
SHORT NOTES

Fig. 4. A second example graph.

This modulo 3 technique does not work for graphs of unequal edge
lengths, however, since the unequal lengths can put the labels "out of
synchronization" (which can be verified by adding edge BH of length
1 to the first example problem). In the algorithm described here, the
2-bit vertex labels indicate if an edge has been traversed and, if so,

in what direction, with synchronization being provided by edge
length modification.

While this algorithm can be used with sequential computer, it has
been designed expressly to exploit the highly parallel search and
arithmetic properties of associative memory so as to gain improved
execution speeds; and it is with associative memory that the saving in

storage required for graph representation becomes important because
of the higher cost per bit.
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A New Algorithm for Inner Product
S. WINOGRAD, MEMBER, IEEE

Abstract-In this note we describe a new way of computing the
inner product of two vectors. This method cuts down the number of
multiplications required when we want to perform a large number
of inner products on a smaller set of vectors. In particular, we obtain
that the product of two nXn matrices can be perforned using
roughly n3/2 multiplications instead of the n3 multiplications which
the regular method necessitates.

Index Terms-Algorithm, inner product, matrix inversion, matrix
multiplication, solution of linear equations.
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I. THE ALGORITHM

Let x = (xi, , x,) and y = (y1, * * y,) be two vectors.
For each vector we compute the number

In121
Y_E X2_1l X2j
j31

(where ttJ denotes the integer part of t), and

v7 = E Y2i-l-yi
ic} b

The inner product (x, y) is then given by

rln'IJg

E (X2'-l + Y2j)(X2j + Y2i-1)- -7
j-1

(X, Y) = mIS1
E (X2j-l + Y23) (x2j + Y2j-1) -t -1 + X.Yn
jol

f n is even

if n is odd.

Consider the case where N n-dimensional vectors are given, and
it is desired to perform T inner products involving these vectors. The
total number of multiplications required is then Ntn/21J+ Tt(n+1)21
=Nn+ (T-N) 1(n+1)/2 as compared with Tn=Nn+(T-N)n.
So if T>N, the new method requires fewer multiplications than the
regularmethod. The total number of additionsrequired is N(Qn/2 1-1)
+T(n+ tn/2] +1), while the regular method requires only T(n- 1)
additions. If T> >N, then the total number of operations in the
new method is about the same as the total number of operations in the
regular method; therefore, the new method is faster when the time
required to multiply is longer than the time required to add.

II. APPLICATIONS

A. Matrix Multiplication
Let A be an miXn matrix, and B an nXp matrix. Performing the

product A -B is equivalent to giving N=im+p vectors and perform-
ing m . p inner products. The total number of multiplications is
(mi+p)n+(mn.p-m-p)[(n+1)/2j compared with minp*n multi-
plications in the regular way of performing matrix multiplication.
The number of additions is (m+p)([n/2]-1)+mp(n+tn/21+1)
compared with mp(n -1) in the regular way. If we assume m, n, and
p are large, then the new method requires about 1imnp multiplica-
tions and 3imnp additions, while the regular method requires mnp
multiplications and mnp additions.

B. Matrix Inversion

Let A be an nXn matrix to be inverted. Gaussian elimination
method requires n3 multiplications (we count a division as a multi-
plication) and n3-2n2+n additions. If n=m.k then we can view A
as an mXm matrix whose entries are kXk matrices. We can invert A
by Gaussian elimination of this mXm matrix, where addition and
multiplication means addition and multiplication between kXk
matrices and inversion means inverting a matrix. Applying the above
method for the multiplications and assuming that the inversion of
the kXk matrices is done by the regular Gaussian elimination, we
obtain (assuming k is even) that

n3 3 n
- +- n2 +- (k2 - k)2 2 2

multiplications and

31 4\/13\/ 5 1
2 3k13)n( )n22 k -2 k2

additions are required.

C. Solutions of Linear Equations
Consider the system of linear equations Ax= b, where A is an

nXn matrix. Solving these equations by Gaussian elimination re-
quires -(n3+3n2-n) multiplications and k(2n3+3n2+n) additions.
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As in the previous section, if n =m - k we perform the Gaussian elimi-
nation method on the mXm matrix whose entries are kXk matrices.
Assuming that k is even this method requires

6+ n2

6 4 6

multiplications and

2s3 (3 1 1\ 3 20 7 1
+n2 +n -k2 -k +---

2 2 4k2k1'1k 2 6 4 2k!

additions.
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A Variable Counter Design Technique

EDWARD L. RENSCHLER, MEMBER, IEEE

Abstract-Two design techniques are presented which allow
one counter circuit to divide a fixed-reference frequency by a wide
range of counts. In the examples used the output frequency is pre-
selected on three 10-position selector switches, providing for division
of the input reference frequency by N, where 1 < N<999. The tech-
niques described are not dependent on the type of digital logic used
and are therefore applicable to any family of binary logic modules.

Index Terms-Counter, divider, programmable counter.

An externally programmable counter is desirable in many fre-
quency-synthesizing systems. For this counter to be of value, one

must be able to change the count state, in steps of one, over a range

of three or four hundred. In addition, this count change must be done
externally to the counter itself. This means that no wiring can be
changed and that the count decision must be made through logic.
Two techniques that accomplish this are presented here. The tech-
niques are described in general terms and will be directly applicable
to any form of binary logic. The counters used as examples in this
paper have the constraint

1 < N < 999, (1)

where N is the desired count.
The basic counter system is shown in Fig. 1. A description of the

system operation is as follows. The desired count N is selected by
setting each of the three 10-position input switches to the desired
decimal number. Only three input switches are used here because of
the constraint given in (1). N can be represented, for a 3-digit num-
ber, as

2 3

N = E E 10i2iBij (2)
i=0 j=0

which is a 12-bit BCD word.
Each of the three stages of decimal-BCD conversion logic will be

identical. One stage is illustrated in Fig. 2. The logic used here is a

positive-logic NAND function.
The first technique for performing this variable-count function

is shown in Fig. 3. When the shift pulse arrives at the input gating
logic, each of the BCD numbers is preset into the appropriate counter
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Fig. 2. Decimal-BCD conversion logic.

stage. Each counter is a clocked BCD decade down counter. All three
counter stages are driven from the same clock through gating, as

opposed to the ripple-counter approach. This makes the counter
system completely synchronous and is done deliberately to avoid the
well-known problems of ripple counters. The count continues until
the three stages are simultaneously in the zero state. When this
occurs, the counter has counted down from the preset number N to
0. The zero state is detected by the zero state detector, and a trigger
is produced which fires the "one shot," which in turn produces the
shift pulse necessary to preset the number N again into the counter.
The counter is reloaded during the zero count, and upon the next
clock pulse the divide-by-N process begins again.

The one shot is necessary to insure that the number N is properly
preset into the counter. If the one shot were not included, the dura-

V f.
anNrog

Fig. 1. Basic programmable counter.
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M effects of filtering and other operations on the correlation properties
4 Sq of the transforms of sampled waveforms.

0° Fig. 2 is a FORTRAN program for computing the ordered Hadamard
transform and the ordered R-transform as described above. Note that

2 in the program the rows of Fig. 1 are numbered from 1 to N, and the
3 columns are numbered from 1 to (M+1) to avoid zero subscript
4 values. This program was used for a relatively small number of input
5 samples where the number of storage locations required was not a
6 problem. For applications where the available storage is a limiting
7 factor, it has been suggested that the storage efficiency could be in-
8 creased by alternating the computations between two arrays of
9 length N. As the computation cannot be performed "in place," the
to number of storage locations required is at least twice the number of

2 input samples. L. J. ULMAN

\t 3Westinghouse Defense and Space Center
\ Aerospace Division, MS-360

']1 4
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Fig. 1. Ordered Hadamard transform computation.

N = 2M = Number of sample points.
L = Index of array used to compute values for array LP.
NZN = Number of computation groups for array being computed.
J = Index of point in array being computed

Reserve storage for an (M+1) by N array for XR.
Read input data into XR (1, J).
Output data appears in XR (M2, J) where M2 = M + 1.

Program

NH = N/2
DO 120 L = 1, M
LP = L + I
LM = L - 1
NY = 0
NZ = 2**LM
NZI = 2*NZ
NZN = N/NZI
DO 110 I= 1, NZN
NX = NY + 1
NY = NY + NZ
JS = (I-1) *NZI
JD = JS + NZI + 1
DO 100 J = NX, NY
JS = JS + 1
J2 = J + NH
XR (LP, JS) = XR (L, J) + XR (L, J2)
JD =JD - 1
XR (LP, JD) = XR (L, J) - XR (L, J2) See Note

100 CONTINUE
110 CONTINUE
120 CONTINUE

NOTE: For R-transform use XR (LP, JD) = ABS (XR(L, J) - XR (L, J2))

Fig. 2. FORTRAN program for ordered Hadamard transform
and ordered R-transform.

Fig. 1 is a diagram showing the computational steps for finding
the Hadamard transform or the R-transform of an input function
defined by 16 samples. Subscripts of the rows in this diagram are
numbered from 0 to (N-1), where N-2M (M an integer) is the
number of input samples, and the columns are numbered from 0 to
M. The arrays (columns) represent the N input values and the N
results of each of M transformation steps. The value at each node of
arrays 1 through M is found by calculating the sum or difference of
two values in the preceding array from a row i and a row (i+N/2).
In the diagram the solid arrows represent addition and the dashed
arrows represent subtraction so that when a subtraction is involved,
the value connected to the dashed arrow is subtracted from the value
connected by the solid arrow. If the R-transform is being computed,
absolute values are used for the results of each computation which
is indicated as a subtraction. The values in array M are the Hada-
mard transform (or R-transform) values in order of sequency.

The method of computation which has been described was devel-
oped during a study of the identification of radars by means of video
waveforms. The ordered transform was desired to observe the se-

quency characteristics of the video waveforms and to determine the

Baltimore, Md. 21203
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On Winograd's Algorithm for Inner Products

Abstract-This correspondence demonstrates an improvement on
Winogard's algorithm for inner products as applied to the multi-
plication of two matrices.

The total multiplication required is n/2(n2+2n- 1), which is
n/2 multiplication less than was required by the original algorithm
and which reduces to seven multiplications for the product of two
2X2 matrices.

Index Terms-Product of matrices, sufficient number of arith-
metical operations.

Strassen [1] has shown that 4 7XnlOg27 arithmetical operations
are sufficient in order to compute the coefficients of the product of
two square matrices of order n.

Strassen's result is an iteration on the processes of finding the
coefficients of the product of two 2 X 2 matrices in seven multiplica-
tions.

His algorithm is as follows.
If A, B are matrices of order m2k+l to be multiplied, write

A (A11 A12\ B =Bil B12 AB (C11 C12\
A A)22 B21 B22 A = C21 C22

where the AiA, Bik, Cik are matrices of order m2k. Then compute

I= (A11 +A22) (B11 +B22)
II= (A21+A22)Bll
III=A11(B12-B22)
IV=A22(-Bl +B21)
V= (A1l +A12)B22
VI= (-A11+A21)(B1j+B12)
VII = (A12-A22)(B21+B22)
C1i= I+IV- V+VII
C21 = II+IV
C12 = III+ V
C22 = I+III-II+ VI.

Manuscript received August 4. 1969; revised November 13, 1969. This work was
supported by the Office of Naval Research, Information Systems Branch, under
Contract N00014-C-0294.
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CORRESPONDENCE

The purpose of this correspondence is to demonstrate an improve-
ment on Winograd's algorith'm [2] for inner products as applied to
the multiplication of two matrices.

The improved algorithm permits the multiplication of 2 X 2
matrices in seven multiplications as a special case.

Winograd's algorithm is as follows. Let

x = (xl, * * *,x.) and y = (yx,* , y.)
be two vectors. For each vector we compute the number

[n/2]
,(= X2j-l'X2j

j=l

where [t] denotes the integer part of t, and
[n/2]

77 = E y2j-1 * y2j-
j=1

The inner product (x, y) is then given by
[n/2]

Ei (X2j-1 + Y2j) (X2j + Y2-1) - - if n is even

(X,y)= [ni2]
E (x2j-1 + Y2j) (X2j + Y21-1) - - 71 + XnYn if n is odd.
j=l

Thus, if X and Y are nXn matrices, performing the product
X Y is equivalent to having 2n vectors and performing n2 inner
products. Since there are only n different i's and n different n's, it
follows that the total number of multiplications is

2n2 + [ 2 ] (n2- 2n).

The same count of the required number of multiplications can be
accomplished as follows. Without loss of generality, for n even, let X
and YR be two nXn matrices such that

Xll X12 X13 X14 . . . Xln

X21 X22 * X2n

X= X31 X32 * X3n

Xnl Xn2 Xn3 . . . Xnn
and

yll Y21 Y31 . . .Ynl'
Y12 Y22 Y32

p Y13 Y23 Y33

Y14

yin Y2n Ynn.

Then the following are the terms of the resultant X*Y matrix:
n/2

E (A - B)
j=1

where
(1)

A = (xl(2i-1) + yk(2j)) * (xl(2j) + yk(2j-1)) for 1 < k < n and 1 < I < n

and
B = (XL(2j-l)-XL(2j) + Yk(2j-1) Yk(2j)) for 1 <k <n and 1 <I <n.

For a fixed j in (1) there are n2 different A terms, but only 2n
different products that are required for the B terms. Sincej runs from
1 to n/2, the total multiplications required are: n/2(n2+2n), for
even n as noted before.
We consider now a modification on the above algorithm as follows.

Let

C = (Xl(2j-1) - Yk(2j)) * (XI2j - Yk(2j-1))-

Then

We observe now that for fixed j, if given the following 2n -1 B
terms,

(Xl(2j_l) X1(25) + Yk(2j-1) Yk(2j)) for all 1 < k < n

and
Xl(21-l)-XL(2i) + YZ(2j-l) YL(2j)) for all 2 < I < n,

(4)

(5)

it is possible by substitution only to solve for the rest of the n2
- (2n -1) B terms. This is true since for fixed j, each product that
appears in a B term appears n times in different B terms so that the
(2n -1) B terms as selected in (4) and (5) will suffice to solve by sub-
stitution for the rest of the n2- (2n-1) B terms.

We can now adapt the following procedure for the solution.

1) For fixed j:

a) In n2 multiplication solve for all n2 A terms.
b) In (2n-1) multiplication solve for the (2n-1) C terms

such that
i) j is fixed

ii) I=landl<k<n
iii) 2.<=k<n.

c) From b) solve for the (2n -1) B terms by the use of (3).
d) By substitution solve for the rest of the n2 - (2n -1) B

terms.
e) By subtraction solve for all n2 (A -B) terms.

2) Repeat 1) for 1 <j< n/2.

Thus the total multiplication required is n/2 (n2+2n-1), which
is n/2 multiplication less than was required by the original algorithm,
and which reduces to seven multiplications for the product of two
2X2 matrices. (We have considered only multiplication of noncon-
stant terms, thus the multiplications by 2 are not represented in this
count.)
Example: Let

a b(A C aA + bB, aC + bD
Vc dJ VB DJ cA + dB, cC + dD

The seven required multiplications are:

A1 = (a+ B) (A + b)
A2= (a+D).(C+b)
A3 = (c+B) (A +d)
A4 = (c+ D).(C+d)
Ci = (a - B)* (A - b)
C2 = (a - D) (C - b)
C3 = (c - B) (A - d).

Therefore

B1 = 2(A1- C1)
B2 = 2(A2 - C2)
B3 = 2(A3 - C3)
B4 = B2 + B3 - B1,

and

aA + bB = A1- B1
aC + bD = A2- B2
cA + dB = A3 - B3
cC + dD = A4- B4.

ABRAHAM WAKSMAN
Stanford Research Institute
Menlo Park, Calif. 94025

(A -B) = '(A + C)
and

B = 2(A - C).
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