.
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