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Sign Detection in Residue Number Systems

D. K. BANERJI, STUDENT MEMBER, IEEE, AND J. A. BRZOZOWSKI, MEMBER, IEEE

Abstract-This paper is concerned with the sign detection prob-
lem in residue number systems. The proposed solution is applicable
only to nonredundant systems. It is shown that under rather general
conditions an explicit, closed formula for the sign function can be ob-
tained. In a special case, when one of the moduli is 2, the sign function
becomes an EXCLUSIVE-OR function. A sign detection algorithm
is proposed and methods of implementing the algorithm are pre-
sented.

Index Terms-Algorithm for sign detection, residue number sys-
tem, sign function.

INTRODUCTION

RESIDUE number systems have been of interest to
mathematicians for a very long time. However,
the use of the system to carry out machine

computation has attracted attention quite recently [1],
[2 ], [4 ], [5 ], [7 ]- [9 ]. The most desirable feature of the
residue number system is that in the operations of addi-
tion, subtraction, and multiplication, any digit of the
result is determined solely by the corresponding digits
of the operands. This results in the elimination of car-
ries from one residue position to another. However,
one of the drawbacks of the system is the fact that the
algebraic sign of any number in an arbitrary residue
code is a function of all the residue digits. This makes
the sign detection process complicated, slow, and ex-
pensive.

It is the purpose of this paper to investigate the sign
detection problem, which deserves special attention be-
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cause it is also closely related to the problems of relative
magnitude comparison and overflow detection.

RESIDUE CODES

Residue codes and their properties have been widely
discussed in literature [1], [5]-[8], and for this reason
they will not be dealt with in detail here. Only the es-
sentials will be briefly reviewed.

Definition 1: Let M = {mI, M2, * , mn} be an order-
ed set of positive integers, where mi>2 for i = 1, 2,
n. The mi are called "moduli" or "radices," and the
corresponding ordered set (x1, x2, * - *, x.) of least posi-
tive residues of a natural number X, with respect to the
moduli, forms the residue representation or code for that
number, where the least positive residue of X with re-
spect to mi is denoted by IX 1, = xi. For example, if
Z = {2, 3, 5} and X = 14, then 11412 =O, 11413=2, and
141 =4. Thus 14 is represented by (0, 2, 4) in this sys-

tem.
In order to avoid redundancy (unless redundancy is

desirable), the moduli of a residue number system must
be pair-wise relatively prime i.e., the greatest common
divisor of each pair of moduli must be unity. If this is
so, the number of integers that can be coded uniquely
in a system with moduli { m1, M2, Mm, n} equals the
product m1m2 . mn,,. This is a direct consequence of
the Chinese Remainder Theorem [6]. In the case
= {2, 3, 5 }, therefore, a total of 30 integers can be

coded uniquely. These can correspond to the natural
numbers 0 through 29.
The most convenient way of representing negative in-

tegers is as follows. The residue number range is divided
into two parts. One part is assigned to positive integers,
and the other to negative integers. The negative in-
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tegers are then represented in radix complement form,
defined in terms of additive inverse. Thus -X is rep-
resented by X' ,where X' is the additive inverse of X,
and is defined as follows. If X= (xl, x2, * *,xI,), then
X'= (xl', X21, * , x,') where xi'=mi-xi for i=1,
2, * * * , n. Thus for r= {2, 3, 5}, -14 is represented
by (0, 1, 1).

SIGN DETERMINATION

The problem of sign determination is a major prob-
lem encountered in using residue arithmetic for compu-
tation. Attaching a sign bit to a residue number is of
little help because the magnitude of a residue number is
not readily available, and therefore, after adding a posi-
tive and a negative number, for instance, the sign of the
result is not immediately known. We have seen earlier
how the whole range of representation in a residue sys-
tem is divided into two parts to represent positive and
negative integers. One obvious way, therefore, is to con-
vert a given residue number to its natural number form
which will fall either in the positive or the negative
region of the representation. However, this is not an
attractive solution for the problem because it is slow,
and therefore offsets the advantage of speed in a residue
computer.
We consider a sign function S which has a value 0 for

positive integers and 1 for negative integers.
In considering the sign detection problem, it could be

expected that to get one bit of information (sign) all the
residue information is not required. Szabo [8 ] has proved
that such a scheme is impossible and in the general case
no reduction of information from any residue digit is
possible without loss of sign information.

In his coding theorem, Szabo has proved that all the
information from a residue digit must be used in any
sign determination process, provided the modulus mp
of the digit is smaller than VM, where

n

M = TI m,.
i=1

In the corollary of his coding theorem, Szabo proved
that sign detection is impossible if the pth residue digit
is coded into less than mAp states, where

M

and the corollary states that we can not reduce the in-
formation from m2 to less than A2 =m1 states. The sign
detection approach presented in this paper is within the
limitations imposed by the coding theorem.

The Two-Moduli Case

We shall first consider the case of two moduli.
Theorem 1: Given two moduli 2M and N, N odd and

N> 2M, let I= NJ 2M be the least positive residue of N
modulo 2M. Then the sign of a number X, 0 <X < 2MN
-1, is established by a proposition P such that

M-1
S = O iff P = V (|X 12M = Iil+ |X IN |2M) is true.

i=O

The symbol "V" denotes a logical OR.
Proof: Since the moduli are relatively prime, they

can represent 2MN integers, 0 to 2MN-1, uniquely.
Without any loss of generality, integers in the range 0
to MN-1 will be considered to be positive and those in
the range MN to 2MN-1 to be negative.

Consider an integer X, O<X<2MN-1. We can
write X as

X = KN + |X IN.
By definition

I= INI2M.
Hence

N = 2ML + I for some positive integer L.

Therefore

X=2MKL+KI+ |XIN
or

|X12M-=|KI + |XJNj2Mfor any X, 0 < X < 2MN- 1.

It is easily verified that if X is positive then K is
bounded between 0 and M- 1, and if X is negative then
K lies between M and 2M- 1. Now we will show that if
X is positive and if X satisfies the relation IX 2M
= K'l+|X|N|2M for some K', then 0<K'<M-1. For
let us suppose

IX12M = |KI + |XIANJ2M = |K'±+ IXIN2M,
O<K<M-1,

The corollary yields a positive result. It shows that it
is possible to reduce the information from a residue digit
but only within a certain limit. This limit is fixed by the
modulus whose information is to be reduced and by the
other moduli of the system. For example, if we consider
a system with moduli m1 and m2 with m1 <iM2, then ml is
the lower limit on the reduction of information from M2
since

Ml m1m2
112 = - = l
M22

M < K'< 2M-1.

Choose Y such that Y=K'N+ XI N. Clearly, Y2MN
+IXIN>MN-1. Also Y<2MN-N+IXIN<2MN
-1. Hence Y lies in the negative region and can be ex-
pressed as Y=2MK'L+K'I+IXIAN Hence, Y|2M
=IK'I+IXJNI2M=IXI2M. Also Y=K'N+IXIN. im-
plies Y N = |XN. This means that with respect to
moduli 2M and N, two different numbers have the same
residue code. This is impossible since 2M and N form a
nonredundant residue system. It is also clear that for
any X there is exactly one value of K in the range 0 <K
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<2M-1 satisfying X I 2M = Kl+ I X N 2M. Therefore

S = Oiff

(IXI12M =IIX 1N 12M)V(IX |2M= IIXIN +112M) ..V

(IXI2M = XIN + (M1- 1)1 12M)
is true or

M-1

P= V (lX 2M= il+ IX IN12M)
i=O

is true, and
2M-1

S = I iff proposition P' = V ( X 12M = Ijl + X N 12M)
j=M

is true or P is false.
Corollary 1: If M= 1 then X is positive iff X 2

=f|X|NI2 and negative iff |X12=IIXIN+112= I|IXINI 2

+112.
If binary coding is used for the residues, ||XI NI 2 iS the

least significant bit of XI N and X 2 is either 0 or 1.
Therefore, X is positive or negative, depending on

whether the EXCLUSIVE-OR sum of XI 2 and IXI NJ 2 is
0 or 1, respectively. The sign detection process in this
case can be schematically represented as in Fig. 1.
The following example illustrates the use of Theorem

1.
Example 2: Consider a system with 2M= 4 and N= 5.

Then 1= 514= 1. This system can represent 20 integers
uniquely, as shown in Table I.

In using Theorem 1 here, i varies from 0 to 1. There-
fore, a residue number (lX 4, X1 5) is positive iff
|IX| 4-1 Xl 5 = 0 or 1 and it is negative iff |IXI 4- XI 51 4

= 2 or 3. This is confirmed from Table I.

Sign Detection: A General Approach

The problem of sign detection becomes more compli-
cated when the number of moduli is large. The basic
philosophy still remains unchanged and we shall make
use of Theorem 1 for determining sign.

Let us consider a system of n mutually prime moduli
ml, M2, * * *, Mn. There is not much loss of generality if
we assume one of the moduli to be even. Let m1 = 2m. It
is obvious that all other moduli must be odd. We parti-
tion the set of moduli into two subsets { M1, * *, mt}

and {mj+1, * * *, mn } where

H mi = 2m llmi )<Hm
i=1 i=2 i=j+l

and mj+1<mj+2< * <mn. There can be several such
partitions available and some consequences of the choice
will be discussed later.

Let

IImi= 2K
i=l

IXI5

Fig. 1. Sign detection scheme for M= 1, N= 5.

TABLE I
TABLE FOR EXAMPLE 2

Integers X IX41 1X15 x14 s

0 0 0 0 0
1 1 1 0 0
2 2 2 0 0
3 3 3 0 0
4 0 4 0 0
5 1 0 1 0
6 2 1 1 0
7 3 2 1 0
8 0 3 1 0
9 1 4 1 0

-10,10 2 0 2 1
-9, 11 3 1 2 1
-8, 12 0 2 2 1
-7,13 1 3 2 1
-6,14 2 4 2 1
-5, 15 3 0 3 1
-4,16 0 1 3 1
-3, 17 1 2 3 1
-2, 18 2 3 3 1
-1,19 3 4 3 1

and let all X, 0<X<K-1 represent positive integers
and all X', K<X'<2K-1 represent the corresponding
negative integers such that X+X'=0 mod 2K. Let
(xl, x2, * - *, x,,) be the residue representation of an in-
teger X, where Xi= IX|miI i= 1, 2, * * *, n. Let

2m(H mt)= 2M and I mi=N.
i=j+1

We shall find XI2M and IIXI NI 2M and represent them
in mod ml, M2, * * *, mi since we do not have any mod
2M arithmetic unit in the system. In doing so, we have
to use the following lemma.
Lemma 1: If (X1, X2, , x;) is the residue represen-

tation for an integer X in a system of mutually prime
moduli ml, m2, ***, mj such that x*= lXImi, i=i,
2, .. *, j, then

IIX lmim2 mj Imi = I x m, = xi.
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Proof:

X,= Ixlmi

or

X = yim;+ xi for some yi . 0.

Let

A = IX mlml.m,M
Then

X= Y.mlm2 mj+ A, y > °

or

yimi + xi = Y m1m2 **m.i** m, + A

or

A 1m-= xi
or

lXlm1M2-Mmi =Xixi lxImi,
which proves the lemma.

Therefore, | liX| Nj 2M1 mi =IIXINI mj, since 2M=
m1m2 inM1.
To determine XI N, we use the mixed-radix conver-

sion process for the set of moduli mj+1, - , mn [5], [8]:

|X |N = rnmj+lm3+2 * Mn-1 + * * * + rj+2mj+l+ rj+l,

k =j+ 1,* * , n. Fig. 2. General flow chart for sign detection.

It is well-known how the mixed-radix digits rk can be
determined from the corresponding residue digits [10].

IlXI Nlmi = IrnMj+l * Mn-l -

+ rj+2Mj+l + rj+1 Imn

Using

|A + Blm = I |A Im±+ lBmim
and

|A*B Im = IA Im IB ImIm
IX IN Imi = I rln Im, Imj+l Im iMn-1 |milmi

+ ..*+ lrj+l imi Imi.
Once the choice of the moduli has been made, the fixed

quantities in the above relation are known and can be
stored. Then all we have to do is to compute the quanti-
ties IrkImi,i=1, * * ,j;k=j+1, * * ,n. OnceIIXIIVmi
has been computed, it is compared with I XI m.. If each
of |IX| N Imi and X|mi compare, then the number (x1,
x2, * * *, xn) is positive. If they do not compare, we add
1= N12M to lIXINImi and again compare with IXImi.
In the worst case (M- 1) additions of I will be required
before we can say the number is not positive. This will
be the case for numbers near the boundary separating
the positive and the negative regions. A schematic flow
chart for this method is shown in Fig. 2.

Example 3: Consider the set of moduli 2, 3, 5, 7, and
11. Let us partition the set so that 2M=2-3=6 and
N=5.7*11 = 385. Let us consider a residue number
X=(0, 1,0,1,4).ivariesfrom0toM-lorfrom0to2.
By Lemma 1

I IX1612 = 1X12 = 0

1X1613 = 1x13 = 1.
Now, we shall find I!X13Xs12 and !1Xl3sl3, which are

nothing but ||XI 38516 represented in mod 2 and mod 3. To
find IXI sm we have to use the mixed-radix conversion
process [10] for moduli 5, 7, and 11.

Mixed-Radix Mixed-Radix
Conversion Digits

Moduli 5 7 11
Residues 0 1 4 r3 = 0
Subtract Ir3Ini 0 0 0

0 1 4
Multiply by I5Imj 3 9

3 3 r4=3
Subtract I'4 mI 3 3

0 0
Multiply by I+Ims 8

0 r6=0

0 < rk < Mk,
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2 3 5 7 11

Partial Mixed
-w-. RRadix Trans lation

I

Fig. 3. Initial stage for sign detection for Example 3.

I Ix1385j1 =

II IT5 12 135 1212 +I In 12 - 15 12 12 + Ir3 12 12

110-112+ 1-1112+012
= 1

I 1r5 1,- 135 13 13 + Ir4 I8 15 13 13 + 1r3 1Is3
110-213+ 10.213+013

= 0.

In mod 2 and mod 3

X1,= (0, 1)
IX 1385 = (1,0).

They do not compare. So we add I to Xl 385

1 = 1385 16= 1 = (1, 1)

in mod 2, mod 3 representation.

IXj1385 + = (1, 0)
+I~1)

(O, 1).

This compares with XI 6. Hence the number (0, 1, 0,

1, 4) is positive. Consider another residue number
(0, 0, 0, 3, 1). We can check that

IX 1385 = 1

I Xl38513 =0.
In mod 2 and mod 3 representation

1X16 = (0, 0)
IX 1385 = (1, 0).

They do not compare. Hence we add I to XI 385;
XI 385±1= (0, 1). It still does not compare with XI 6-
Adding I again

IX1385+ 21 = (1, 2).

Again, this does not compare with Xl 6. We have made
M=3 comparisons. Hence the number (0, 0, 0, 3, 1) is
negative. Fig. 3 shows schematically how to find
IIXI 38512 and 11X1 38513. Circled "+" and " -" denote
modular operations. Boxes labeled C7 and Cul are com-
plement units mod 7 and 11, respectively. L1, L2, and L3
represent simple logic required to convert r3, r4, and r5
to |rs31| 31r41 |3s and rs | 3, respectively.
The logic for comparingIIXI 3s512 and liXI 38513 with

IX 2 and XI3, respectively, is shown in Fig. 4 and 5.
The output in each case is 1 only for identical inputs.
When both comparators have outputs of 1, the sign of
the residue number (X1, X2, X3, X4, X5) is positive, The

Moduli

IX 133 = r5m3-m4+ r4m3-+ r3
= r5 35 + r4-5 + r3.

Therefore

I Ix138512 =

317
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Com parators1x12 -

Ix 1385 12

Fig. 4. Mod 2 comparatos.

Fig. 6. Final stage for sign detection for Example 3.

Fig. 5. Mod 3 comparator.

TABLE I I
TABLE FOR EXAMPLE 3

i=O i=1 =2

Yl y2 Yi* Y2* yi** y2**

0 0 1 1 0 2
1 1 0 2 1 0
o 2 1 0 0 1
1 0 0 1 1 2
0 1 1 2 0 0
1 2 0 0 1 1

following discussion shows how the additions of il to
IX 38512 and ||X! 38513 are achieved.

Let Yi=lIX138512, y2=1Xj38513, yl*=ly1+Fl1212, Y2
= 1Y2+ll 313,yl**= Iyl*+l 1212,andy2**= IY2*+/I 33.

Table II shows the combinations of y, and Y2 and the re-
sulting combinations of yl*, y2*, yl**, and Y2*.

It is clear that y,*=9 y2*= (Y2+1) mod 3, y1**=yl,
and Y2** = (Y2+2) mod 3. Fig. 6 shows the remaining
part of the sign detection process after yi and Y2 have
been determined. The stored constants 1 and 2 are
added to Y2 in mod 3 adders to find Y2* and Y2**, re-
spectively.
The mixed-radix translation can be reduced by par-

titioning the set of moduli into 30(2, 3, 5) and 77(7 and
11) or into 42(2, 3 and 7) and 55(5 and 11). This would
require one complementation, one addition, and one
multiplication, all modulo 11, in order to determine the
two mixed-radix digits. Thus a reduction in hardware
for mixed-radix translation is possible. But, on the
other hand, more hardware is required in the remaining
sign detection process after the two mixed-radix digits
r4 and r5 are determined. Partitioning the set of moduli
into 2 and 1155(3, 5, 7 and 11) would require more
hardware for mixed-radix translation. The remaining

process of sign detection requires only an EXCLUSIVE-
OR gate, to which XI 2 and the least significant bits of
mixed-radix digits are fed (see Corollary 2). A compro-
mise between this partial mixed-radix translation and the
remaining sign detection process has to be finally made
by the designer.
Thus far we have presented a completely hardware

approach to sign detection. A combination of software
and hardware can be used resulting in a saving on hard-
ware. The process allows the designer a lot of flexibility
in this respect.

It is interesting to study the case when in a system of
n mutually prime moduli, the even modulus is 2. Then
the following corollary can be used to establish the sign
of a residue number.

Corollary 2: In a residue system consisting of n mu-
tually prime moduli m1, M2, , mn, where one of the
moduli, say m1= 2, the sign of a number X with residue
representation (xi, x2, . , x.) is given by the EX-
CLUSIVE-OR sum of IX12=xl and the least significant
bits of the mixed radix digits corresponding to the resi-
due representation (x2, *- . , xn).

Proof: The proof follows directly from Corollary 1.
Let

n

N= Umi.
i=2

If we just had two moduli, m1=2 and the composite
modulus N, then we could use Corollary 1 for sign de-
tection. We can still use it because N consists of (n-1)
"component moduli." X| N is given by

XIN = r.M2-m3.*- - Mn-1 + - * * + r3M2+ r2,

ri being the mixed-radix digits corresponding to the
residue representation (x2, * * *, x).
Hence

IXIN12 = rrn12. 1m212.--Mn-l.212
+ ***+ I Jr3 12- |M2 1212 + |r2 12 12

Since moduli M2, - , m, are all odd (because ml is
even) by assumption
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|Mi12= 1, for alli= 2, ,n. TABLE III

Hence

IXINI2 = Ir.l2 + + 1Y312 + Ir21212.
Also

IX12 = Xi.
From Corollary 1, the sign function is given by the mod
2 or the EXCLUSIVE-OR sum of XI 2 and IIXI NJ 2. Hence

S = |x±+ Jr, 12 + r31 2 + Inr2 122

which is the EXCLUSIVE-OR sum of xi and the least signif-
icant bits of ri. This completes the proof.

If binary coded residues are used for carrying on res-
idue arithmetic, the mixed-radix digits r2, * * *, rn will
be in binary form and their least significant bits will be
readily available. Therefore, wires from least significant
positions of xi and all the ri 2 can be fed as inputs to an
EXCLUSIVE-OR gate whose output is the sign function S.

Binary to Residue Translation

We shall now consider the problem of converting the
input data into modular form. The input will be in a
fixed-radix form, with radix m. Any number X can be
represented by a polynomial

X = C.mn + Cn_m'±1+* + Clm + CO,

0 < Cj <m, j= 0,1, *,n.

Then

lX Imi = ICnm Imi + ICn_Mn Imi + + |Co |milmi

If the quantities CnmiI mi can be evaluated without the
actual multiplication mod mi being performed, then
XI m, can be determined using a mod mi adder.
Let us consider binary inputs for a system with moduli

2, 3, 5, and 7. This system can uniquely represent 210 in-
tegers. For binary coding of 210 integers, the number of
bits required is equal to (log2210)= 8, where (I) denotes
the least integer greater than or equal to I. Any X,
0<X<210, with an 8-bit binary code can be expressed
as a polynomial

X = C727 + C626 + C525 + C424 + C323 + C222

+ C121 + Co, 0 < Cj < 2.

Obviously any Cj can now take only two values-0 or 1.
Then

IX|2 = IC012= CO

IX 13 = 12C7+ C6 + 2C5 + C4 + 2C3 + C2 + 2C1 + Co 13

IXI $= 13C7+ 4C6+ 2C5 + C4 + 3C3 + 4C2

+ 2C1 + Co 15

X1X7 = 12C7 + C6 + 4C5 + 2C4 + C3 + 4C2

+ 2C1 + Co ll

A. CONVERSION OF C. FOR PROPER INPUT TO MOD 3 ADDER

Coefficient of Ci Operation

1 add 0 to left of Ci
2 add 0 to right of Ci

B. CONVERSION OF Ci FOR PROPER INPUT TO MOD 5 ADDER

Coefficient of Ci Operation

1 add 00 to left of Ci
2 add 0 to left and right of C?
3 add 0Ci to left
4 add 00 to right

C. CONVERSION OF Ci FOR PROPER INPUT TO MOD 7 ADDER
Coefficient of Ci Operation

1 add 00 to left of Ci
2 add 0 to left and right of Ci
4 add 00 to right of Ci

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

All these multiplications and additions in different
moduli occur simultaneously. The maximum time taken
for input translation is then the time required in the
worst of the above cases. The translation process can
be speeded up, with no extra hardware, by not using the
modular multipliers. Then the process will need at most
7 additions. To discuss this in a little more detail, let us
focus our attention on the translation equations. Let us
assume binary coding for all the operands and the use
of 2-state switching devices in the mechanization of the
machine. The inputs to the mod 3 adder must be 2-bit
numbers. Therefore, CO, C2, C4, and C6 (all one-bit num-
bers) must be converted into 2-bit numbers by adding
a 0 at the left. 2Cl, 2C3, 2C5, and 2C7 can only take the
values 0 and 2, which in binary code are 00 and 10, re-
spectively. Therefore, we can place a 0 to the right of
these quantities before feeding into the mod 3 adder.
In other words, depending on whether the coefficient of
any Cj is 1 or 2, we have to add a 0 to the left or right of
Cj, as the case may be, before feeding it to the mod 3
adder. Similar additions of 0's to the left or right of Cj
would be necessary before feeding them to the mod 5
and mod 7 adders. Table III shows the effect of the co-
efficients of Cj on the addition of 0's and l's to the left or

right of Cj.

CONCLUSIONS

In this paper, within the limitations imposed by Sza-
bo's Coding Theorem, we have found an explicit formula
for the sign function S. In the special case when one of
the two moduli is 2, S is the EXCLUSIVE-OR sum of two
bits. The theorem for two moduli has been extended to
the general case of n moduli and it has been shown that
in the special case when one of the n moduli is 2, S is the
EXCLUSIVE-OR sum of n bits.
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It slhould be pointed out that the use of the mixed-
radix translation process has been previously suggested
for sign detection, where it is used as an intermediate
step in translating from the residue code to binary or
decimal form. However, we have shown that sign detec-
tion is possible by using partial mixed-radix conversion
and additional combinational circuitry or software, as
desired, without translating to decimal or binary form.
Our approach provides a degree of flexibility in imple-
mentation. It has been shown that varying amounts
of hardware and software can be used, depending on the
system requirements and design.
A very simple solution for the binary to residue trans-

lation problem has been found. It has been shown that
this requires modular adders only. There is no need for
modular multiplication in this process and this certainly
reduces the complexity and time required for binary to
residue translation.
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A Statistical Approach to the Computation of

Delays in Logic Circuits

H. DANIEL SCHNURMANN, MEMBER, MEEE, AND KLIM MALING

Abstract-This paper describes a method whereby multiple re-
gression techniques are used to predict the delay between input and
output signals through a combinatorial logic chain.

A delay equation is developed whose variables are chosen to rep-
resent the variations found in an actual system environment.

First, a technique is described whereby a statistical delay model
for a single circuit is developed from measurements on many circuits.
The total delay through logic chains of various lengths is predicted by
successive application of this model to the elements of the chain. The
accuracy of the prediction was checked experimentally, and agree.
ment was found to be very good.

Index Terms-Combinational logic, computer environmental
variations, delay equation, logic chain delay, multivariate regression
analysis, prediction technique, statistical modeling.

I. INTRODUCTION

HE problem of predicting delays in any logic con-
T figuration is of great importance for the design and

proper operation of high-performance digital com-
puters. The logic designer must know with a high degree
of confidence that a pulse will arrive at a given place in
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the system at a given time, since its failure to do so will
cause marginal operation or will generate a system mal-
function. On the other hand, if an overly conservative
design is made to achieve the desired level of confidence,
one must accept the penalty of lower system perform-
ance.
The method of using delay equations to predict delay

is one of the most widely used approaches. This equation
is a mathematical expression which describes qualita-
tively as well as quantitatively the effects of environ-
ment and of loading on the circuit performance. It takes
into account factors such as variations of power supply
voltages, shape characteristics of input pulses, tempera-
ture, etc., and also takes into consideration the geome-
try associated with logic configuration, such as distribu-
tion of loads along the main line, length of stubs, etc.

This approach has an advantage over other methods
such as simulation techniques, equivalent circuit meth-
ods, etc., in that it is simple to develop and easy to use.
There are, however, several disadvantages which cannot
be ignored.

1) The delay equation is empirically determined.
Consequently, in order to generate a delay model which
gives meaningful results, a large number of experiments
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