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tive and can profit from the LSI advantages that iterativeness
implies.

REFERENCES
[1] T. G. Hallin and M. J. Flynn, "Pipelining of arithmetic functions,"IEEE Trans. Comput., vol. 0-21, pp. 880-886, Aug. 1972.
12] C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans.

Electron. Comput.,vol. EC-13,pp. 14-17, Feb. 1964.
[3] S. F. Anderson, J. G. Earle, R.E. Goldschmidt, and D. M. Powers,

"Floating-point execution unit," IBM J. Res. Develop., vol. 11, pp.
34-53, Jan. 1967.

[4] H. H. Guild, "Fullyiterative fast array for binary multiplication
and addition," Electron. Lett., vol. 5, p. 263, June 12, 1969.[5] J. Deverell, "Sequential generalized array," Electron. Lett., vol. 8,
pp. 9-10, Jan. 13, 1972.[6] J. Earle, "Latched carry-save adder," IBM Tech. Discl. Bull.,
vol. 7, pp. 909-910, Mar. 1965.

[7] T. G. Hallin, "Pipelining of arithmetic units," M.S. thesis, Dep.
Elec. Eng., NorthwesternUniversity, Evanston, Ill., 1970.

[8] D. P. Burton and D. R. Noaks, "High speediterative multiplier,"Electron. Lett., vol. 4, p. 262, June 28, 1968.
[91 J. Deverell, "The design of cellular arrays for arithmetic," Radio

Electron. Eng., vol. 44, pp. 21-26, Jan. 1974.

Parallel Multiplicative Algorithms for Some Elementary
Functions

P. W.BAKER

Abstract-This correspondence presents generalized higher radix
algorithms for some elementary functions which use fast parallel
m-bit multipliers where radix = 2m. These algorithms are exten-
sions of those iterative schemes which are based on multiplications
by (1 + 2-) and the use of prestored values of ln (1 +22- ) and
tair1(2-i). The particular functions under consideration are y/x,
yin11',y. exp (x), y + In (x), sin (x) and coo (x) [and hence tan (x)].
The extended algorithms rely on multiplication by (1 + di,i') where
di, 0<di r, is an r-bit integer. Using a simple selection procedure
for di, simulations show that p(radix r)digits of a function may be
generated, on the average, in less than p + 1 iterations.

Index Terms-Continued products and sums, digital arithmetic,
elementary functions, iterative algorithms, parallel r-bit multipliers.

I. INTRODUCTION

A considerable amount of research has been directed towards
refining a class of algorithms, based on continued product and sums,

for the generation of the elementary functions ylx, yix112, y - exp (x),
y + In (x), sin (x), and cos (x). Several publications [1 ]-[6] have
described algorithms for binary arithmetic. These schemes work in
radix 2 and require the operations of shifting, adding, and/or sub-
tracting and the recall of prestored constants in order to generate
1 bit of the required function per iteration. De Lugish [5] has
defined efficient algorithms which are based on a redundancy recod-
ing technique used in fast division schemes. This technique requires
a systematic 1-bit left shift of a partially converged result together
with two 4-bit comparisons to select a ternary digit for the next
iteration. This selection of digits reduces the average number of
shifts and full precision additions to aboutt of those required in the
conventional schemes [4].

Manuscript received March 27, 1973; revised October 7, 1974. This
work was supported by the Australian Research Grants Committee.
The author is with the Department of Computer Science, School of

Electrical Engineering, University of New South Wales, Kensington,
New South Wales, Australia.

Chen [6] uses a technique similar to skipping over zeros to gener-

ate some of the above mentioned algorithms in about one conven-

tional multiply time. One conventional multiply time is that taken
to multiply two n-bit numbers using an n-bit ripple adder with n

single bit multiplications and parallel additions. Recently, Ercegovac
[7] discussed a radix 16 digit by digit evaluation of quotients, loga-
rithms, and exponentials. Digits are selected from the symmetric
set {-10,-9,'*-,9,10j by a modified rounding procedure which
requires the inspection of 7 bits of a partially converged result. For
a given word length, Ercegovac has concluded[7] that these radix
16 algorithms will take abouti of the time required for the corre-

sponding De Lugish algorithms.
The radix 2 digit by digit methods are considerably faster than

polynomial approximation methods, when the multiplications re-
quired for the polynomial evaluations are executed in the conven-
tional manner described above (see[3] for a detailed discussion).
However, with the reduction in cost of medium scale integration
(MSI) chips, higher radix multipliers, which retire several bits of
multiplier per iteration, are economically feasible, even for small
scale computers. Such multipliers can be several times faster than
conventional multipliers, thereby allowing polynomial methods of
function evaluation to compete with radix 2 digit by digit methods.
Following the arguments in[3], the use of higher radix multipliers
to generate several bits per iteration in digit by digit methods
should allow these methods to stay ahead of polynomial evaluation.
This correspondence presents generalized higher radix algorithms
for the above mentioned functions which use a parallelm-bit multi-
plier where radix =2m. These higher radix algorithms generate m

bits of the result per iteration and offer almost the same increase in
speed over the conventional radix 2 algorithms as the higher radix
multipliers offer over the conventional radix 2 multipliers.

II. HIGHER RADIX MULTIPLIERS

This section will confine itself to examining multipliers for radices
which are an integral power of 2, namely,

r=2-m m=12,3 ,-.

An n-bit number where

n=pX m p integer

can be regarded as a p digitnu-mber in radix r = 2" where each digit
consists of r bits. An r-bit multiplier (BM), denoted by r BM is
defined as a combinational logic circuit which multiplies an n-bit
number by an r-bit number, n > r, to produce an n + r bit
product. For n = 17, the 40-ns Pezaris array multiplier [8] is a

17 BM. A practical realization of a general r BM could be formed
from a subset of the carry-save multiplier scheme proposed in [91.
The m BM would use m rows of n full adders connected in a cas-

caded carry-save scheme, terminated by a carry propagate adder.
In the simplest case a ripple adder would be used; but for faster
execution, carry-lookahead adders may be constructed using MSI
4-bit adders and carry-lookahead generators. These MSI chips are

currently available from several vendors.
A more compact scheme would make use of recently available

2 X 4 bit two's complement multipliers contained in one MSI
package [10]. The logic on the chip incorporates a multiplier recoder
and hence the number of rows of these devices required to form an

m BM is equal to the smallest integer greater than m/2. For example,
a 7 BM which would execute a 7 X n bit multiplication would re-

quire 4 rows, of packages. This 7 BM is illustrated in Fig. 1. In the
limiting case of very large n, n »> m (n -. co, m = 2 to 8), the delay
through this r BM will only be marginally slower than a 1 BM.
This can be seen by examining the carry propagation path in Fig. 1.

Sincen » rn,only portion

propagation

be taken for the vertical delays. It follows then that multiplication
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Fig. 1. A 7 BM which consists of 4 rows of 2-bit by 4-bit multiplier

chips.

of two n-bit numbers using an m BM will be almost m times faster
than multiplication using a 1 BM.

III. THE ALGORITHMS

To calculate Q = Y/X (1 < X < 1), where X, Y, and Q are
-n-bit words, Chen [6] multiplies X and Y by factors (1 + 2-i),
1 < i < n, such that X approaches unity and Y approaches Q with
an error c 2-n". The factors are so chosen to reduce a multiplication
to a shift and add sequence, the evaluation of Y/X requiring about
n such sequences. For the evaluation of Y + ln X and YeX, Chen
[6] uses a modification of Specker's method [4] which relies on
appropriate multiplications by (1 + 2-i) and the use of values of
In (1 + 2-i). Y/X1I2 is calculated by multiplying X by (1 + 2-i)2
and Y by (1 + 2-i). For evaluating sin X and cos X, Specker uses
complex multiplications by (1 + j2-i) and prestored values of
tan-' (2-i).
The following is an extension of these methods to radix r = 2m.

In what follows it will be assumed, unless otherwise stated, that
Y and X are normalized n-bit fractions which consist of p digits
radix 2", where p = n/m. The n bits do not include any guard digits
added to maintain accuracy.

It is convenient to introduce the following notation.
A "mature" digit in radix r = 2" is defined as one whose value is

r - 1. In binary, this means that the digit consists of m "ones," i.e.,

111..11 Ar-1.

m "ones"
An "equivocal" digit is one whose value is unknown.

Since the evaluation of Y/X is representative of the class of
algorithms, it will be treated here in some detail.

A. Algorithm for Y/X

The following transformation is used:

Q = Y/X =
Y. i i > 1.
X.llf,'

The fi are selected to be of the form (1 + di-k), di E f 0,1,2,- -,
r - 1 1 so that multiplication by fi can be reduced to a shift and
m-bit multiplication sequence. If

XIIfi-51
then

Y-Ifif-sQ.
The multiplicative normalization of X, and the associated genera-
tion of Q, are performed recursively as follows.

(1)

Assume that Xi has k - 1 leading mature digits, i.e.,

k - 1 mature digits

Xi = 0.111- 11 111+a 1+ .. 111r-11 xxxxx+ ...

= 1 -r-(k-l) + akr-k + ak+17r-(k+1) + ** (4)

where x denotes an equivocal bit and ak, ak+l, etc., are equivocal
m-bit digits. It is well known [11] that the number of leading ones
in Xi gives a measure of significance for Y,. Hence Yi will have about
(k - 1) *m correct leading bits. di, i > 1 is now selected as

di = r - ak -1

= one's complement of ak.

With this selection of di, the kth digit of Xi+,, after performing (2),
may be mature or it may equal r - 2, this latter condition being
called undershoot. The reader may verify the possibility of under-
shoot by performing (2) for the worst case, ak = ak+1 = *- = 0
and, say, r = 16. This verification is more easily facilitated by writ-
ing Xir-k as

m* (k - 1) - 1 zeros
X,r-k = 0.000..-00 1 000.-00 1 00...

m*k - 1 zeros

where 1 = -1. Clearly, a necessary condition for undershoot is
that a+ = ak+2 =*- = a2k-2 = 0. Hence the probability of under-
shoot decreases with increasing k. If no undershoot occurs, k is
incremented by one. If undershoot occurs, the recursion on k is
repeated to mature the kth digit of Xi+2. As with similar schemes,
[11], [12], the first multiplier di must be chosen by table lookup,
i.e., di = f(X). When k = p + 1,

Q Yi..t. (5)

At the completion of Algorithm DIV, the error bound of the normal-
ized X..8t is

e < r-P.

It follows that the maximum absolute error in Ylagt is

eN < 2.1 eD = 2-n+.
The lookup table for di will have as its input at least the m most
significant bits of X after its leading 1 (X > (0.1000- * )2). Assume
that the input to the table is, say, the 6 most significant bits after
the leading one. The entry di for a given input, say x2x3x4x5x6x7, may
be determined as follows.

Form X1 = 0.1x2x3x4x5x6x71111-.

Algorithm DIV:

Xi = X, Yi = Y, i = 1, k = 1

Xi+, = Xi (1 + dr-1r)

= Xi + djXir-*, k > 1

Yi+1 = Yi(1 + d,-k).

The correct entry will be the largest integer value of b for which

X2= X(1 + b64-')

is less than 1.
Algorithm DIV was simulated, with Y= 1, for radices 16, 32,

(2) 64, and 128 in order to estimate the number of undershoots that
might occur after a large number of trials. 4000 trials were made

(3) for two separate cases. In the first, the values of X were varied

i ---A
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TABLE I

Number of Undershoots
Method of

Radix Selecting X 1 2 3 Total

r = 16 incremental 1022 3 0 1028
random 754 1 0 756

r = 32 incremental 849 7 0 853
random 861 0 0 861

r = 64 incremental 1005 1 0 1007
random 1001 1 0 1003

r = 128 incremental 1362 3 0 1368
random 1337 1 0 1339

incrementally from 0.5 to almost 1 by adding 0.000124937 to the
last value of X. In the second case, the values of X were chosen from
the interval [E,1) using a random number generator. The results
of these simulations are given in Table I. In all cases, the input to
the lookup table consisted of the 8 bits after the leading 1 of X.
For r = 128 and uniform incremental selection of X, Table I

shows that out of 4000 examples, 1362 of them had one undershoot,
3 examples had 2 undershoots and no examples had 3 or more under-
shoots. According to Table I then, the generation of p digits of Q
will take, on the average, less than p + 0.4 iterations. For r = 128,
the number of undershoots would be reduced if a larger lookup
table for di were used.

B. Algorithm for Y + In X

Following Specker [4], we use the transformation

ln X = ln (Xnfi) - lnfi.
If

Xllfi -+ 1
then

Y - 2 Infi -* Y + In X.

Argument range; 0.5 < X < 1, 0.5 < Y < 1. Y + In X may be
generated by Algorithm DIV with (3) replaced by (6);

Yil = Yi + Lk(di) (6)

where L (di) = two's complement of ln (1 + dir-k), and (5) re-
placed by (7);

Y + ln X Y1.,t. (7)

Equation (6) will require access to precomputed values of Lk(di)
for di E {0,1,- - *,r-l1 and I < k < p/2 + 1. For k > p/2 + 1,
L (di) - two's complement of dirk.

If the logarithmic constants are stored to q bits precision in a
read-only memory (ROM), the maximum absolute error in Yiast
will be

eL < ln (1 - 2n) + p.2q < 2n+1 + p.2-q.

C. Algorithm for Y.exp (X)

Following Specker [4], we use the transformation

Y-exp (X) -Y(IIIf) [exp (X - 2Znfi)].

If
X - 2lnf,-0

then

Y - llfi --+Y-exp (X).
Argument range: 0 < X < ln 2.
The additive normalization of X, and the associated generation

of Y exp (X), are performed recursively as follows.

Algorithm EXP:

X1 = X, Yi= Y, i =l k = 1, di = f(X)

Xi+= X- In (1 + dr-k)

(8)

(9)

Assume that Xi has had its (k - 1) leading digits liquidated, i.e.,

Xi= bkr k + bk+lrr(k+l) ...

where bk, bk+1, etc., are equivocal m-bit digits. di, i > 1 is now
selected as

di= bk.

With this selection of di, the kth digit of Xi+,, after performing (8),
may be 0 or 1, the latter condition being called overflow. Overflow
is possible because of the second term in the expansion

- ln (1 + dir-k) = dir-k + (d.2/2)r-* e

and is corrected by a repetition on that value of k. As with Algorithm
DIV, di must be chosen by table lookup. When k = p + 1,

Y-exp (X) - Ylast

where the maximum absolute error in YIM.t < 2-n+1. After 4000
simulated examples, the number of overflows were less than the
number of undershoots occurring in the generation of Y/X.
To generate Y exp (-U), 0 < U < ln 2, we use

Y exp (-U) = iY exp (In2 - U)

= Y-exp (X), 0 < X < ln2.

D. Algorithm for Square Root

Following Chen [6], we use the transformation:

Y/X112 =

If

X llf 2-1,

then

Y-IIfi -* Y/X112.

Argument range: i < X < 1. X112 is computed by setting Y = X.
The generation of Y/X112 is performed recursively as

X =X, y1 = Y

Xi+, = Xi(1 + dir-k)

Xi+1 = Xi+, (1 + dirk), Y+ = Y, (1 + dir-k)

with

Y/X1/2 -Ya

=Xi+ Lk(di), k > 1

Yi+l = Yi(1 + dir-).
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Assume that Xi has k - 2 mature leading digits and that its
(k- 1)st digit is at least r -2, i.e.,

Xi =0.111 - 11 ... 111-*11 lll l'_x xx_x_ lx x.. (10)

= 1 - 2r-(k;1) + bklr-(k-l) + ekr- + ek+lr-(k+l) + ...

where bk-1 is an equivocal bit and ek, ek+,, etc., are equivocal m-bit
digits. di is now selected as

db r + ekl)

where FZI means integer part of Z and (.)* denotes the one's
complement of (-). di is the one's complement of the bits encom-
passed by the dashed rectangle in .(10). With di thus selected, the
kth digit of Xi+,, r > 8, will have a value between r - 5 and r - 1.
If its value is less than r - 2, undershoot has occurred and is cor-
rected by a recursion on that same value of k.
The maximum absolute error in Yla8t < 2-n+I.
After 4000 simulated examples, it was estimated that the genera-

tion of p digits of YX1"2 will take, on the average, less than p + 0.7
iterations.

E. Algorithm for Y*sin (X), Y.cos (X) [and tan (X)]

Following Specker, we use the transformation:

exp ( jX) =311(1 + jdir-k) exp I j[X - tan-' (dir-k)]}

where

/3 =fII (1 + dsr-2)-1/2
= exp {-3 In (1 + di2r-2i) }.

If
X Z tan-' (dir-k) -_> 0,

then
Im {o*II(1 +jdir-k) -*sinX

and
Re f#.11(I + jd,r-k)} -cOsX

where Im {I } denotes imaginary part of I- I and Re
real part of {- }. Argument range: 0.< X < tan-' (1).
Assume that Xi has the form

Xi = bkr- + bk+lr-k+l +

The generation of Y.sin (X), Y.cos (X), or tan (X)
described in the following steps.

Algorithm SC:

1) U, = Y, V1 = Y, XI = X, W1 = 0,
di = f(X).

Loop 2) if (k = p + 1) go to Step 9a) etc.
3) Xi+, = X- tan-' (dir-k) .

3a) U,i+ = Ui - Vidirk.
3b)' Vj±, = V. + U,dirt.
3c) Wj+j = W - In (1 + di2r-2k).
4) If (Xi+ > r-) go to Step 6).
5) k = k + 1.

6) i= i + 1.
7) di = bk.

8) Go to Step 2).
9a) tan (X) f Vi,at/Uiast.
9b) Y-sin (X) 2t Vi,,t exp (-W,..t) .

9C) Y-cos (X) - Uias,t-exp (-Wlast)-

Step 3c) will require fast access to the precomput
ln (1 + d,2r-2k) and Steps 9b) and 9c) will require

of the Y.exp (X) algorithm.
Maximum absolute error for Y cos (X) or Y*sin

Step 3c), together with Steps 9b) and 9c), results

algorithm than the normal one which divides Uiast or V1a8t by
(U2iast-+ V2'a8t) 1/2. The number of overflows [Step 4) ] in generating
Ul.at and Vi..t, by virtue of the series expansion of tan-' (dir-k),
will be less than those occurring in Algorithm EXP.

IV. DISCUSSION

The radix 2m-implementation of the Y/X, Y/X"/2 or sin/cosX
algorithms will be most efficient when two m BM's, together with
variable shifting networks are used in parallel. Observe that the
index k occurring in the algorithms would be stored and incremented
in a physically existing counter. In practice, the convergent Xi may
be left-shifted by m bits every time k is incremented so that the
selection of di may remain dependent on the same register positions
(cf., [5] and [7]).
The Y.exp (X), sin/cos X and Y + In X algorithms will require

an extra parallel adder and ROM's containing the prestored con-
stants Lk(di), -tan-' (d;r-k) and -2 In (1 + di2r-2k). Algorithm
SC will require yet another adder to form the W;.
The error bounds quoted above do not take into account rounding

errors which occur during the iterations on i. In order to obtain
an answer with p correct digits in radix 2m, an extra log2 ( (p + 1) *m)
guard digits ought to be used and k should be taken to p + 2 with
the final result rounded to p digits.
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A Note on Base -2 Arithmetic Logic

C. K. YUEN

Abstract-Circuits for performing arithmetic operations using
base -2 representations are considered. Study of the counting
process leads to a negative binary up-down counter and new simple
methods for positive-negative base conversions. The advantage of
employing carry-borrow rather than carry-only during additions is
pointed out. Certain special features of negation, arithmetic shift,

led cornstants multiplication, and division in base -2 are described.
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