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SPEEDING UP AN 
OVERRELAXATION METHOD 
OF DIVISION IN RADIX.2 n 
MACHINE 

HRohisa Asai and C. K. Cheng 
Christopher Newport College 

ABSTRACT: For normalized 
floating point division, digital 
computers can take advantage of a 
division process that uses an 
iterative multiplying operation 
instead of repeated sublractions. An 
improvement of this division 
process by using accelerating 
constants in the overrelaxation has 
previously been proposed. 
Multiplication by a chosen 
accelerating constant accelerates 
the process of generating accurate 
digits of a quotient in division. We 
propose a further improvement by 
generalizing the accelerating 
constants in the overrelaxation 
method. Two benefits resulting 
from this improvement promise to 
yield faster division in digital 
computers. 

1. INTRODUCTION 
It is well known that the division process can be performed 
using multiplication instead of subtraction as an iterative op- 
eration. This type of division is called the Wilkes--Harvard 
(W-H) scheme [6, 9, 13, 15, 20]. Because this type of iterative 
division allows the use of very fast multiplier devices, the 
W-H scheme may become a prevailing division process in 
commercial computer systems [2, 15, 18]. 

When the reciprocal of a divisor with a certain bit length is 
computed with the W-H scheme, a definite number of itera- 
tive multiplications must be performed to obtain a specified 
accuracy. A table look-up technique [2, 7, 10, 13, 17] is pro- 
posed for defining the accelerations to be used in the W-H 
scheme division process, although the hardware costs of using 
any table look-up technique must be kept in mind. 

An accelerating method for the W-H scheme division 
method using overrelaxation constants chosen from a table [5] 
has previously been proposed. This method guarantees a 
small quantity q in the form of divisor B = D'(1 + a/D') with 
at most four successive applications of the overrelaxation con- 
stants [3, 5], where D' denotes a power of a radix. The meth- 
od's usefulness is demonstrated in the computation of the 
reciprocal using 32-bit arithmetic [3]. 

We have attempted a further low-cost improvement of divi- 
sion through this method by considering a continuity of the 
two ranges of the overrelaxation constants, D and D ~, where 
D is a radix. This extended range of the overrelaxation con- 
stants in a radix-2" machine is a generalization of the acceler- 
ating constants in the method. The generalized process results 
in two benefits: (1) a smaller obtainable quantity q that is less 
than or equal to 1/(2rod - 3) in the worst case, where m = 1, 
2, 2 ~, 2:', . . . .  D, and (2) a reduction in the use of the overre- 
laxation constants to at most three successive applications. In 
Sec. 2 we summarize the overrelaxation method. In Sec. 3 we 
present the speeding-up generalization. 

2. THE ACCELERATION METHOD 
A division A/B may be evaluated through the power series 
[4, 5]: 
A/B = A(1 - P/D)(1 + W/D~ 

(1 + lm/EP)(1 + Pa/D") . . . / D  (2.1) 

where D is the radix (I D I > 1), B = D + P and I P/D I < 1. 
The power series involves no division operation (1/D" is a 
shift). The ratio I P/D I must be small for fast convergence. 

Let the divisor B be in the domain [D", D"+l), where D and 
D" are the base radix and pseudoradix, respectively. Then 
B = D" + q., where q,, = P for P > 0 and qe = D ''+1 - D n + P 
for P < 0. When P = 0, A/B is reduced to a shift operation. 
The ratio P,/D" to be used in Ecl. (2.1) is represented by a 
function of q: 

P/D" = f~(q) = q/D" for P > 0 (2.2.a) 
p/D.+l = _f.,(q) = _[/~+1 

- (D" + q ) ] / D  "+' for P < 0 (2.2.b) 
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We introduce an overrelaxation parameter  a in Eq. (2.2.b) as 
follows: 

-gCq, a) = - [ D  . . . . .  aCD" + q ) l /D  ''+' (2.3) 

By imposing -g(q+, a + 1) = g(q+, a) to determine the value of 
q÷, which is the boundary  of subdivisions S,, for a = 1, 2, 3, 
. . . .  D - 1, the following results are obtained: 

q+(a) = (2D - 2a - 1 ) D " / ( 2 a  + 1) (2.4) 

and 

S~: ((2D - 3)D' /3 ,  D'(D - 1)] (2.5.a) 
S~,: ((21) - 2a - 1 ) O ' / ( 2 a  + 1), (20 - 2a + 1 ) D ' /  

(2a - 1)] for a = 2, 3, 4 . . . . .  D - 1 (2.5.b) 
S~ [0, D ' / ( 2 D  - 1)] (2.5.c) 

where  D '  denotes an appropriate pseudoradix.  
By substituting Eq. (2.4) into Eq. (2.3), the local maxima  of 

g(q, a) in the subdivisions (i.e., the m a x i m u m  ratios of P/D')  
a r e  

- g ( q + ( a ) , a ) = l / ( 2 a + l ) a t a = l ,  2 , 3  . . . . .  D - 1  (2.6) 

Figure I shows the area near  the boundary  between the 
subdivisions S,, and S,,+1. 

An iterative contracting map  has been introduced by start- 
ing with  q. and recursively applying q~÷~ = h(q~, a~) = -g(qi ,  a~ 
+ 1)D" [5]. The movement  of q. through the contracting map- 
ping results in the subdivision S,- , ,  where  the smallest ratio 
P /D' ,  that is, a~= g(q*, D - 1) in the domain  [D'% D"÷~+'), is 
obtained with i denoting the number  of iterations. The q* 
denotes the very last q value in the recursive mapp ing  we 
can find this smallest ratio from Eq. (2.6) wi th  a = D - 2. 

a ~J~'~ ~ -  j Pa rame te r  ( m a  ÷ j . t / m  

/ - ~ - . . . ' \  \ ~ .  "t~-----~---.~ 

" -  - ~  ~ " \  \ - .  I ~  ""b/l:2a+/b ".,. " -  ~ "- \ j .  . ~4.t ~-,, - . .  
\ ~ , + ~  ... "~ - - -#a+~  ......... ~ i  ~ .......... ~.~ 

"-~ t/(~a+3) - z,4 ) 

" ,  N .  - \  
(sa~;~y~'~,3 "~ "~ ~.~ "q. ~ . ~  ~ \ 

. .¢, ,o. ,)  , " , "  4 , .  " 

' , \ i  \ 1  - l \  \ 
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e 4- I ) ~ 2  
I S-subcl ivisio n 

m = /  I / 
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subd iv i s i on  

FIGURE 1. Is-Subdivisions and an Enlarged Boundary of Sulxivisim~ 

3. GENERALIZED PROCESS OF THE METHOD 
A generalized parameter  (ma + j ) / m  is proposed for the over- 
relaxation where  m = 1, 2, 22, 23 . . . . .  D and j is an integer 
m > j  ~ O. When  m = 1 a n d j  = 0, or m = l a n d j  = 1, the 
parameter  (ma + j ) / m  becomes a or a + 1, respectively. This 
generalization thus includes the method discussed in Sec. 2. 
Moreover, the multiplication m a  and the division 1 / m  of the 
new parameter  can be accomplished only by digit shift opera- 
tions. Therefore, the use of the generalized parameter  in the 
overrelaxation does not increase the number  of multiplica- 
tions in computing the reciprocal of divisor B. 

Let us consider a boundary  of subdivisions defined by Eqs. 
(2.5). By taking the average of parameters  a and a + 1 (i.e., (2a 
+ 1)/2), we find that the function g(q, (2a + 1)/2) intersects 
the abscissa at the point marked  by M~.I, shown in Figure 1. 
Furthermore,  the intersecting point found fxom -g(q*,  a + 1) 
= g(q*, a) is the boundary  be tween subdivisions So and So.1. 
The number  of subdivision intervals increases f ~ m  D to 
2D - 1 when  we adopt the averaged parameter.  A new 
narrower  interval like this is called a sub-subdivision. The 
lower /uppe r  boundaries of a sub-subdivision are 

qi*,(a, j, m) = (2m(O - a) - 2 j  - 1 ) O " / ( 2 m a  + 2 j  + 1) (3.1) 

and 

q~(a, j, m) = (2m(D - a) - 2 j  + 1 ) D " / ( 2 m a  + 2j  - 1) (3.2) 

from the conditions -g(q~., (ma + j + 1)/m) = g(q~, (ma + j ) /  
m) and -g(q~,  (ma + j ) /m)  = g(q~, (ma + j - 1)/m), respec- 
tively, where  m = 2 ~ a n d  m - 1 ~ j ~ 0 for a = 1, 2, 3 . . . . .  
D - 1 where  I = 1. There is, however,  an exception in that 
the upper  boundary  of $1 is D'(D - 1). The leftmost sub- 
subdivision (a = D and j = 0) is bounded  by [0, D ' /  
(2roD - 1)]. We shall abbreviate sub-subdivision as s-subdivi- 
sion (1 = 1) and sub-sub-subdivision as 2s-subdivision (1 = 2), 
. . . .  and a 2Lsubdivided sub- . . .  sub-subdivision as Is-subdivi- 
sion. Thus, the domain [0, D'(D - 1)] of q is divided into the 
following Is-subdivisions: 

S, : ((2m(O - 1) - 1 ) D " / ( 2 m  + 1), D"(D - 1)] 
S(,..+i)/.,: ((2m(D - a) - 2 j  - 1 ) D " / ( 2 m a  + 2 j  + 1), 

(2m(D - a) - 2 j  + 1 ) O " / ( 2 m a  + 2 j  - 1)] 
f o r a  = 1 , 2 ,  3 . . . . .  D - l a n d  
j = 0 , 1 , 2  . . . . .  m - 1  

S ,  : [0, D " / ( 2 m D  - 1)] 
(3.3) 

with the parameter  (ma + j ) / m  = (2~a + j ) / 2  s. The boundary  
q~a ,  j, m) is depicted in Figure 1 with points marked  by 
M'.,',,2i÷l, where  m = 1 and j = 0 for a subdivision; m = 2 and 
j = 0, 1 for an s-subdivision; and m = 4 and j = O, 1, 2, 3 for a 
2s-subdivision. 

Next, consider the mapped value of q computed from 
g(q, (ma + j ) / m ) .  By substituting (3.2) into g(q, (ma + j ) / m ) ,  
we obtain the value of q as follows: 

q = -g (q~(a ,  j, m), (ma  + j ) / m )  = 1 / ( 2 m a  + 2j  - 1) (3.4) 

As (3.4) shows, the value of q decreases as the value of m 
increases. The worst case of qf for a fixed value of m is 
obtainable as 

Iq~l = l l / ( 2 m D  - 3)J -- 11/(2 '+ 'D - 3)l (3.5) 

by setting a = D - 1 and j = m - 1 in (3.4). 

The recursive application of %+, = h(q~, (ma~ + j~)/m) = 
-g(qi, (mai + jj + 1 ) /m)D"  by starting with the initial value qo 
in S~,,,~÷~/,, assures the movement  of successive mapping 
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images of q,, into the Is-subdivision S~,,~>_~)/., (when a = D - 1 
and j = m - 1) or S~ As soon as the last contracting image q* 
is reached in S[,,~)-w,, or S~ the smallest quanti ty ql is evalu- 
ated from q j =  -g(q*, (mD - 1)/m) or q~ = q*, depending on 
whether  it has been reached in S,,~)-,/m or S., respectively. 

We have been discussing the first benefit of the generalized 
method. The second benefit is described below. Consider the 
difference between two values of q computed from g(q, (2ma 
4- 2j 4- 1)/2m) and g(q, (ma 4- j ) /m).  The difference is (D" 4- 
q) /2mD "+~, which can be seen in Figure I as 1/(4a 4- 3) and 
is indicated by a brace when  m = 2 and j = 1 are used. From 
this, we may introduce a modified mapping function hm(q, a) 
where the suffix m denotes the modification: 

hm(q, (ma + j ) /m) = -g(q, (ma + j ) /m)O ~ 

if this is positive, or 

h,,(q, (ma 4- j ) /m) = -g(q, (2ma 4- 2j 4- 1)/2m)D" 
= -g(q, (ma 4- j ) /m)D ~ 4- (D ° 4- q ) /2mD 

if -g(q, (ma + j ) /m)  results in a negative number .  

The mappings by h,,,(q, (ma 4- j ) /m) for the cases m = 2 
and j = 1, and m = 2 and j = 0 are indicated in Figure I by 
the shaded triangles. The largest mapped values for each case 
occur at the points of M'.,'.~ and M~.~ on the abscissa. Since h~(q, 
(ma 4- j ) /m) is a piecewise linear mapping, it is sufficient to 
consider only the largest possible mapped value of q that 
happens to be the upper boundary  of each Is-subdivision ob- 
tained through Eq. (3.2). 

Next, we demonstrate that the n u m b e r  of recursive appli- 
cations for the worst case is three. By taking the worst initial 
q. = qS(a, j, m), the q~ value is as follows: 

ql = hm(q,,, (mao 4- jo)/m) = D"/ (2mao 4- 2jo - 1) (3.6) 

where  q. belongs in S(,,~+~)/m initially. It is obvious that if ao = 
1 and j. = O, q~ is greater than the upper boundary  (3D"/(2mD 
- 3) obtained by substituting a = D - 1 and j = m - 1 in 
(3.3)) of the Is-subdivision S[,,~)=w,,. So another contraction 
mapping of h,,(q~, (ma~ 4- jO/m) is required to obtain a smaller 
value. 

First, we must  determine the corresponding al and jl for 
the value q~ from the following inequalities obtained from the 
Is-subdivision boundaries in Eq. (3.3): 

(2m(D - aO - 2j, - 1)D"/(2ma~ 4- 2j~ 4- 1) 
< D"/(2ma8 4- 2]o - 1) 
~< (2m(D - a~) - 2j~ 4- 1)D"/(2mal  4- 2jl - 1). 

After a simple computation, we obtain 

ma,  4- j~ -- L ((2mO 4- 1)(2mao 
+ 2jo - 1) + 1) /(4mao + 4jo) J (3.7) 

where  LBJ denotes an integer in the range B - 1 < LRJ ~< R, 
and B is a real number .  

Next, by using the value q~ and by determining al and j~ 
from the inequalities, B - 1 < L R J ~< R, the interval bound  
of q2 is determined as follows: 

q2 = h.,(q~, (ma~ + j~)/m) ~< 
(ma,) + jo)D"/(2mao + 2jo - 1)mD (3.8) 

and 

q2 > - ( m ~ )  4- j ,))D"/(mD(2mao 4- 2jo - 1)). (3.9) 

The existence of the interval bound  in ,%,,-~)/m or S.  is proved 
in the Appendix. 

After the second contraction mapping of hm(ql, al), the 

value q2 exists in S~m~-W,,, or So (see the Appendix). Then,  the 
final value qj is computed as follows: 

IqJl = I-g(q2, (mD - 1) /m) l  < 11~(2roD - 3)1 (3.10) 

Here is an  example of the generalized process. Let A = 1 be 
a dividend and B = 54, a divisor in decimal notation. By 
taking the base radix D = 8 = 108 and n = 1, the value of P is 
found to be 56. as follows: B = D" + P = 54~o = 66.. All 
computation in the example is carried out in octal with 
m = 2 by using the s-subdivision shown in Table I as com- 
puted from (3.3). 

Step 1. Since B = 10 + 56, q,) = 56. From Table I and the 
value qo/D" = 56/10 = 5.6, we find a() = I and  jo = 0 in  the 
s-subdivision. Set i = 0 and c~ = 1. 

Step 2. Since q. is not in Su)-~)/2 nor in SD, go to the next  
step. 

Step 3. Compute 

q~ = - { D  "+'*~ - ((4a,)+ 2j ,  + 1)/4)(D "÷~ + qo)}/D 
= -{100  - (5/4)(10 4- 56)] /10 = 34 /100  = 0.34. 

Since q. (=56) is less than the root, 7.0, of the s-subdivision as 
shown in Table I (q~ = -g(qo, (ma() + jo)/m) < 0), the quanti ty 
(D ''÷~ 4- q~)/2mD is added to q~, namely, the acceleration con- 
stant (2ma~ 4- 2j~ 4- 1)/2m is used in the q~+~ and a (=a(2mao 4- 
2j,) + 1)/2m = 1 x (5/4) = 5/4) computations. Increase the 
counter  i by one, i = i 4- 1 = 0 4- 1 = 1. 

Step 4. Now the value q~/D" becomes q l / D  ~ = 0.34/10 = 
0.034. By searching the table, we find that q~ is in the s- 
subdivision with a~ = D - 1 and h = 1. Since ql is now in 
~,,,~)-w,,- go to step 5. 

Step 5. Compute the final value of aj: 

q; -- - {D  "+'+' - ((2a~ 4-/~)/2) 
.(D "+' + q,)}/D "+'+' 

= - ( 1 0 0 0  - ( 1 7 / 2 ) ( 1 0 0  4- 3.4))/1000 
= - 5 6 / 1 0 "  

and  

a = a(2a~ + j~)/2 = (5/4)(17/2)  = 113/10.  

Step 6. Compute the power series: 

a = a / (1  + qj)D "+~÷~ = a(1 - q;)(1 + ql 2) 
• (1 + qff)(1 + q~) . . . / D  "÷'÷~ 

= (113/10)(1 + 56/104)(1 + 562/10 a) 
• (1 + 564/10"~)(1 + 568/1032) . . - / 1 0 3  

= 1136572(1 + 562/108)(1 + 564/10 TM) 
• (I + 568/10 '~2) . . - / 1 0 8  

= 113664113422150(1 + 564/10 TM) 
• (1 + 5 6 " / 1 0  '~2) . - - / 1 0  TM 

= 0.011366411366411365336206 
• . .  (1 + 568/1032) . . - .  

Comparing the real quotient, 1/66" = 0.0113664, with the 
approximate reciprocal, we find the results accurate up to 9 
or 17 digits w h e n  the terms of the power series are evaluated 
up to a~ or ~4, respectively. 

If a parallel process provides the remainder  of A,/B where  A 
> B, then the process is useful in integer division. The parallel 
process involves successive applications of Homer 's  scheme 
on the polynomial form ( . . .  (AmP + A,,-OP + . . .  + A0P + 
A., where  Ai for i = 0, 1, 2 . . . . .  m are digits of A = ( . . .  (Am/)' 
+ A,,,-0D' + --- + AOD' + A~, and P = D '  - B [4], and the 
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Table I. S-Subdivision Intervals with D" = D = 10s and m = 2. 

S-subdivision Lower Upper Root of 
Number boundary boundary g(q,(ma+j)/m) = 0 

a j in octal in octal in S-subdivision 

1 0 5.31463 . . .  7.00000... 
1 1 3.44444... 5.31463... 
2 0 2.43434... 3.44444... 
2 1 1.72135.:. 2.43434.,. 
3 0 1.35423... 1.72135.,. 
3 1 1.10421 . . .  1.35423... 
4 0 0.703607 .. 1.10421... 
4 1 0.536241 .. 0.703607. 
5 0 0.414141 . .  0.536241. 
5 1 0.310232 .. 0.414141. 
6 0 0.217270 .. 0.310232. 
6 1 0.136641 .. 0.217270. 
7 0 0.0647562. 0.136641. 
7 1 0.0204102. 0.0647562 
8 0 0.00000... 0.0204102 

7.00000... 
4.25252... 
3.00000... 
2.14614. 
1.52525. 
1.22222. 
1.00000. 
0.616161 
0.463146 
0.350350 
0.262525 
0.166116 
0.111111 

Not Applicable 
Not Ap~icable 

applications continue on the evaluated result of Homer 's  
scheme again and again unti l  the very last result becomes less 
than D'.  Suppose A = 10000, in the example where P = 1 2 8  

and D '  = D 2 = 100,. A computation is shown below. The first 
and second applications of Homer 's  scheme result in 

(1 × P + 00)P + 00 = (1 × 12) × 12 -- 144 and 1 × 12 + 44 = 56. 

Then  the last result 56 is less than 100 and is less than B = 
66. So the remainder is 56~ = 46m. When  the last value is 
greater than B, the difference between the last value and the 
divisor {or a multiple of the divisor) becomes the remainder  if 
P is less than B. If P is greater than B, a smaller P may be 
chosen by taking the difference between P and B. 

4. CONCLUSION 
The parameter of the overrelaxation in our  method is general- 
ized for a radix-2" machine. Two benefits in expediting the 
computation from the generalization have been described: 
(1) the value of qs computed from g(q, a) decreases from 1/(2D 
- 3) to 1/(2mD - 3) for the worst case, and a rate of decrease 
is apparent as the value of m increases, and (2) the n u m b e r  of 
iterative computations of q~÷~ -- -g(q+, ai) is reduced from four 
to three for the worst case, where  the suffix i denotes the ith 
iteration. 

The first benefit is faster convergence of the power series. 
The second benefit is a shortcut in the division process by 
eliminating a pair of the very last evaluations, q++l = h(qj, a+) 
and a+÷~ -- a+(a+ + 1), which require the longest digit manipula-  
tions where a+ is a crude approximation of the quotient. 

There is, however, a cost to be paid for the generalization 
which comprises (1) a preparation of the generalized parame- 
ter form, (ma + j ) / m  (=a + j/m); (2) the test whether  the 
value of q+÷+ computed from q~+~ -- -g(q~, (ma~ + ji)/m) is 
positive or negative; and (3) two additions of the quanti ty (D ~÷~ 
+ q+)/2m to the value q~+~ and of the quanti ty 1 / 2 m  to the 
value (ma+ + j~)/m whenever  q+÷+ is negative. 

The cost of i tem (1) is a bit-shift operation and an OR (or 
AND) operation, which is negligible. The cost of items (2) and 
(3), for which a sign bit check (of the term of q~ - q~ where  qr 
= (mD - (ma + j))D"/(ma + j) is the root of g(q, (ma + j ) /m) 
= 0 in an  Is-subdivision), two 1-bit shifts, and one OR (or 
AND) operation are required, is also negligible. In other 

words, the estimated cost is far less than the cost of comput- 
ing the third iteration of qi.+ = h(qi, a~) and a++l = a~(a~ + 1), 
namely, C + S(m) + 2S(1) + 2L(2D) << 2M(2D, tD), where  
C, S(k), L(k), and M(k, 1) denote a comparison, k-bit shift, k-bit 
OR (or AND) operation, and k-by-1 bits multiplication, respec- 
tively, and t represents the digit length of dividend/divisor.  
Thus, the saving of multiplication steps could be maximized ff 
these bit operations are implemented in the same machine  
cycle. Finally, although the generalized process is most suita- 
ble for normalized floating point division, we have shown that 
the process may be used for fast integer division when  multi- 
plying hardware computes the remainder  in parallel. 

A P P E N D I X  

We consider two inequalities in order to obtain the interval 
bound  of q.~. 

(1) When  the inequality LR/~< R is used, the upper bound  
of the interval range is 

q2 = hm(q~, (ma~ + j+)/m) 
<~ (moo + jo)D"/(2moo + 2jo - 1)mD (3.8) 

Since the last term of (3.8) is positive, there is no need to 
have the difference term, (D" + q~)/2mD, in hm(q, a). Then we 
compare the upper bound  of q2 with the upper bound  of 
S l m l ) _ l l / m  . 

3D"/(2mD - 3) - (moo + jo)D"/(2moo + 2jo - 1)mD 
-- ((4mao + jo) - 3)mD + 3(mao + jo))O"/ 

(2mD - 3)(2moo + 2jo - 1)mD (A.1) 

Equation (A.1) results in a positive number ,  so q2 must  belong 
in S~,,,~-;)/,,, since 4(mo~ + jo) - 3 > 0, 2mD - 3 > 0, and (2moo 
+ 2jo - 1) > 0 by taking the smallest values of oo = 1, jo -- 0, 
m = 1, and D = 2, and no further mapping is needed. 

(2) When  the inequality R - 1 < L B J is used, the lower 
bound of the interval range is found as follows: 

q2 > - ( m ~ ,  + jo)D"/(mD(2mao + 2jo - 1)) (3.9) 

Equation (3.9) results in a negative value w h e n  the smallest 
values of oo, j~,, m, and D are taken, Therefore, this negative 
value is replaced by (D" + q~)/2mD = (moo + jo)Dn/mD(2mao 
+ 2j,, - 1), which is the largest value in hm(qo, (moo + jo)/m), 
namely, M~n,,2i for m = 2, 4, and j - 1, 2, respectively, as 
shown in Figure 1. It is sufficient to compare the largest value 
with the upper bound of S~,,,~-~)/,,,: 

3D"/(2mD - 3) - (moo + j ,)D"/mO(2moo + 2jo - 1) 
= mD(4(moo + jo) - 3) + 3(moo + jo). (A.2) 

Equation (A.2) is positive when  the smallest values of oo, jo, m, 
and D are taken. Thus, from these two cases we find the value 
q2 is in S~,.l~-n/,,, or S,. 
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Technical Correspondence 
IMPROVING PROGRAM READABILITY AS  A 
MODIFICATION AID 

The article "Improving Computer Program Readability to 
Aid Modification" by Elshoff and Marcotty [1] represents 
an excellent discussion of techniques for enhancing the 
program modification process by improving source code 
readability. In addition, some of the transformations pre- 
sented (e.g., in Sections 5.1, 5.2, 5.12) significantly improve 
the abilities of realtime computer programs to satisfy 
stringent execution speed (timing) and/or  limited main 
and auxiliary memory (sizing) requirements. When read 
from the perspective of critical timing and sizing con- 
strained realtime programs (e.g., air and space craft navi- 
gation, CAD/CAM tools, electrical power distribution 
control) several comments can be appended. 

1. Critical timing and sizing constrained software is 
quite often coded in high order languages which are im- 
plemented by special purpose compilers. Even though the 
source language is familiar (e.g., often Fortran; sometimes 
Jovial, Pascal, CMS-2; and some day Adam), the compilers 
are specifically constructed to produce object code only 
for special-purpose target processors (e.g., IBM 4PI CC-1, 
CC-2, AP-101; MIL-STD 1750; AN/UYK-7, -20). Since 
these compilers are generally "one shot" tools, with a few 
exceptions, only minimal attempts at object code optimi- 
zations are included. Consequently, a significant burden 
for tight object code is passed upstream to the source 
language programmer. 

The transformations described in Section 5.1 (Move 
Single Entry Labeled Blocks) and 5.12 (Localize Refer- 
ences) are particularly useful in this situation. Transfor- 
mation 5.1 reduces both time and space by eliminating 
unnecessary code. Transformation 5.12 allows those eas- 
ily implemented compiler local optimizations to function 
more effectively. 

2. Transformation 5.2 (Duplicate Labeled Blocks) repre- 

sents a double-edged sword. As indicated by the authors, 
replication of short (less than ten-statement) code blocks 
improves readability over branching to a multiple-refer- 
enced label. Ignoring those situations where use of a pro- 
cedure becomes desirable, two major difficulties can oc- 
cur when code blocks are repeated: 

(a) Sizing problems can be aggravated. This is par- 
ticularly the case when a short source code block 
causes long object code blocks to be generated. Miti- 
gating this somewhat is loss of (a presumably) long 
range branch to the multiple-referenced label. (Long 
range branches are frequently indirect and slow on 
special purpose realtime processors). 

(b) Installation of changes in all repeated short code 
blocks can fail. As with a procedure, one of the ad- 
vantages of a multiple-referenced label is that the 
required code only exists in one place; thus correc- 
tions to that code need only be applied in one place. 
Replication of the code block requires that all 
changes must be applied precisely to each block. In 
pressure situations (which occur all too frequently in 
the realtime software world), it is easy to overlook 
one or more of the replicated code blocks requiring 
alteration. 

Fortunately, two easy solutions to the latter are 
feasible. One is to number  each replicated code block 
via comments (e.g., 1 of 7, 2 of 7, 3 of 7, etc.) This 
allows programmers to "check list" changes to each 
code block replica. The other is to code the short 
code block as a macro in those languages which al- 
low it (e.g., [2]). This allows the code block to be 
written once, yet exist inline at as many  locations as 
needed. 

3. The statement in Section 7 that even though load 
module size of the example program increased 52 percent 
(8,800 to 13,400 bytes), general experience shows execu- 
tion speed improvements of five to ten percent, seem in- 
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