
CORRESPONDENCE

On Binary Multiplication Using the Quarter Square
Algorithm

the result can be achieved by using a combination of an adder tree
and a string of full adders as suggested by Dadda [3] and [4]. In
the following section, we describe a detailed development of the
proposed scheme.

TOTADRI JAYASHREE AND DHRUBA BASU

Abstract-This correspondence suggests a new method of per-
forming binary multiplication using the quarter square technique.
As compared to the previous methods [1], [2] the proposed scheme
is more general in that it can be readily applied to numbers of any
word length. Moreover, it has been shown that for the eight-bit case
the present method is faster, more systematic, and economical than
the earlier schemes.

Index Terms-Binary multiplication, Dadda's scheme, quar-
ter-square multiplier, squaring matrix.

I. INTRODUCTION

Using the well-known quarter square algorithm [5], the prob-
lem of binary multiplication is reducible to that of squaring of
binary numbers. This has been studied by Ling [1] and Chen [2].
Ling has proposed a scheme in which the product of two numbers
A and B was obtained using an expression involving two terms
S(i) and S(j); i and j being the normalized binary fractions cor-
responding to the sum and difference of A and B, respectively.
The transfer function S(x) was given by

x2
S(x)= X- 2

and it was shown that for an eight-bit fraction, each bit of S (x)
would require the ORing of at most 26 terms, each term involving
not more than 7 variables. Chen has suggested a simpler method
in which he obtains the square of an eight-bit binary number

p = -PlP2 P3 P4 P5 P6 P7 P8

as

p2= Y+Z.

The analysis of the expression for Z shows that each bit of Z
involves no more than 14 terms and each term involves no more
than 6 variables. The bits of Y can be formed by ANDing two
variables.

In this correspondence, we present an alternative approach to
the squaring problem. We have shown that for an n bit number,
the n row squaring parallelogram can be reduced to a (n - p +
2)/2 row triangular array where p = 3 for n odd, and p = 4 for n
even.
The first row L of this reduced matrix is derived from the

original n row matrix by combining the antidiagonal with the
elements embedded in three successive layers parallel to the
antidiagonal and on either side of it. This row L consists of 2n
elements such that each element can be generated by ORing at
most four terms and each term is obtained by ANDing not more
than three variables. Moreover, for this row, elements belonging
to all the odd columns starting from column 5 and ending with
column (2n -3) have a similar logical expression and hence can
be realized by the same hardware structure. Similarly, the ele-
ments in all the even columns between columns 6 and (2n - 2)
have identical hardware implementation.
The remaining elements in the original parallelogram are

rearranged to form the rows 2 through (n - p + 2)/2 of the re-
duced matrix and each of these can be obtained by the ANDing
of two variables. Further reduction of this reduced matrix to form
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II. REDUCTION OF THE SQUARING PARALLELOGRAM

The problem of squaring an n bit binary number An A,,-
An-2 ... A3A2A1 is essentially one of forming the columnwise
sum of the elements of the n X 2n squaring matrix shown in Fig.
1. A typical element of the squaring matrix denoted by the symbol
Aij can be obtained by forming the logical product of the ith and
jth bits of the number, i.e., Aij = Ai - Aj.

Dadda, in his study on parallel multipliers [4], has suggested
a scheme in which the original summation matrix is transformed
by means of adders into a matrix with a smaller number of rows.
This matrix can further be transformed into a second matrix with
still less number of rows by using another set of adders, and the
process can be repeated until the original matrix is reduced to
a matrix consisting of two rows only. Final addition of these two
rows to form the result is done using a string of full adders. A
similar scheme can also be applied to the elements of a squaring
matrix to form the result. However, utilizing certain properties
of the squaring matrix, it is possible to reduce the matrix to one
with a smaller number of rows without using adders. This results
in a significant saving of-hardware without any resultant loss of
regularity. Dadda's method of reduction using an adder tree and
a string of full adders can now be applied to this reduced squaring
matrix to form the result. Now, we will describe certain properties
of the squaring matrix.
Property 1: The antidiagonal R1 (Fig. 1) dichotomizes the

matrix into two symmetric halves and hence the entire matrix
can, in effect, be represented by the antidiagonal and all the el-
ements of one half of the matrix shifted by one position to the left
relative to the antidiagonal [2]. Thus, the elements contained in
the subdiagonals R2, R3, and R4 (Fig. 1) and their symmetric
counterparts can be rearranged as rows R2', R3', and R4' with
respect to R1 as shown in Fig. 2(a).

Property 2: For the submatrix shown in Fig. 2(a), the carries
into all the odd columns included between columns 5 and (2n -
3) have a similar logical expression and since the columns
themselves are similar, the elements of this submatrix can be
summed up to form a result which has the same type of logical
expression forall odd columns between columns 5 and (2n - 3).
Such a similarity also exists among all the even columns included
between columns 6 and (2n - 2).

Property 2 will become more clear from the following discus-
sion wherein we have derived a general expression for the carry
Cin(i) into any odd column i. Let Cjk denote the carry from the
jth column into the kth column.
From Fig. 2(a) we can write

Cin(5) = C45 = A3 - A2 - A1

Cin(6) = C56 = A3. A2(A4+ A1) + A3 - A4 *A1.A2
C57 = A4 * A3* A2* Al

C67 = Cin(6) * A42 = A4 * A3 . A2 ' A

Cin(7) = C67 + C57 = A4 - A3 - A2.
Examination of the expressions for Cin(s) and Cin(7) reveals that
the carries into the 5th and 7th columns are similar. Furthermore,
as the columns themselves are identical, the carries out of these
columns are also similar, i.e., C56 is similar to C78, and C57 iS
similar to C79. Thus, it can easily be seen that for all subsequent
odd columns, i.e., 9, 11,... , (2n - 3) the carry into any odd col-
umn i can be given by the general expression

Cin(i) = A(i-3)/2* A(i-l)/2* A(i+l)/2.
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Fig. 1. The squaring matrix.

Property 2 has been used to generate the row L whose elements
L1, L2, * **, L2n are given as follows:

L= Al
L2= 0

L3 = A2'A1

L4= A1 - (A2 A3)

Li = A(i+l)/2 A(i-l)/2 (A(i-3)/2 + A(i+3)/2)
+ A(i-3),2 - (A(i+l)/2 CD A(i+3)/2) (1)

where i = 5, 7, 9,..., (2n-3)

Li' = A(i'-2)/2. (A(i')/2 @ A(i'+2)/2)
+ A(i'-4)/2 * AW )/2 - A(i'+2)/2 (2)

where i'= 6, 8, 10,..., (2n-2)

L2n_l= An * (An1 + An-2) (3)

L2n= An An-1. (4)

Thus, it is seen that the rows R1, R2', R3', and R4' of the sub-
matrix can be combined without using full adders to form the row
L.
The generation of the elements of row L requires only simple

AND-OR logic gates. Moreover, excepting the four elements L3,
L4, L2n-1, and L2n, all the remaining elements can be realized
with only two different types of basic hardWare. Having thus
combined the rows R1, R2', R3', and R4', we can utilize Property
1 to arrange the remaining elements of the original matrix with
respect to row L, to form the reduced matrix as shown in Fig. 2(b).

For any even column j of the reduced matrix such that 6 jj
< (n + 1), A,x) denotes the element in the (x + 1)th row and is
equal to A(j-,x)x where 1 - x K (j - 4)/2, the element in the first
row being given by Lj defined in (2). Similarly, for any odd col-
umn j' of the reduced matrix such that 7 < j' < (n + 1), A',
denotes the element in the (x' + 1)th row and is given by A(j,'x').x'
where 1 < x' - 5)/2, the element in the first row being given
by Lj' defined in (1). Any odd column k'(k' > n + 1), starting
with element Lk' defined by (1) has the element A(k',y') in the (y'
+ 1)th row where A(k,,y,) denotes A(k'-n-y'+1).(n-y'+1) with 1 <
y' (,' - 5)/2, j' and k' being connected by the relation k' = 2n

+ 2 - j'. In a similar manner, any even column k(k > n + 1),
where k = 2n + 2 - j has Lk defined by (2) in the first row and
the element A(k,y) in the (y + 1)th row where A(k,y) represents
A(k-n-y+l).(n-y+l) with 1 < y < (j - 4)/2.
The arrangement of the reduced matrix can be easily under-

stood by considering an example where n = 8. This has been il-
lustrated in Fig. 3(a). The expressions for the elements L5
through L16 can be obtained from (1)-(4).
The columnwise sum of the elements of the reduced matrix can

now be obtained by applying Dadda's method. The implemen-
tation of the above scheme for an eight-bit number is illustrated
in the diagram of Fig. 3(b). Since squaring an n-bit number can
yield at mnost a 2n-bit number, there can never be a carry out of
the 2nth column. Or in other words, there can be a carry into the
2nth column only when L2n is a zero.

Hence, the adder corresponding to this column in the final
adder chain can be replaced by a simple 2-input OR gate. It may
also be noted that the least significant five bits of the result are
given directly by the elements L1, L2, L3, L4, and L5 of the re-
duced matrix.

III. EXAMPLE

In order to explain the above concepts, a numerical example
for n = 8 has been given. Let the binary numbers to be squared
beA = 101 1(301 0,forwhichthevaluesofA1,A2, - - *, An are
A1 = 0, A2 = 1, A3 = A4 = 0, A5 = A6 = 1, A7 = 0, and A8 = 1.
Substituting these values in the expressions given for the ele-
ments of theL row we getL1 = L2 = 0, L3 = 1, L4 = L5 = L6 = 0,
L7= 1, L8 = 0, L9 = 1,Lo= = 0, L12 =L13 =L4= L15 = 1,
and L16 = 0.
The reduced matrix for this example is given below.

0111 100 101000100

O 0 1 0 0 0 0

O 0 1

Columnwise summation of the above matrix to form the result
has been shown in Fig. 3(b). It may be noted that L1, L2, L3, L4,
and L5 form the last 5 bits of the result and have not been shown
in the diagram. The final result is given by A2 = 0 1 1 1 1 0 1 1 1
1 0 0 0 1 00.
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L C L5 AR '3 LZ L-1 L0 L9 LB L?7 L6U 5 L4 L3 La L1

Ag Ag3 Ag2 A8, A71 AC, A51

A73 A72 AG?

(a)

(b)

Fig. 3. (a) The reduced matrix for n = 8. (b) An 8-bit squaring
scheme.

IV. DISCUSSION

Choosing the particular 8-bit squaring problem given in Sec-
tion III as a basis for comparing our present method with that of
Chen, it is seen that our scheme is faster and much more eco-
nomical. Use of large fan-in and fan-out gates is not required as
the terms L3 through L16 can be generated by using at most 4-
input OR gates and 3-input AND gates. This may be compared to
Chen's Z logic, in which the expression for z8 would require the
use of a 14-input OR gate and 6-input AND gates. Moreover, the
total number of logic gates required for generating Y and Z in
Chen's algorithm is 87 as compared to only 64 gates required in
our case. Also, the addition of the bits of Y and Z needs 14 full
adders, whereas in our scheme only 12 full adders and 3 half ad-
ders are needed to generate the result [Fig. 3(b)]. From the point
of view- of speed, it can be seen that Chen's method is slower be-
cause it requires a larger number of full adders in the adder string.
Further, the logic for the different bits of Z is rather unsys-
tematic, i.e., no two bits of Z can be realized by an identical
hardware structure. Finally, it may be added that the schemes
given by both Chen and Ling are applicable to maximum eight-
bit numbers only. Any number larger than 8 bits, say 12 bits, has
to be decomposed into two 8-bit blocks and the entire hardware
has to be replicated 4 times for a parallel formation of the result.
The major advantage of our proposed method is that it can easily

be extended to any number of bits without having to decompose
the number into segments of eight bits, thus resulting in a sub-
stantial saving of hardware. This is because the different bits of
L as given in (1) and (2) have the same types of logical expressions
for any value of n.
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