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Application of Continued Fractions for Fast
Evaluation of Certain Functions

on a Digital Computer
AMNON BRACHA-BARAK

Abstract-The purpose of this paper is to develop a method for
evaluation of certain elementary functions on a digital computer by the
use of continued fractions. The time required for this evaluation is
drastically reduced by using "short" operations like shift and add,
instead of multiplications. Functional consistency is the most impor-
tant factor that aliows the expansion of a function into a continued
fraction. Several cases are discussed; in particular the solution of the
quadratic equation is discussed in more detail to demonstrate the
convergence of the method.

Index Terms-Bilinear transformation, binary arithmetic, continued
fractions, quadratic equation, Riccati equation, selection rules.

I. INTRODUCTION

THE idea of using continued fraction representations for
generating a solution to a limited class of quadratics was

first introduced by Robertson [31].
Consider the finite continued fraction with k partial

numerators pi and k partial denominators qi = 1,2, , k,
whose value is Ak/Bk, i.e.,

Ak P_

Bk q±+P2
q2 + P3
q+ ~~~~~~~(1.1)

+Pk

qk

A standard way of writing (1.1) is

Ak PI P2 P3 Pk
Bk q + q2 + q3 + + qk

A k and Bk are determined from the recursions:

A.=qA._ + pAi-2
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Bi =q,Bi1 +pB-2 (1.2)

with initial values:

A0=O A1=p

Bo = 1 B1 =q.
(1.3)

It is clear thatA k and Bk can be separately and simultaneously
determined in two binary arithmetic units in k - 1 addition
times if the pi and qi are chosen to be simple in the binary
sense.

The digit set for p, and q, for the purposes of this paper is
4, 1 . Since an arithmetic unit of a digital computer is used,

all the approximations in this paper are up to a finite number
of binary digits. We will therefore define binary values as all
the values that a given binary arithmetic unit can assume. It
will be proved in Section II that the continued fractionAk/Bk
assumes in the limit all the binary values over the interval [(V/7i
- 1)/2, N2-]. This range includes [, 1 ], the range of
normalized floating point binary fractions. This property
indicates that a suitable continued fraction representation
exists, such that conversion to conventional binary can be
achieved by repetitive use of two binary adders in parallel,
followed by a division to determine the quotient Ak/Bk.

The main reason for selecting pi, qi eG4, 1 , i= 1, 2, is
that the four multiplicative operations required for each
iteration in (1.2) are reduced to "shift" and "add" operations.
These operations will be called "short" operations throughout
this paper, mainly because the time required to perform these
operations is shorter than the time required to perform "long"
operations, e.g., multiplication, division.

The purpose of this paper is to develop algorithms for fast
evaluation of certain elementary functions by using "short"
operations in several registers simultaneously. In order to be
able to do so we make use of functional consistency which will
be defined in Section II.

Determination of selection rules for p and q in each
iteration is an important step for the development of the
algorithm. Selection rules were extensively studied by Trivedi
[5], where a complete set of such rules were developed for the
quadratic equation. The set of selection rules that is used in
this paper is described in Section III.

In Section IV, we generalize our results to a higher degree
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polynomial, and in Section V, we show two more cases where
our analysis is applicable.

II. PRELIMINARIES

In this section we develop some concepts of continued
fractions that will be used throughout this paper.

The general continued fraction will be regarded as a
sequence of bilinear transformations of the form:

k= 1, 2,-.

where fk(x) is a function of x.

p1 P2 Pn
1q, + q2 + ....... + qn + fn+l

An +fn+lAn-1
Bn +fn n1B - 1

continued fractions with positive elements, the convergents of
even order generate a monotonically increasing sequence,
which has a limit, and the odd convergents generate a
monotonically decreasing sequence with a limit. The value of
the continued fraction is greater than that of any of its even
convergents and less than that of any of its odd convergents
[1], [2].

Define

62n
(2.1) T2n 2n-2

82n+lT _2n+1l 5 ?
2n-I

then if we prove that for all n, Tn < 1, it will follow that the
limit of convergents of even order and the limit of convergents
of odd order are equal to the value of the continued fraction.

(2.2) We note that the values in the numerator and denumerator of
T have equal signs; therefore the absolute value sign can be
omitted.

(2.3) We have [2, ch. 1]:

where the functions An and Bn satisfy the recursion (1.2) with
the initial values given by (1.3).

Let fi (x) = F(x, 1) be defined over the interval [m, M] . We
will expand fi (x) into a continued fraction such as (2.1) and
require that the choice of Pi and q1 be made such that f2(x)
= F(x,2) is also defined over [m,M]. Since f2(x) is a
continued fraction we can use the same rules of selection for
P2 and q2 -

We now define the term functional consistency.
Definition: For a substitution of the form

Pk
fk()

qk +fk+I(X)
k=

where fk(x) = F(k, x) is a function of k and X, Pk and qk are
constants; if fk(x) and fk+ l(x) are defined over the same
interval, then we have functional consistency.
We now give a general proof of convergence for continued

fractions with positive elements. Functional consistency will
be required in order to assure that only one set of selection
rules for p and q are used.

Theorem 1: Let

A Pl P2 +P____n
fl(X)=-q+q+.=++fx n = 1,2,.

be the continued fraction expansion of fi (x) with positive
elements, p and q. Assume that functional consistency exists
for all fi(x), i = 1, 2, *--. Let AI/B, be the nth approximation
to]' (x).

Then for every e > 0, there exists N, such that for all n >
N,

A An
n= B B <C.

n

Proof: We will study relations between 82 n 62n-2 and
82n +l 82n-1 because of the well-known property that in

A/B -An/Bn
T -
n AIB-A IpBn/B

I-)n +2p, P2 ... PnPn +l IBBn

(-l)np,p2 .. Pn-I (qn+,qn + Pn+l )IBBn-2

Pn *Pn +1 Bn_-2
qn+1 qn+pn+l Bn

Since Pn+ = fn+l = Pnlfn -qn, qn+1 = 1 and Bn =
qnBn- 1 +pnBn-2' we conclude that:

Pn QXn 1--
T ==n Bn1 qn Bn -1

n n Bn-2 Pn Bn-2

All the quantities and Tn are positive, Tn < 1, and the
result follows. Q.E.D.

The assumption in Theorem 1 is that an algorithm for
finding p and q in each step exists. In the remaining part of
this section we will show one such algorithm.

First, we fimd extreme values, m and M, for a continued
fraction of the form (1.1).

Theorem 2: Let the k approximant tof1 (x) be

Ak P1 P2 Pk
Te qw + q2+i + qk

and let pi, qi E 17, 1, i = 1, 2, *

Then we have in the limit:

M = max fi (x) = max lim Ak/Bk =
k* o0
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m =minf1 (x) = min lim Ak,/Bk = (2 -1)/2.

Proof: For the maximum valueM we have,

maxp1 minp2

miMmnq + maxq2+M

We substitute now the maximum and minimum values for p
and q and solve for M. The result is M2 = 2, and since the first
and second convergents [1, theorem 154] are positive, it
follows thatM== .

Similarly we have for m:

minp1 max P2

maxq, + minq2+m

m is positive and can be found by solving the quadratic
equation

4m2 +4m-1=0.

The result is m = (V2 - 1)/2. Note that in general, if all p and
q are positive, so are m and M. Q.E.D.
We will use now the analysis of Theorem 1 to study the rate

of convergence, by finding an upper bound to Tn:

1-
Pn

maxT =max q B
n +qn Bn-11+-

Pn Bn-2

I+-min( BfnPn

<1~~ qn Bn

VPn Bn -2J

mi-fn = minf = - -0. 1035;
P n 4

Bn-14 +. mi
n-2

but Bn -1/Bn -2 is a continued fraction whose value is

14 3- 2
max T < 0.2929.

1+ 44+

Therefore, for n sufficiently large, the absolute error bn is
reduced by a factor which is less than or equal to 0.2929 for
each pair of additional iterations.
We will prove now that all values, y, y E [m, M], can be

approximated by a continued fraction of the form (1.1). In
particular we show a method, also primitive, for selecting p
and q in each step.

Algorithm 1: Let y be a given real constant, y E [m, M].
Then there exists a continued fraction x, of the form (1.1)
with p, q E { 2, 1} , such that in the limit x = y.
We first note that in practice we approximate y with only a

finite number of steps and by Theorem 1, if such x exists, than
with a sufficient number of steps and given e, Iy - x < e.
Also note thaty is a real constant that can be represented by a
binary computer.

In order to find x we define continued fractions xi, of
length i, i= 1, 2,

P1 P2 Pi

ql + q2 q+O

where0EE m,M
We start with i = 1, and a given y in the interval [m, MI.

Define xi = p, I(q, + 0), and substitute all possible values for
(p, q, 0) in the following order: (2, 1, m); (2, 1,M); (2, 2, m);
(4, 2, M); (1, 1, m); (1, 1, M); (1, , m) and (1, ,M). These
values when substituted in xi define four subintervals over [m,
Al]. Simple analysis shows that the subintervals cover the
entire interval [m, M], with some regions of overlap between
each consecutive subintervals. The result is that y is included
in at least one such subinterval, and therefore we select the
corresponding p and q as Pi and q1 . We increase i by one and
study x2 = P1/1 + P2/q2 + 0, where now Pi and q, are
fixed and we substitute all values for P2, q2, and 0. Again
there will be at least one subinterval which will contain y and
we can select P2 and q2. Our process can be carried now for
increasing values of i until a given precision is reached.

Algorithm 1 is inefficient because there are several multipli-
.cation and division operations in each step. In the next section
we develop a more efficient set of selection rules for p and q.

III. SOLUTION OFX2 ±+bx-c=0

Bn-1
Bn-2 X-

Pn-1 Pn-2 P2

n-2 +qn-3+ q

Therefore,

Bn-l1 X-~f-1 _Xl2mm B 6 4
n-2~~~

Finally we have,

We now show how to solve a quadratic equation with two
distinct roots of opposite signs and in particular, a square root
problem.

Let

aix12+blxl-cl=0 - (3.1)

be a given quadratic equation, a1 and cl are positive and b,
is a nonnegative constant.

The substitution we use is of the form
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Clearly, we have four possibilities, and for each pair of P,
(3.2) and qI we get a different x2 .

We take now the inverse approach. We assume that
condition (3.5) exists for x2, and find the range of xl for
each pair of P, and ql. We start with a pair Pi = 1 and ql =
4. From (3.7) we have for x2 = 2 (lower bound for xi )

For the kth step we have

p 2 pak + b -c =0
k(qk + Xk+l)2 k qk +Xk+l k

1 2(2X/- 1)
X + =7 -0.522,
1+~~~

k= 1,2,-

or

CkXk+l + (2ckqk bkpk)Xk+l + Ckqk -akpk2

-bkpkq = 0.

The recursion that follows is

Xa +1 =ck

(3.8)

and for x2 = (v'2 - 1)/2 (upper bound for xl )

(3.9)1XI <
-I

= 2_ 1.414 .

1.-
I + 2

The result is that for xi in the range defined by (3.8)(3.9),
we can choose Pi = 1 and q, = 4. Since xl is the unknown we
use (3.6) in order to find the allowable range for Pi = 1 and
q1 =

I

We have

Xbk+l = 2ckqk -bkpk

Xck+l =Ckq2 (akpk + bkqk)pk k = 1 2, -

(3.3)

where X is a nonzero constant that can be used for
normalization.

The resulting quadratic equation is

ak+lx 2+ x -c =0.klk+l k+l k+l k+l

This method of approximating the solution of (3.1) can be
used if we develop a technique for selecting Pk and qk, k = 1,
2, , from the coefficients of the kth quadratic equation, i.e.,

ak, bk9 and Ck'
Using the results of Section II it can be seen that functional

consistency of the procedure can be achieved in each step if

m Sxk SM k = 1, 2, .

By imposing condition (3.5) we need only one set of
selection rules for Pk and qk, k = 1, 2, - for the range [m,
M].

We develop now a set of selection rules for Pk and qk, k =
1, 2, -, for the quadratic equation.
We write below a version of (3.1).

Let

XI b1+a1x1 (3.6)

where it is assumed that cl > 0, b, > 0, a, > 0, and m < xl S
M.

We will find P1 and q1 such that

1

ql + x2(37

wheremx2 M andp1, q, E4, 1}

1.414 > Cl >0O522.
b1 +aix,

(3.10)

Since (3.10) is possible for any xl in the range (3.8)43.9), we
conclude that for the range

0.522b, +0.5222a<.c1 </2 b1 +±2al (3.11)

we choose pI = 1 andq1=4q
Similarly we write below the ranges for each of the

remaining possibilities.

For

(8/-lI)bl + 2 1)2a, < cl -< 2(N2- I)bl

+4(Vf- 1)2a,, choosepi = 1,q1 = 1; (3.12)

7-b1 + ) a c i < bi +la1,

choosep1=p , q =4; (3.13)

2 b1± ( 2 )al<c S<(-)b
+ (-V2-1)2a,, choosep=p,i q = 1. (3.14)

The result is that the entire range [m, MI is divided into
four sections, (3.11){3.14), and for each section we can

choose a pair of Pi and q1 such that condition (3.5) for x2 be
satisfied.

Clearly, if we have to do two multiplications for each
selection range in order to find Pi and q1, our procedure is
inefficient. In the analysis that follows we make use of an

important feature of the ranges defined in (3.11)43.14); this is
the existence of overlapping between any two consecutive
ranges.

Pi
X.=

I X
i x+

where

i= 1, 2,"
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This means that in the overlap regions we have a freedom of
selecting the pairs Pt and q1 between the two sets of such
constants. We will use this freedom in order to simplify our
selection algorithm by defining a line of selection inside the
overlap region such that the coefficients of b, and a, will be
simple in the binary sense.

Before we define the selection lines, we note that rate of
convergence of the method was found to be strongly
dependent on these lines. The first set of selection lines can be
the upper lines in each range, for

cl -0.414b <.0.1713a1 thenp1 = 7, q1 = 1;

c1 -0.707b, <0.5a
c- 0.828b, < 0.686a1

thenp, = 7, q1 = ;

thenp, = l,q1 = 1;

otherwise p 1,ql=q . (3.15)

Experimentally, this set of rules gave the best rate of
convergence. Although written for (3.1), we see that it is valid
for (3.4) for the general subscript k.

To simplify the constants that appear in (3.15) we use
simple binary constants with at most two nonzero binary
digits.
We have, for (3.4) with k = 1, 2,-,

Ck 0.375bk < 0.15625ak then P=k qk = 1;

Ck 0.625bk < .Sak then q = ;

Ck 0.75bk < 0.625ak then Pk 1, qk 1;

otherwisePk = q = 2 (3.1 6)

These selection rules involve only short operations.
The algorithm described in this section involves the

following steps, for the k iterations, starting with k = 1.
Step 1: Equation (3.4) is given, then use selection rules

(3.16) to fmd Pk and qk.
Step 2: Use the results of Step 1 and iterate on (1.2).
Step 3: Use the recursion (3.3) and find (3.4) for k + 1.
Step 4: Check if Ak/Bk reached the required precision.

This check can be done only once if the number of iterations
required to achieve certain precision is known. The analysis
above for the rate of convergence gives the necessary
information to find such numbers. If the required precision is
not reached proceed to Step 1 for k + 1.

Theorem 1 of the last section assures convergence to the
solution. Table I is a numerical example.

IV. SOLUTION OF A HIGHER DEGREE POLYNOMIAL

We now show how one solution of the cubic equation can
be found by the method of Section III.

Let

a,xi3 +blxI2 +cCx -d = 0 (4.1)

be a given cubic equation. We use the substitution (3.2) and
we get for the kth step:

Pk3 Pk2
ak +b
k (qk + Xk+d3 k

(qk + Xk+d1)2

Pk
+c .-d =0

qk k+
k

or

dkxk+l3 + (3dkqk Ckpk)Xk+1 + (3dkqk2 - 2ckpkq

-bkpk2)x k+l -(akpk bkpk qk CkPqk -dkqk 0.

The recursion relations between the coefficients of the kth
cubic equation and the (k + l)st cubic equation are, therefore,

ak+l =d

bk+l = 3dqk -Ckpk {A %\

Ck+l = 3dkqk2- 2ckpkqk -bkpk2

dk+l akpk +bkpk2qk + Ckpkqk2 -dkqk3

(4.2)

k=1 2, -.

The resulting cubic equation is

ak+1xk+l + bk+1xk+1 + ck+lxk+l -dk+1 = °

For the selection rules we use an analysis similar to that of
Section III. First observe that the bounds given in (3.8)(3.9)
for the case p = 1 and q = I are valid. Therefore, we can write
an expression, similar to (3.10) for the cubic equation:

X,f > >dk0.522.
a1x12 +blx1 +c1

(4.3)

The result is that for

0.522c +±0.5222b1 +0.5223a1 <dI <v2c1 +2b1 +±2\2a,

we choosep1 = I andq1=q -
For the remaining cases we have

(N/- )C, + (W1)2b + (.VI- _1)3a
< 2(,2-- I)c, + 4(N/2 _-1)2 b1+ 8(X,2-1)3a,

choosep, = 1q, = 1;

7 C1+ ( 7X ) b1 (2X7 a)a1 di

<X2 C1+b1+ 4 al

choose p1 =, q1 =;
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TABLE I
Solution of (x-O.4)(x+CO.5) = C

ak bk ck Pk qk Ak Bk Ak/Bk Error

1 0.1003300) 01 0.100300 03 3.200000 303 J.5 0.5 0.500000D 03 0.5)30)) 03 01(.103000000000303D 01 -0.600O03D 03
2 0.200000) 00 D3150300) 30 J.225300J) 00 1.0 1.) 0.503000D 90 3.1533))) )1 ).3333333333333333) 00 0.666667D-01
3 0.2?50000 00 0.300000) 00 3.125300) 00 0.5 1.0 0.750000) 00 3.175000) 01 0.4285714285714286) 00 -0.285714D-01
4 0.125000) 00 3.1000)0) 3) 0.8125003-01 0.5 0.5 0.625000) 00 0.1625)3) 01 3.3845153846153846) 03 0.153846D-0l
5 0.8125000-ol 0.312500D-01 3.3593753-01 0.5 0.5 0.6875300) 0) 0.1584753)) 0I .4374074074)74374) 00 -0.740741D-02
6 0.350375D-O1 3.2331250-01 0.1914053-31 3.5 0.5 0.656250) 0) ).1556S5) 31 0.39622641509433963 3) 3.377355D-02
7 0.191406D-01 0.8984373-32 O.Q277343-02 3.5 0.5 0.671875) 0) 0.167188D 01 0.40186915887850463 00 -0.1869160-02
9 0.927734D-32 0.4785163-02 0.4711913-02 0.5 0.5 0.664063r) 0) 3.1665435) 01 0.3990)5103286384973 J0 0.938967D-03
9 0.471191D-02 0.231934D--02 0.233165D-02 0.5 0.5 0.667959D 00 ).1667973 01 0.430458334)749414) 00 -0.468394D-03

1) 0.2337650-02 3.1177983-02 5.1173400-02 3.5 0.5 0.5660150 D) ).165632) 31 ).3997655334114888) 00 0.234467D-03
11 0.117340n-02 3.584412D-03 0.5855863-03 0.5 0.5 0.666992) 00 0.166599r) 01 0.43011716451528590 03 -0.117165D-03
12 0.5855550-03 0.2933500-03 3.2930640-03 0.5 0.5 0.666504D 03 3.16665)3 01 ).3999414305273952) 30 0.585995n-04
13 0.2930640-03 0.146339D-03 J.146461n-03 0.5 0.5 0.666748) 09 0.1666753 01 0.4000292954445584) 00 -0.292954D-04
14 0.145451I-33 0.732S500-)4 ).73?4813-34 0.5 0.5 0.6665260 )0 3.155663) 31! ).399985351234B534) 00 0.1464390-04
15 0.7324810-04 0.3661513-04 3.366196D-04 3.5 0.5 0.6665870 03 0.165669r) 31 0.4000073241293441) 00 -0.732413D-05
16 0.3661950-04 3.183120D-34 3.1831093-04 3.5 0.5 0.5666563 00 0.1655650 01 ).3999953378582731) 30 0.3662130-05
17 0.1831093-04 3.915490)-Os 3.9155133-35 3.5 3.5 0.565572D 00 ).165567) 31 0.43)0018310490996) 00 -0.183105D-05
1B 3.915518D-05 3.457773D-05 J.457766D-05 0.5 0.5 0.6666640 0) 3.1665550 31 0.399999084i4712593) 00 0.915529D-06
19 3.4577660-05 0.2288800-05 0.2283813-05 0.5 3.5 0.656558D 00 3.1666573 01 0.40033045775332263 03 -0.457763D-06
20 0.2288810-05 0.1144423-05 0.114441D-05 ).5 0.5 0.6665660 03 0.1666673 01 0.39999977111837673 30 0.228882D-06
21 3.1144410-05 0.5722033-36 3.5722043-36 0.5 0.5 0.6665570 00 3.165657D DL 0.403030114440B961) 30 -0.114441D-06
22 0.572204D-06 0.2861)33-06 J.2861020-05 3.5 0.5 0.6665570 03 J.1565673 01 0.39999994277953550 00 0.572205D-07
23 D.2861020-05 0.1433513-06 0.143051)-06 0.5 0.5 0.566567D 33 ).165557D 31 0.4303300286102281) 00 -0.286102D-07
24 0 1430510-06 0.7152563-07 3.7152560-07 J.5 0.5 0.6665670 03 0.156567D 31 3.39999998569488493 03 0.1430510-07
25 0.715256f)-07 3.357528)-07 3.3576283-07 0.5 0.5 0.66S5570 3) 0.1655573 01 ).40003000715255731 00 -0.715256D-00
26 0.3575280)-07 0.178514D-37 3.1789140-07 3.5 0.5 0.6655570 00 ).1565673 01 D.39999999642372133 00 0.3576280-08
27 0.1788140-07 3.8943700-08 0.9940703-39 3.5 0.5 0.666667D 00 0.1555671 01 3.4000300317881393) 00 -0.1788140-08
28 0.8940701)-OR 0.447035D-38 3.4470350-08 0.5 0.5 0.666557D 09 ).1665673 01 3.39999999910593033 00 0.8940730-09
29 0.4470350-08 0.223517D-08 3.2235173-08 0.5 0.5 0.666657) 00 3.1656670 01 0.40000000044703481 00 -0.4470350-09
30 0.2235170-08 0.111759D-08 3.1117590-33 0.5 0.5 0.6655570 0) 0.1666673 01 0.39999999977648253 03 0.223517D-09
31 0.111759D-08 0.558794)-09 0.5587943-09 0.5 0.5 0.5665573 0) ).155567) 01 0.4000300301117597) 30 -0.111759D-09
12 0.558794D-09 0.279397D-09 3.279397D-09 0.5 0.5 0.5666570 00 3.1666670 01 0.3999999999441206) 03 0.558794D-10
33 0.279397D-09 0.139698D-09 0.1396983-09 3.5 0.5 0.666667) 00 3.1665570 01 3.4300300030279397) 00 -0.279397D-10
34 0.1396980-09 0.698492D-10 0.6984923-10 3.5 D.5 0.6665670 03 3.166667) 01 0.39999999998302) 00 0.139598D-10
35 0.598492D-10 D.349246)-10 0.3492450-10 3.5 0.5 0.6666570 00 3.1655673 01 0.4000)00000O69849) 00 -0.698491)-11
35 D.3492463-10 0.174523D-10 0.1746230-10 0.5 0.5 0.666657) 00 ).1555573 01 ).3999999999955375) 00 0.349246D-11
37 0.1746230)-10 0.8731143-lI 0.8731150-11 3.5 0.5 0.665557D 3) ).166667) 01 0.4000000)D0017462) D0 -0.1746230-11
38 0.8731160-11 0.4365593-li 0.4365573-11 0.5 0.5 3.666657D 0) ).155567D01 3.3999999999991269) 00 0.873121D-12
39 0.4365570-11 0.2182770-11 J.2182790-11 0.5 0.5 0.665657D 03 0.1666673 01 0.400000003D0)D4355D 30 -0.436554D-12
40 0.2182790D-11 .1)91413-11 0.1391393-11 3.5 0.5 0.6655570 03 D.155673 01 ).39999999999978173 00 8.2182840-12
41 0.1091390-11 0.545683)-12 0.5457043-12 0.5 0.5 0.5656570 0) ).165667D01 0.40000000001)0109r) 00 -0.109135D-12
42 81.545704D-l 0.2728623-12 3.2723420-12 0.5 0.5 0.6655573 30 3.156567D 31 3.3999999999999454) 30 D.5456750-13
43 0.272342n-12 0.136411D-12 0.1364310-12 0.5 0.5 0.6665570 02 0.1666573 01 0.40000000000002733 00 -0.272837D-13
44 0.1354310-12 0.6822573-13 0.6820530-13 0.5 0.5 0.665557) 30D D.15567D 01 3.39999999999499R54) 30 0.1364190-13
45 0 .6820530-13 0.340924r)-13 3.3411290-13 0.5 0.5 0.666657D 00 0.1666673 01 0.400000030033)0583 00 -3.681399D-14
46 0.3411290-13 0.1706670-13 0.1704620-13 D.5 0.5 0.6565670) 00 3.155667D 01 ).39999999999999660 03 0.341394D-14
47 0.1704620-13 0.851287D-14 0.853333D-14 O.8 0.5 0.6666657 00 3.1666671 01 0.40000000003331 73 00 -0.1706970-14
48 0.8533330-14 0.4275903-14 0.4256440-14 3.5 0.5 0.6665570 0 0).166667D 01 0.39999999999999913 00 0.860423D-15
49 0.4256440-14 0.2117993-14 3.2133450-14 3.5 0.5 0.666667D 03 3.156567D 01 0.43030000000000043 00 -0.430211D-15
50 0.213845n-14 3.137946D-14 J.1054q90-14 0.5 0.5 0.6655570 30 3.1656571 31 .3.999999999999998D 00 0.208167D-15

x/2- 1 Cl 2+ 1) b, + 2 a3

2 1 ./2 l)1 2&f-ib ±k219a

The procedure can be generalized now to higher degree
polynomials. The necessary steps are as follows.

Step 1: To write the recursion for the coefficients of the
.I -'-. 'o polynomial.

choosep1 = q1 = 1. Step 2: To develop the selection rules by using an
argument similar to (3.10) and (4.3).

We are ready now to write a set of selection rules similar to Step 3: To simplify the coefficients in the selection rules.
(3.15), i.e., the upper line in each range will be our selection The result is an algorithm which always converges to one
lne: positive solution. Table II is a numerical example.

di -0.414c1 -0.1713b, <0.071a1 then p 4, q1 = 1;
0.3535a1 thenpi =4,qi = ;

d1 -0.828c1 -0.686b1 0.5683a1 thenpi = 1, q = 1;

otherwisep1 = 1, qI =4 * (4.4)

V. RICCATI EQUATION

The main purpose of this section is to find the family of
functions for which bilinear transformations of the form (2.1)
can be used with functional consistency.

'n-nvidAmr thPiA lvnatnllaionfi
We note that as in (3.16) the constants which appear in b-lIblUCl t11 ]XlCCULI UdLIUn

(4.4) can be simplified. f1'+01f12+2b1Jl +Cl =0

For the proof of convergence and the rate of convergence
we can use the analysis of Section II, and therefore we developed where fi (x) is a function of the variable x, and a1, b1 , and cl
a method to approximate one positive solution of a cubic are functions of x or constants. The property of this equation
equation. as noted by Wynn [71 is that if the dependent variable fi is

di -0.707c1 -0.5b1
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TABLE II
Solution of (x-o.6)(x+O.5)(x+O. 9) = O

k ak bk k dk Pk qk A Bk Ak/Bk Error

1 0.1)03D 01 3.8000) 03 -0.39030 00 J.27003 00 0.5 0.5 0.5003r) 03 3.53201 )3 3.10300000333333D3 31 -0.43000D 00
2 3.?7009 00 0.63000 03 0.19759 00 3.1425D 00 0.5 1.) 0.5000) 33 0.1)33)D )1 0.523303030000303 323 0.13000 00
3 3.1425n 00 0.3288D 00 0.8300-01 0.1400D 00 0.5 0.5 0.50000 00 0.75000 00 0.65566656656s566s0 33 -0.66670-01
4 0.1400) 00 0.17000 J3 -0.1719)-31 2.5141D-01 3.5 0.5 0.50009 03 3.87533 33 3.57142857142857140 00 0.28579-01
5 3.5141D-01 0.85730-01 0.4649D-02 3.30180-01 0.5 0.5 0.50003))0 3.81?5023 0.51538451538461540 00 -3.15382-01
6 0.301%'-Ol 0.4294)-01 -0.11189-32 3.1395D-31 0.5 0.9 0.5OOOD 03 3.34382 33 3.5925925925925925D 33 0.74070-02
7 0.1395D-01 0.2148D-01 0.28530-03 3.72560)-02 0.5 0.5 0.5000D 00 0.8291D )) 3.6237735849056604D 22 -0.37740-02
8 0.7256D-32 3.1749-01 -0.70572-34 3.35570-02 0.5 0.5 0.50300 00 0.3353) 03 3.59813084112144530 03 0.18690-02
9 3.35570-02 0.53710-02 0.17730-04 J.17950-02 0.5 0.5 0.50030 03 0.8320) 3) 3.5019389671361502r9 00 -0.93930-03

10 3.17950-02 0.26869-02 -0.4421[-OS 0.93370-03 0.5 0.5 0.509') 3) 3.33430D 30 3.59953151592535850) 03 0.46842-03
11 0.89370-03 0.1343D-02 0.11070-05 0.44800-03 0.5 0.5 0.5003D 00 0.8330D )3 0.603?344665895111D 33 -0.23450-03
12 0.44901-03 0.6714D-03 -0.27650-35 3.2?37D-03 0.5 0.$ 0.53030 30 0.8335D 30 0.5998828353837141D 00 0.11720-03
13 0.22372-03 0.33570-03 0.69153-37 3.1119D-03 0.5 0.5 0.50001 00 0.33330) 30 0.53325859947?53472 00 -0.58630-04
14 0.1119D-03 0.16780-03 -0. 17280-07 0.55940-04 0.5 0.5 0.50030D 00 0.8334) 30 0.5999707045554415D 33 0.2930D-04
15 0.5594D-04 0.8397D-04 0.43212-O3 0.27930-04 0.5 0.5 0.5000D 33 3.8333D 20 0.6000146487951365D 33 -3.14651-04
16 0.27980-34 3.4196D-04 -0.1083O-08 3.13990-04 0.5 0.5 0.50303 00 0.83330 )3 2.59939257537365590 3o 0.73240-05
17 0.13990-04 0.23980-04 0.27010-09 3.6994D-05 0.5 0.5 0.50000D 2 0.83339 2J 0.600003,56213172590) )3 -0.36629-05
18 0.69940-05 0.10493-04 -0.67520-10 9.34970-05 0.5 0.5 0.50000 33 0.3333D 3) 3.59999816895390040 00 0.18312-05
19 0.34970-05 2.52453-35 0.15830D-13 3.17480)-05 0.5 0.5 0.50000 00 0.33339 32 0.50330091552874070) 00 -0.91550-06
20 3.17439-05 0.26230-35 -0.422)0-11 0.87420-06 0.5 0.5 0.50000 00 0.i3333 30 0.5999995422365774D 00 0.45782-06
21 0.8742D-06 0.1311D-05 0.1055D-l 0.4371D-06 0.5 0.5 0.5000D00 2.33339 33 3.6000002288819?320) 33 -0.22893-06
22 0.43710-06 3.6557D-06 -0.2637D-12 0.21860-06 0.5 0.5 0.50000 00 0.43331 3O 2.59999988555913380 )0 0.1144D-06
23 0.21862-06 3.3278)-0 0.65929-13 3.1093D-06 0.5 3.5 0.5000D 30 0.83331 00 0.6000300572234544D 30 -0.57221-07
24 3.1393D-06 3.16390-06 -0.16470-13 0.54640-07 0.5 3.5 0.50000 30 0.83330 3) 3.59999997138977190 30 0.28610-07
25 0.54642-07 3.81963-07 0.41040-14 0.27320-07 0.5 0.5 0.50000 00 0.83333) 30 0.60033001433511510 03 -0.1431D-07
26 3.27320-07 0.40983-07 -0.10131-14 0.13660-07 0.5 0.5 0.50000 30 0.33330 03 0.5999?99928474427D 00 0.7153D-OR
27 3.13662-07 0.20493-27 3.24320-15 0.68303-08 0.5 0.5 0.50000 00 0.83337) 33 3.5333)323357627870 00 -0.35760-08
98 0.58300-08 0.10242-07 -0.46980-16 0.34150-08 0.5 0.5 0.5000D 20 0.33333 22 0.5999999992118507D 00 0.1788D-08
29 3.3415D-08 0.51222-03 -0.13142-17 0.1707D-08 0.5 0.5 0.5000D 30 3.3333) 3) 3.5033033303940597D 00 -0.89412-09
30 3.17070-08 0.25610-08 0.13390-16 0.85370-09 0.5 0.5 0.50000 00 0.33339 33 0.59999993955296510 00 0.44703-09
31 0.85370-09 0.1281)-08 -0.16410-16 0.42692-09 0.5 0.5 0.50000) 02 3.33333 33 2.6000000002235174D 00 -0.22351-09
32 ).42590-0 0.64030-09 3.17160-16 0.21340-09 0.5 0.5 0.5000D 33 3.33331 03 0.59999999933824130 30 0.11182-09
33 0.21342-09 0.32012-09 -0.17350-16 0.10670-09 0.5 0.5 0.50000 00 0.83339 03 3.50000030005587940 23 -0.5583D-10
34 0.10673-09 0.15012-09 0.17400-16 3.5336D-10 0.5 0.5 0.50000 00 O.5133D 33 0.5999999999720603D 00 0.27940-10
35 0.53360-10 0.8304D-13 -0.17410-16 0.266RD-10 0.5 0.5 0.50000 33 0.8133n 3) 0.60000000001395980) 00 -0.13970-10
36 3.?6689-10 0.40023-13 0.17410-16 0.13340-10 0.5 0.5 0.53000 30 0.8333) 30 ).5999999999933151D 00 0.6985D-Il
37 3.13340-10 0.20019-10 -0.17413-16; 3.65700-11 0.5 0.5 0.50000 30 3.83330 33 3.6000300232034924D 02 -0.34922-11
38 3.66702-11 0.10003-13 0.17410-16 0.3335D-11 0.5 0.5 0.5000D 00 0.3333) 00 3.5999999399982538D 00 0.1746D-1l
39 0.33350-11 0.53029-11 -0.17410-16 3.1657D-11 0.5 0.5 0.5000D 00 0.8333D 30 0.6000000003208731D 00 -0.87310-12
4J 0.16679-11 0.25I0D-11 0.17410-16 0.83372-12 0.5 0.5 0.5000D 03 3.3333D 3) 3.59999999999955340 00 0.43661-12
41 0.8337D-12 0.12513-11 -0.17410-16 0.41690-12 0.5 0.5 0.50000 00 0.83330 00 0.6000200003332183D 30 -0.21830-12
42 0.41603-12 0.62533-12 9.17413-16 0.20840-12 0.5 0.5 0.5000D 33 0.33330 03 3.5999999999998908D 30 0.1091)-12
43 3.2284D-12 J.3126D-12 -3.17410-16 0.1042)-12 0.5 0.5 0.5000D 30 0.83330 33 0.5002333)003033545D 00 -0.54572-13
44 0.13420-12 0.15639-12 0.17411-16 0.52100-13 0.5 0.5 0.50000 00 3.83339 33 0.599999999?3997270 33 0.27282-13
45 0.52103-13 0.7814D-13 -9.17410-16 0.26063-13 0.5 0.5 0.5000D 00 0.83330 )0 0.6000000003330135D 00 -0.13640-13
46 0.2636D-13 0.39190-13 0.17410-16 0.13020-13 0.5 0.5 0.5000 000 0.3333 3D 3.5993999999993q32D 33 0.68149-14
47 0.1302D-13 0.1952D-13 -3.1741D-16 0.6519D-14 0.5 0.5 0.5000D 00 0.83332 33 0.6003000203)33234D 30 -3.34140-14
48 0.65190-14 0.97872-14 0.1741)-16 0.32510-14 0.5 0.5 0.5000 33 3.33330 33) .5999999999999983D 00 0.17072-14
49 3.32510-14 0.48682-14 -0.1741D-16 3.1634)-14 0.5 0.5 0.5000) 00 0.83330 23 3.5033300202300000D 30 -3.86049-15
53 0.16340-14 0.24603-14 0.17410-16 3.80840-15 0.5 0.5 0.50300D 03.3333 00 0.5999999999999995D 03 0.43020-15

replaced by the bilinear transformation (2.1), then the
functionsfk, k = 1, 2, also satisfy the Riccati equation Pkyk+l

(q+yk+1l)2
±Gk

-aa b Pk +ck

kqk+yYkl
k

fk'+ ahk + bkfk + Ck =O (5.1)

We develop below the recursion for the coefficients of the

(k + l)st equation by means of the coefficients of the kth

equation.
Let (5.1) be designated as the kth Riccati equation, and

assume that this is satisfied by Yk = fk -

From (2.1) we have

Pk
Yk ~ ~ Yk-

q

p,q*E 1}

If we multiply by -(qk + Yk+ 1)2 /Pk to normalize the
coefficient ofYk+1 ',we get

Yk+l p Yk+l Ek+ 2 )Yk+)

- q+bkqk
k =0

and Yk+I will satisfy the (k + l)th Riccati equation if

then since Ck
ak+l --

2ckqkbk+l bk

Ck±Pk=~Pkb*q
Ck+1 akPk bk k Pk

k= 1,2, .

we have

(5.2)
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We note that all the operations involved in (5.2) require only
"short" operations, since both Pk and qk are simple binary
constants.

Theorem 3: If I Yk t satisfies the Riccati equation, then A
=bk2- 4akCk is independent of k [4].

Proof: We use the recursion (5.2) and get

4b cq- 4cC=2 2
b 2 C+ b2+ k +bk+1 4ak1ck1 bk+4kk

4b c q~ 4ck2q 2=b24kk k 4Ck kk 2
Pk 2- =bbk -4akCk

Pk Q.E.D.

In the analysis that follows we find continued fraction
expansions of certain functions by the use of the general
solution of the Riccati equation. Let

y' + ay2 + by + c = 0 (5.3)

be a Riccati equation, with a, b, and c constants.
In order to find the solution of (5.3) we integrate by parts:

dy =-dx
ay2 +by +C (5.4)

2akyk + b*k
-xk -d = arctan 2

where dk is a constant of integration.
The solution is therefore

b 1
Yk= a --tanl (Xk±dk) k= 1,2,--

Except for the first part of the solution which is a linear
transformation, we see the consistency of the method, because
if a set of selection rules are developed for tan x it can be
used for each step and therefore evaluation of this function
will be possible.

Another important function which can be included is ex.
We have

y =y, A=l*
The kth step solution is

2aXyk +bk I
-xkdk II 2akyk + bk+ 1

or

bk+1 1

Yk=

akak ak(exk - 1)
k= 1,2,

and the solutions are

Jdy _ 1
In 2ay + b->(b2-4ac)

ay +by + c 1(b2-4ac) 2ay + b + V(b2-4ac)
1

rtn
b + 2ay

arctanh

8v(b2 -4ac) Nf(b2-4 ac)

when b2-4ac > 0;

=b±2 whenb2-4ac=0;
b 2a +a b

arctan
d(4c-b2) V(c-b

whenb2-4ac<0. (5.5)

The preceding solutions can be used now for the continued
fraction expansion of the inverse functions which appear
explicitly in the solution.
We start with the case

y = tan x. (5.6)

The Riccati equation for (5.6) is

y'=y2 + 1, y(0) = 0.

We note that -A = 74ac-b2 = 2.
Now we use a bilinear transformation of the form (2.1).

The result is a differential equation of the type (5.1) with the
recursion (5.2). By Theorem 3 it follows that the solution for
each equation k is of the type (5.5) with -A >0, and therefore
we get for the kth step:

Again we note that if a set of selection rules can be
developed for ex then it is possible to carry the process for
each step and therefore to find the continued fraction
expansion for the exponential function.

For the case where A = 0 we have several possibilities.
1) b =a = O,y' + c = 0 with the solutiony =-cx +d.
2) b = c = O,y' + ay2 = with the solution

Yk ax+b*
3) a*O,b#O,c+O,andb2-4ac=0.
Case 3) is particularly interesting because there exists two

constants S and T such that

ay2 +by+c=(Sy+±)2
and by Theorem 3, this relation is true in each step of the
iteration. The resulting Riccati equation has the form:

Yk + (-1)k+l V(x)(Sk,yk + Tk)2 =0 k = 2,

where

S 2=ak =ak'
2SkTk =bk

Tk = k;

and V(x) is a function of x or a constant.
The recursion relations for Sk and Tk that follow from (5.2)

are
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Sk+l = Tk/p

and

Tk+l = (Skpk + Tkqk)l.k
Since ip is not a desired feature, Pk = I can be assumed in
each step.

It is anticipated that the solution of many functions can be
expanded as a continued fraction, provided that an adequate
set of selection rules for Pk and qk can be found.
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Data Manipulating Functions in Parallel
Processors and Their Implementations

TSE-YUN FENG

Abstract-This paper shows that there exists a class of functions
called data manipulating functions (DMF's), in sequential as well as
paralel processors. The circuits used to achieve these functions can be
considered to form an independent functional block, caUed a data
manipulator. A basic organization applicable to both sequential and
parallel processors is then suggested. The main deviation of a parallel
processor orgaization from the conventional Von Neumann
organization is seen to be in the bit-slice (bis) manipulating functions. A
comprehensive set of bis manipulating functions from the categories of
permuting, replicating, spacing and masking is given. Implementation of
the last category, the masking functions, is usually through a mask
register by defining its content (mask pattern). It is found that for
many operations the required mask patterns are periodic and/or
monotonic. The upper bounds of generating these patterns are found.
The techniques and designs of two data manipulators for the first three
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The author is with the Department of Electrical and Computer
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categories of DMF's (permuting, replicating, spacing) are given. Periodic
and monotonic mask patterns are also used to help in implementing
some of these functions. In addition, it is shown that the data
manipulator designs presented in this paper are extremely flexible to
suit the requirements of various parallel processors.

Index Terms-Celi communications, data manipulating functions,
data manipulator, logic design, parallel processing, parallel processor
organization, processing characteristics.

INTRODUCTION

IT is well known that as the switching speeds of computer
ldevices approach a limit, any further improvement in
computer throughput has to be in increasing the number of
bits which can be processed simultaneously. Thus, given the
same cycle time the slowest method of processing is by
bit-senial (one bit at a time). The processing speed is increased
by an order of magnitude or more when a number of bits,
called a word, can be processed simultaneously. This
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