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Abstract-This paper considers the implementation of a fast
Fourier transform (FFT) structure using arrays of read-only mem-
ories. The arithmetic operations -are based entirely on the residue
number system. The most important aspect ofthe structure relates to
the scaling arrays, which are required to prevent overflow. Because of
the limitations of the number system, scaling factors- have to be
chosen on an a priori basis. This paper develops optimum procedures
for choosing both scaling factors and the position of scaling arrays in
the structure. Some examples are presented relating to the filtering of
speech via a convolutional filter structure.

Index Terms-Error analysis, FFT structures, high-speed filters,
optimum hardware realization, residue number system (RNS),
ROM arrays.

I. INTRODUCTION

A. Problem Statement
T HE fast Fourier transform (FFT) algorithm has been

used to compute the discrete Fourier transform (DFT)
in a number of diverse applications [1]-[3]. The hardware
realizations of these FFT processors have ranged from
general purpose digital computers to dedicated large scale
integrated circuits [4], [5]. Recently, read-only-memory
(ROM) implementations of the FFT have been considered
because of their potential for high-speed parallel architec-
ture [6], [7].

In general, an FFT cannot be implemented exactly. An
integer-based realization of the FFT implemented with a
finite-word length processor has two sources ofquantization
error associated with it. Arithmetic operations may intro-
duce an error related to the rounding or truncation of
arithmetic results, and errors also arise when FFT calcula-
tions are performed with inexact coefficients. In addition, if
the FFT processor is implemented in a real-world signal
processing-environment, quantization errors introduced by
the associated analog-to-digital converter (A/D) must be
considered.
The authors are engaged in the development of an ROM

oriented realization of an FFT processor using the residue
number system (RNS) [7]. This type of realization offers the
advantages of using a simple hardware structure of parallel
arrays- of ROM's to perform exact integer based arithmetic
operations at high speed. However, quantization errors
associated with inexact coefficients and scaling operations,
among others, must still be considered.
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There are quantization problems associated with the
proposed RNS implementation that have not been fully
treated in the literature. The most closely related papers [8],
[9], deal primarily with the radix-2 FFT and consider only
fixed-point arithmetic. This paper presents an analysis of
radix-4 FFT quantization error based on a consideration of
scaling, integer conversion, dynamic range of the number
system, number of stages and A/D quantization.

B. Residue Number System
The RNS has received varying degrees of attention from

workers in the field during the last two decades. The use of
the RNS is undergoing a current revival [10], owing to the
present availability of LSI hardware that appears eminently
suited to performing high speed operations in the parallel
RNS structure. Although some current work is being
directed at the problem of building a general purpose
floating point arithmetic processor, using the RNS [10], a
number ofmore immediate applications appear to lie in the
direction of special purpose digital signal processing hard-
ware. Recent, independent, investigations have discussed the
RNS realization of both nonrecursive digital filters [11], and
recursive filters [12], [13]. The common feature that emerges
from these works, is the use of ROM's to provide parallel
arrays of look-up tables for performing the arithmetic
operations.
A -number in the RNS is represented by the L-tuple

X = (Xo, XI,X2, * XL- 1) where xi = X modulo mi; this is
written xi = X jmi. Binary operations of + or , modulo M,
between X and Y have the following property Z = X o Y

I ZIi =zi= IXiYilm.i (1)
where o,-, +, or*
The binary operations of + and - within a finite integer

ring (in which results of binary operations are computed
modulo M), may be realized within 1 independent rings in
which the results of operations are computed modulo mi,
where M and the {mi} are related by

I- I

M= mi.
i=O

(2)

The only proviso is that the {mi} be relatively prime. If the
{m*} are made small enough, then the results ofoperations on
all combinations of inputs can be prestored in ROM's, and,
by combining a sufficient number of rings, a viable dynamic,
range, M, for the number systems can be generated. The
RNS is much more suitable for parallel structures than
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weighted magnitude representations (such as the binary
number system), because arithmetic operations are fully
independent between digits. This allows computations per-
formed over a large dynamic range, to be realized, indepen-
dently, in systems with much smaller dynamic ranges.

There have been many previous reports of high speed
FFT realizations [6], [14], [15], however, these have used the
binary number system in which to perform the required
arithmetic operations. This invariably leads to a prolifera-
tion of binary adders and multipliers which have to be
interconnected in a pipeline arrangement, for high through-
put; a job made difficult by the radically different structure
of each network. In using an array ofROM's, an extremely
simple structure emerges that offers identical characteristics
for any required operation and is. inherently simple to
pipeline. As an example, consider the problem of pipelining
an array designed to compute the function
z = (a + b) (c + d). Figure 1 shows the array for one ofthe
moduli in the system. The only control function required is a
latch pulse. The buffers are used to provide both power gain
and delay. The delay allows the (i + l)th stage to capture
data before the address lines of the ith stage change. The
system throughput rate is the inverse of the ROM access
plus latch times. Conservatively 10 MHz. A further, hidden,
advantage when using ROM's, is that binary operations
with constants can be precalculated and stored in theROM.
This turns out to be important when designing scaling
arrays [13], and leads to a significant hardware saving.
Scaling is important, since in practice we are not interested
in computations modulo M, rather, we require to approxi-
mate to calculations carried out in the infinite field of real (or
complex) numbers. Thus while arrays of ROM's can per-
form exact integer based arithmetic operations in a high
speed parallel manner, quantization errors associated with
inexact coefficients and especially scaling operations must
still be considered. The use ofROM arrays in implementing
RNS operations has been reported in [13].

In the RNS, scaling is difficult because the digits do not
convey any immediate information about the magnitude of
the number. Further, the scaled number is usually not an
integer and this requires some form ofestimation procedure
to be implemented. Two techniques have been developed
using look-up tables [13]. One is to iteratively modify the
number in order to use exact division to obtain either
truncated -or rounded results. The other is to use a summa-
tion of scaled metric vector estimates to obtain the result. In
terms of hardware saving the latter is better than the former.
However, the error bound in the latter depends on the
number of scaling moduli and does not lend itself to a
general treatment. Therefore, throughout this paper, the first
scaling algorithm is considered to be used. It is possible to
scale fairly efficiently when the scale factor is a product of
some of the moduli, but even in this case the hardware cost is
fairly high. For example, scaling a 6 moduli system by the
product of 3.ofthe moduli, requires a minimum of33 ROM's
[13]. In comparison, the multiplication of 2, 6 digit numbers
only requires 6 ROM's. If X is the original number, k, the
scale factor, and Y, the scaled number, the scaling process

can, be represented by the following rational system,

x , iI.-

x [XL
YKX KD Z

K R
K K D (3)

Here, X is an integer with the denominator, D, to norma-
lize its magnitude, and [ ] denotes that the expression is to
be taken to the closest integer. A viable scaling procedure
requires that the scale factor must be predetermined (no
dynamic normalization is allowed) and scaling operations
must be kept to a minimum. In order to satisfy both
requirements we will, in general, perform several exact
arithmetic operations before scaling by a predetermined
constant. In this case the dynamic range of the numerator
may grow considerably after each operation. In order to
preserve the rational system, it is necessary to increase the
denominator to match the range growth of the numerator
when cascading multiplications. Since the denominators are
known a priori at every stage, one needs only to analyze the
operations performed on the numerator. One can, therefore,
consider that the number system is purely integer. This
approach has been adopted in the subsequent error analysis.

C. Summary of Paper
As residue arithmetic is carried out in the integer number

system, it is necessary to determine the radix ofthe FFT that
minimizes the number of cascaded multiplications for a
given number of samples. The optimal radix of the FFT is
shown, in this paper, to be equal to 4k, k = 1, 2.
While the paper is primarily concerned with the radix-4

FFT it is shown that the mean-square value of the number
growth associated with each stage of a radix-r FFT is equal
to r. A theoretical worst case upper bound ofnumber growth
is derived that is data independent. An experimental study of
the upper bound of number growth associated with typical
input signals is also presented. A quantization error analysis
of the radix-4 decimation-in-time (DIT) FFT that includes
three forms of quantization error is developed in the paper.
Errors due to A/D quantization, coefficient (twiddle factor)
rounding and scaling quantization are explicitly covered.
A generalized expression for the relative root-mean-

square (RMS) error has been, derived which is a function of
the parameters associated with the desired realization.
Certain of the parameters have been set to practical values
and a simplified error expression is determined. A design
procedure for selecting optimal values is also given. Errors
arising in an actual filtering example are described. The
specific results are summarized in the Conclusions.

II. THE RADIx-4 FFT
A. Introduction
The DFT pair of the complex N point sequence {x(n)} is

defined as
N-i

X(k)- x(n)WNk k=0, 1, , N-1 (4)
n=0
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To other Latches

|(a b) + (c * d) m

16 < m. < 32
1 - latch pulse

Fig. 1. Pipelined array for the function (a b) + (c d) I.i.

and

i N-1

x(n) = E X(k)Wk
k=O

where j= -1, WN = exp (-j27r/N), and {X(k)} are

complex.
The FFT is simply an efficient method for computing the

DFT. In fact, when N is a composite number, the N-point
DFT can be, computed as a collection of smaller DFT's in
conjunction with additional coefficients, commonly called
twiddle factors [16]. If N = re" where r and m are positive
integers, the factors ofN are equal to r and the algorithm is
called a radix-r algorithm. When an N-point DFT is
computed using a radix-r algorithm, a structure with m
stages, where each stage includes N/r basic r-point trans-
forms, results. The basic form of the resultant r-point
transform with a decimation-in-time (DIT) algorithm is
given by

r- 1
Xi+ l(k)= xi(n)(W W r (6)

n=O0

where {xi(n)} denote the numbers at the input ofthe ith stage,
and (WtN) are the appropriate twiddle factors.
The basic calculations of the r-point transform, as shown

in (6), can be decomposed into two steps. First the r-input
points are multiplied by twiddle factors. Then the r-point
DFT is computed. The above procedure is reversed for the
decimation-in-frequency (DIF) algorithm. Fig. 2 shows a
simplified representation of the r-point transform DIT
algorithm. When the radix of the FFT is either 2 or 4, there
will be no nontrivial internal coefficients requiring multi-
plication operations in the r-point DFT. This results from
the fact that j:v in (6) equals 0, ± 1, or +j when r = 2 or 4. It

X. (0) -

Wt
X. (1)

W 2t

X.(22)

X (r-1)t
X. (r-1)

r-POINT

DFT

- i+l

> xi+l (1)

-: Xi+ (2)

0

S

Xi+l (r-1)

Fig. 2. Simplified representation of an r-point transform DIT algorithm.

is thus apparent that 4 is the largest radix without internal
multiplications occurring in the r-point DFT.

B. Optimal Radix Considerations
In the integer number representation used in this paper,

the authors consider that the arithmetic results are retained
with full accuracy of each basic operation of addition,
subtraction, and multiplication. When the FFT is imple-
mented using integer number arithmetic, all noninteger
coefficients, which include twiddle factors and nontrivial
internal coefficients in the r-point DFT, must be normalized
to integers. Since multiplication results are retained to full
accuracy, the magnitudes ofnumbers at subsequent stages of
the FFT increase very rapidly due to the cascaded integer
multiplications. In the RNS, the range of numbers that can
be uniquely represented in residue code is equal to the
product of all moduli, and hence all numbers must be
properly scaled within the range of this number system to
prevent overflows.

In terms of using integer arithmetic, we are interested in
maximizing the ratio of the number of binary operations to
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TABLE I
NUMBER OF CASCADED MULTIPLICATIONS FOR RADICES OF 2, 4, 8 AND 16

r N 64 128 2g6 512 1024 1 2048 4096 N Xr
2 45 6 7 8 9 10 m- 2

4 2 '3 4 5 rn-I

8 3 5 7 (m-1)+m

*~~~~~~~~~~~~~~~*
16. 5 (m-1)+ m

In the radix-2 FFT, there are two stages where the twiddle

factors are trivial integers, such as 0, ±1, ±j. Otherwise,

there is only one stage having these properties.

** The second term, m, is the number of cascaded internal multi-

plications in the r-point DFT's.

the number of scaling operations. This is especially impor-
tant when the RNS is used, since scaling operations are
cumbersome to implement in hardware [13]. Since the
magnitudes of numbers in the FFT are increasing mainly
due to multiplications, then a radix-r FFT having a mini-
mum number ofcascaded multiplications is obviously desir-
able from a scaling point of view.
When the number of samples N is equal to a power of 2,

the FFT may be realized using radices of 2", where k is a
nonnegative integer. Table I shows the number ofcascaded
multiplications for various values of r and N. The analytic
relationships are shown in the last column. Here we assume
that the 8 and 16-point DFT's in the basic calculations ofthe
radix-8 and -16 FFT's are computed in the same manner as
small-N WFTA's described by Silverman [17], [18]. Thus,
Table I has been generated on the basis that there is only one
multiplication level within the r-point DFT for r = 8 and 16.
For radices of 2 and 4, the numbers shown in Table I
represent the number ofcascaded twiddle factors only, while
for radices of 8 and 16, the numbers represent the sum ofthe
cascaded twiddle factors and cascaded internal multi-
plications in the r-point DFT's.
From Table I, it can be seen that the radices of 4 and 16

have the smallest number of cascaded multiplications, and
thus the use of these radices will minimize the number of
scaling operations required. In general, the hardware neces-
sary to realize the basic calculation unit ofa radix-16 FFT is
much more complex than a radix-4 FFT. The choice
between radix 4 or 16 from a speed and cost point of view
depends upon the manner in which the FFT processor is
realized (array, parallel iterative, cascaded, sequential) [19].
However, a radix-1-6 realization severely limits the viability
of a processor due to the number of samples N that can be
selected. Thus in this paper, radix 4 is considered as the
optimal realization radix. A detailed radix-4 DIT basic
calculation can be seen in Fig. 3.

C. Mean-Square Bound
Applying Parseval's theorem to (4), we have

N-1 N-1

E I X(k)12=N N' Ix(n)I2
k=O n=O

Re[Xi+l )]

[ i+l(1)]

Im[xil (0)]

Re[Xi+l (1)]

Re[Xi+l (2)]

[ i+l (2)]

I[xi+l (1) ]

Re[Xi+l (3)]

IM[WN 3ti
Fig. 3. Radix-4 DIT basic calculation:

1 N-1 1 N-1
N E IX(k)12=N Z 1x(n)12. (7)

Equation (7) indicates that the mean-square value of the
result is N times the mean-square value of the initial
sequence. Since there are m similar stages for a radix-4 FFT
(N = 4m), the mean-square value may increase by (N)I/m
(= 4) at each stage. In fact, for a radix-r FFT, we show that
the mean-square value will increase by r at each stage, as
follows.

Letting yi(n) = xi(n)(W")n in (6), one obtains
r-i

Xi+I(k)= E yi(n)W.
n=O

(8)

Equation (8) can be recognized as an r-point DFT with yA(n)
and xi+ 1 (k) as the input and output, respectively. Applying
Parseval's theorem again, one obtains

r-1 r-I
Z Ixi+I(k)I2= r E Iyi(n)12.
k=O n=O

(9)

Since yi(n) I2 = xi(n) 12 (W1NY' 12 and N(Wt) 12 = 1, then
(9) becomes

r-1I r-1

E xi+ l(k) I' = r E- xi(n) 12.
k=O n=O

Equation (10) can be generalized as

(10)

834



TSENG et al.: FFT STRUCTURES

N-1 1 N-1
NE |xi+i(k)l = r N E xi(n)|. (1

Equation (11) shows that the mean-square value will in-
crease by r at the output of each stage for a radix-r DIT
algorithm. This property also holds for a radix-r DIF
algorithm, although the proof is not shown here.

D. Theoretical Worst Case Upper Bound
In the proposed FFT processor the upper bound of

number growth must be derived in order to be able to avoid
overflow problems. Specifically, one would like to know the
maximum magnitude of both the real and imaginary parts
that occurs at the output of each stage. When r = 4 in (6),
one obtains

3

Xi+ (k) = E xi(n)(WtN) Wn4k. (12)
n=O

From (12) one can compute a worst case upper bound for
the number growth at each stage. Recognizing that

n
27rnt 27rnt

(WN) = COs N -j sinNN snN'

one can rewrite (9) as

3~ Uo 27rnt- ~~xi+ I1(k)=E t[Re (xi(n)] cos N~

+ Im [xi(n)] sin N

+ jJIm [xi(n)] cos N

27rnt pk-Re [xi(n)] sin N4 (13)

where Re (*)and Im (*)denote the real and imaginary parts
of the term enclosed, respectively. Since, for a 4-point DFT,-
each output point (real or imaginary part) is always
computed by adding or subtracting 4 input points, then,
from (13), one obtains

max {Re [xi+1(k)]|, Im [xi+ 1(k)]I}
< max { Re [xi(k)] , Im [xi(n)] }

2icnt . 27rntcos N + sin -

or

max {Re [xi+ 1(k)]|, Im [xi+ l(k)]I}
max {IRe [xi(n)]I, Im [xi(n)] }

cos N + sin 2nt . (14)

It is seen from (14) that the theoretical worst case upper
bound depends only on the magnitudes of twiddle factors,
which are themselves independent of the magnitude of the
input sequence. The upper bounds computed according to

TABLE II
THEORETICAL WORST CASE UPPER BOUNDS OF THE NUMBER GROWTH AT

EACH STAGE OF A RADIX-4 DIT FFT

tage No.

N 1 2 3 4 5 6

64 4 5.027 5.042

256 4 5.027 5.042 5.058

1024 4 5.027 5.042 5.058 5.058

2048 4 5.027 5.042 5.058 5.058 5.058

(14) are given in Table II for N ranging from 64 to 2048.
From Table II it can be seen that the upper bound on
number growth for a given stage is independent of the
number of samples N. In addition, for any given value N, the
upper bound is seen to increase as the number of stages
increase until, for all practical purposes, amaximum value is
reached. In Table II no worst case upper bound for number
growth greater than 5.058 was seen to occur.

Scaling factors determined from the theoretical worst case
bound will definitely ensure the overflows do not occur but
at the same time unrealistically constrain the dynamic range
of the hardware.

E. Experimental Upper Bound
Besides the theoretical upper bound developed in Section

D it is desirable to experimentally determine the number
growth that is associated with commonly occurring input
sequences, in order to obtain a more realistic value.
To facilitate the experimental determination of number

growth, a radix-4 DIT FFT program was written and
executed on a digital computer. The number of samples N
was chosen to be 1024. Three different sets of input se-
quences, including uniformly distributed pseudorandom
numbers, sine waves plus pseudorandom numbers, and
speech signals were used.
In one set of experiments, the inputs comprised pseudo-

random numbers for both the real and imaginary compon-
ents. These components were uncorrelated and fell within
the set (- 1, 1) for the first case, and (0, 1) for the second case.
The experimental upper bound on number growth
determined for these two cases is shown in rows 1 and 2,
respectively, of Table III.

In the second set of experiments, two sine waves plus
pseudorandom numbers were used as the input sequences.
The general form of the input sequence is given by

a(n) + 0.5 sin 25 + 0.25 sin Y28 + 0.25 sin (15)256 128

where in the first case {a(n)} are pseudorandom numbers
lying in the range -0.5 < a(n) < +0.5 and in the second
case pseudorandom numbers lying in the range 0 < a(n) <
1.0. The experimental upper bound on number growth
associated with these two cases are shown in rows 3 and 4,
respectively, of Table III.
The number growth associated with typical speech wave-

forms was also investigated. The corresponding upper
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TABLE III
EXPERIMENTAL WORST CASE UPPER BOUNDS OF THE NUMBER GROWTH AT
EACH STAGE OF A RADIx-4 DIT FFT FOR VARIOUS INPUT SIGNALS

Stage
No.

Input 1 2 3 4 5
Type

1 3.62 3.89 2.25 1.80 2.15

2 3.74 3.95 3.59 3.86 3.84

3 2.95 3.08 2.85 3.36 3.76

4 3.26 2.67 3.26 3.88 3.95

5 2.66 2.95 3.32 4.01 4.00

TABLE IV
DESIGN-ORIENTED RESULTS FOR VARIOUS SCALING SCHEMES; N = 1024

bound on number growth is shown in the fifth row of Table
III.
Each of the experiments delineated in Table III were

repeated ten times. The upper bounds shown in Table III
represent the worst cases that occurred within the ensemble
of data generated.
From Table III it can be seen that an experimentally

determined upper bound on number growth equal to 4 is
quite-reasonable for the input sequences considered.

III. ERROR ANALYSIS

A. Introduction
In this section the relative error associated with an FFT

processor is derived from a consideration of errors due to
A/D converter quantization noise, the integer conversion of
twiddle factors and scaling. The analysis is based on the
assumption that the arithmetic results are retained with full
accuracy at each basic operation of addition, subtraction
and multiplication. Since the magnitude of the numbers
increase very rapidly with cascaded integer multiplications,
a scaling operation to prevent overflow is required. In
Section III-B, the statistical models for the various types of
error are discussed. In Section III-C, a general error expres-

sion (46) is derived as a function ofsix parameters associated
with the proposed structure. Section III-D, several practical
assumptions and constraints are made on the parameters
involved. This leads to (59), an expression that can be used as
the basis for a practical design procedure. While the expres-
sions are such that practically useful closed forms cannot be
derived for many of the parameters, the essential interrela-
tionships have been tabulated in Table IV. Finally, the
manner in which the results of this section are used in the
design of the proposed FFT processor, is explicitly dis-
cussed. The theoretical results have been experimentally
verified with a high-speed convolution filter used to perform
speech processing operations.

B. Statistical Error Models
In this section quantization errors associated with A/D

conversion, twiddle factors and scaling operations are con-
sidered. In order to determine their effects on an FFT
processor, it is first necessary to establish the error models
being used to characterize each source of error.

1) AID Quantization Error Model
There are a number of different types of error that may be

introduced by an A/D converter [20], [21].
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Errors associated with quantization and saturation are
the most common types. As the input level can always be
adjusted to minimize saturation effects, only quantization
error will be considered here.

If sampled data are represented by B bits, including the
sign bit, and the signal falls within the range ± U then
the converter step size Q is equal to

(16)

It is noted that Q = 1 in the integer number system. When
the quantization noise is assumed to be uniformly dis-
tributed with zero mean value, the mean and variance ofthe
converter quantization error have been shown [21] to be

eQ= 0, eQ= 1Q2= l (17)
Equation (17) has been considered adequate to represent
converter quantization error, even though correlation
effects have been neglected, because for practical values ofB
the magnitude of the quantization error introduced by the
converter, when compared with twiddle factor and scaling
errors, is small.

2) Twiddle Factor Error Model
In the propos.ed realization of the FFT processor, the

error associated with the integer representation of the
twiddle factor must be considered. An integer conversion
factor pi must be introduced as shown in Fig. 4. Typical
numerical values are also included in this figure.

In the ROM oriented implementation envisaged, the
integer conversion factor pi for the twiddle factors, must be
predetermined and the integer representations ofthe twiddle
factors stored in ROM's. The error associated with the
integer conversion of a twiddle factor c is defined as

e, = Re {es} + j Im {e1}

= Pic - [PiC]R
= (pi Re {c}- [pi Re {C}]R)
+ (Pi Im {c}- [Pi Im {C}]R)- (18)

The roundoff procedure is such that the errors Re {e,} and
Im {e1} are uniformly distributed in the range [-0.5,0.5] and
thus

e, = 0

and

xi(o) 3Pio
P.

,

Xi (1) [WN* ,]

[wt

xi(2) [w3

X. (3) [ N * PiR

4-POINT

DFT

- >. X.i (0)
i+l(J )

A
o xi+l (2)

.iFl (3)

EXAMPLE: p= 65, W = cos -|-
j sin 26

= 0.92388 - j 0.38268

[WN * Pi1R = 60 - j 25

[WN2* Pi]R = 46 - j 46

[WN Pi1R = 25 - j 60

Fig. 4. Integer representation of a 4-point transform DIT algorithm.

the original algorithm and the estimate algorithm [13]. The
errors due to the latter depend upon the specific moduli.
Throughout this paper, we will assume that the former is
used.' The output from this scaling pro'cedure is

Y= [-] (20)
where X is the input and K is the scale factor.

In order to define scaling error, let V be the complex
integer to be scaled and K be the scale factor, where K is a
positive integer. The scaling error, es, is given by

es = Re {es} + j Im {es}

K KjR

- (Re (V - [Re {V}J)

+( K T KV]) (21)

The same roundoff procedure is used here as we used in (18),
hence, Re {es} and Im {es} have the same probability
distribution as Re {e,} or Im {e,} and the mean and variance
are given by

IeiI' = (Re {ei})2 + (Im {e} -= 6. (19)
3) Scaling Error Model
In the ROM oriented implementation considered, the

magnitude of the numbers that occur at each stage must be
known. The study of number growth given in Section II-D
allows one to choose a scale factor capable of constraining
the number growth to a desired value.
The errors associated with a scaling operation are either

roundoff or trunction errors depending upon the nature of
the hardware. There are two different scaling algorithms
that have been developed for the look-up table approach,

es=0 and 2- 6
| es 69 (22)

respectively.
C. rms Quantization Error Analysis

In this section an expression for the relative rms error a , is
derived. If the true value of the DFT is given by the complex
sequence {X(k)} and the sequence generated by the FFT
processor is {X(k)} then the relative rms error a , is given by

1 The scaling algorithm generates a zero mean error by the addition of
one half the scale factor to the input.
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OUTPUTS TWI I OUTPUTS

FROM THE FACTORWDE 4-POINT - OF THE

(i-l)-TH
I MULTIPLIER DFT

L
i-TH

STAGE l I STAGE

i
XI (n)
IN

XI (n)IN

IN (n)IN

i
x .(n)DFT

(n)
DFT

EF (n)
DFT

iXOUT (n)
A-

OUT

ET (n)OUT

Fig. 5. Basic module of the ith stage of a radix-4 FFT.

{Re [X(k)] - Re [X(k)]}2 + 1/2

{Im [X(k)] - Im [k(k)]}2

{Re [X(k)]}2 + {Im [X(k)]}2
k

(23)

The rms error ox1 shall now be developed in terms of
converter quantization error, twiddle factor error, and
scaling error. In this analysis, it is assumed that these three
sources of error are uncorrelated.

In the following analysis it is necessary to delineate a

number of variables with special care. A typical stage in the
radix-4 FFT processor consists of N/4 basic modules that
have the form shown in Fig. 5. Each basic module has
twiddle factors and a 4-point DFT associated with it. The
variables associated with the analysis of the basic module
are also included in Fig. 5. A superscript indicates the stage
number while the subscript indicates the appropriate input
or output. The symbols {xin(n)} and {x F-T(n)} are used to
represent the true values of the complex sequence that exist
at the input to the twiddle factor multipliers and to the
4-point DFT of the ith stage of the FFT processor, respec-
tively, whereas, {'in(n)} and {xirFr(n)} are the scaled integer
representations of the corresponding computed value. The
error between two points is given by

E,'n(n)= 0 and IEV(n)I2= 2= 6, (27)
since 0 equals 1 at the input to the first stage.

In the first stage of a radix-4 DIT FFT, the twiddle factors
are equal to 1 and hence the integer conversion factor Pi is
also equal to 1. Thus no multiplication operations are
associated with the first stage, and one has

EDFT(n) = V(n). (28)
There are, however, four-input points associated with each
complex output point. Therefore, the error associated with
the output of the first stage is given by

ElUt(n) = EDFT(n) = E. (n)

and

|E'u (n)|=4 |EFT(n)1= 4 IE (n)2= 4 (29)

The A/D converter quantization error introduced into the
input of the first stage continues to propagate through the
remaining stages.

2) Twiddle Factor Error
For the second and subsequent stages the twiddle factors

are no longer trivial and the errors introduced by integer
conversions must be considered. Let c denote the true value
of a complex twiddle factor in the second stage. From (25),
one obtains

or

E! (n) = x .(n)-0in(n)

EDFT(n) = XDFT(n) -- XDFT(n)
Pi

(24)

(25)

where 0 is a factor that takes into account the integer
conversions and scaling operations.

1) Converter Quantization Error
The mean-square value of the input to the first stage is

defined as I

a2 = Ix(n)2. (26)

The error present at the input to the first stage are due to
A/D converter quantization errors and thus from (17) and
(24) one has

0
DFT(n) = xDFT(n) - -XDFT(n)P2

12= x;(n)c - -xi(n)[P2CIR

where 0 = l/pi = 1. Since

El t(n) = x tu(n) -xi(n) = x4 (n) - 4(n)
one can rewrite (30) as

E2T(n) = xi (n)c- I

*[Xut(n) - E'ut(n)][P2C]R.
Using (18) one can write (31) as

EDFT(n) = El t(n)(p -c-xout(n)(i).

(30)

(31)

(32)
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Thus,

EDFT(n) = 0 (33)
and

EDF(n 12=1Ot)|2 +
e

)=n IEout(n)I2( 2

P2
~ 1tn2+xlu(n)le p2P2

4 *e(n) + TIx7i(n) 12 6 2
out out2

P2

11=42eQ2+4.-Ix~(n)I26p
4 + 2. (34)

However, since only 3 integer conversions associated with
the twiddle factors contribute roundoff-error as shown in
Fig. 4, (34) can be written as

1EDFT(n) =4 .1 3 2 a

4 1 a2
6 2p2

Let ki be the number of stages between the (i - 1)th and
ith scaling operation. Then

qm=Z ki
i=l

(40)

where q is the number of scaling operations required to
produce a scaled output at the mth stage ofthe processor. In
many applications full output precision rather than a scaled
output is desired at the output of the final stage and hence a
total of q - 1 scaling operations are performed.
The error due to the first scaling operation can be

computed as

.,,(n) = xkt(n) 1 K

i= 1

(41)

Substituting (21) into (41) and using the relationship be-
tween xk,t(n) and I k1(n), one obtains

Es1(n) = t(n) - ket

i = 1

Then

(35)

To generate the output of the second stage a 4-point DFT
must be computed and thus one obtains

Eout(n) = 0 (36)

and

| Eout(n)2 = 41E2 FT(n) 2 = 42 6 + 2 2 (37)IDFT~~1I- 6 P2

The operations associated with the third stage are similar
to those associated with the second stage, hence

E t(n) 43 _ +4 2( 2 + 2)a2 (38)

This development can be generalized such that the errors,
due to converter quantization and to integer conversion, at
the output of the kth stage are given by

Ekut(n)12 =
4 .6, k=1

4ki I+4k-2 ( i = 2P k . 2.

(39)
3) Scaling Error
In order to prevent overflow due to number growth it is

necessary to introduce a scale factor K. Due to hardware
constraints associated with the realization of an rms scaling
algorithm [13] it is desirable to use only one scale factor and
vary the number of stages between scaling operations.

(42)

(43)IE,,(n)l2= Eki +K22
P2IEk H2P6ii= 1

In the above equation, the first term is the mean-square error
generated before the first scaling operation, as given in (39),
while the second term is the mean-square error due to the
first scaling operation.
At the output of the (kI + k2)th stage (just before the

second scaling operation), the first term in (43) will be
propagated as discussed in the previous section, and the
second term will grow by a factor of 4k2. Thus, the error
becomes

IEklt k2(n)I 2 = 4k1 +k2 .
I +4kl+k2-2

2 |.2JZ!='2

+ 4 k2i.K .

i=1

(44)

This development can be extended to give an expression for
the mean-squared error at the output ofthe final stage due to
converter quantization, integer conversion and scaling with
the form

I q-IoEnt(n) 12
= 4m - 6 + 4mn-2 2) Ep2 a<2

I i . k,
KJqq1I YK-+ 2

t=1

+ 6 Z ~4 X1+1 -K2ifHpi6 i=l ~~~~1=1 )
(45)
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Then using (45), (26), and (7), one can obtain the total rms
relative error,

rms (error) -I Eomut(n) 12 112
rms (true result) l 4m02

! 1m _ 2 m2q
j6¢T28 .2 + 6Kma8 i=2

q

k,
1/2

Y,4 K2 Hl Pi2 (46)

The relative rms error, ol, expressed in (46) is seen to be a
function of the following:

a) U2, the mean-square value of the true input to the
first stage;

b) m, the total number of stages in the FFT processor;
c) pi, the integer conversion factor associated with the

twiddle factors in the ith stage;
d) q, the number of scaling operations required to

produce a scaled output from the last stage ofthe processor;
e) K, the scale factor used to prevent overflow due to

number growth (assumed constant for all scaling opera-
tions), and

f) ki, the number of stages between scaling operations.

D. Design-Oriented Results
In the design ofan FFT processor the range ofthe number

system being used would first be determined. Then the upper
bound on number growth associated with each stage, for
typical input sequences would be established. The rest ofthe
parameters pi, q, ki, and K can then be computed.
While (46) is a general expression it does not explicitly

introduce the range of the integer number system being used
or the upper bounds on number growth analyzed in Sections
II-D and II-E. In addition, if (46) is to provide the basis for a
design procedure it is convenient to set some parameters to
practical values and make certain simplifying assumptions.

In this section (46) will be put in a form that is less general
but-that leads to more design-oriented results. The following
simplifications will be made. First, the input signal xi' (n) is
assumed to be a uniformly distributed complex random
sequence with zero mean values for both the real and
imaginary parts. Then, if the accuracy of the A/D converter
is given as B bits the mean-square value shown in (26)
becomes

2 = 2B (47)

is convenient to consider two general classes of scaling
schemes.

Let the first class of scaling schemes be given by

k1 <m, k2=k3= .=k k

and the second class by

k1 < m, k2=k3. = kq1 = k

and

1 kq <k.

(48)

(49)
Also, on the basis of the last two assunmiptions and the fact
that the scale factor K is a constant for all scaling operations
one can then set the scale factor equal to

K = (4p). (50)

IfM represents the range of the RNS allowed in the FFT
processor, by noting that 2B 1 is themaximum magnitude of
the input along with a consideration of number growth, it
follows that

=4- (4Pr)-1- 2
or

M = 4klpki-12B

Equation (51) can be rewritten as

B=10g2(4klp, -)

(51)

(52)

such that B is expressed as a function ofthe value ofM and P
for the specified scaling scheme.

In order to simplify the notation let the term 1/6a2 in (42)
be represented by cQ. Similarly, let

m

Ep2 =(2
8i=2

an teastrmeqa2a2and the last term equal Sx. Thus,
2 =2 + X2 + C2Q + LXl+ (53)

These three terms will now be expressed in terms of the
appropriate parameters.
Using (47) the relative error due to A/D converter quanti-

zation is given by

2B(XQ =pI ~~~~(54)
Second, from Table III, a practical upper bound on number
growth at each stage will be set equal to 4. As a third
simplifying assumption the integer conversion factor pi will
be set equal to P for i= 2, 3,, m andp1= 1.
On the basis of the last two simplifications it is reasonable

to restrict the number of possible scaling schemes to ones in
which the number of stages between scaling operations is
constant. This simplification still allows- the number of
stages before the first scaling operation and after q - 1
scaling operation to be variable. With these simplifications it

Using (51) one can write

O(Q = .42 M 2p2t- (55)
Since pi = P, i . 2 one can write the relative error due to

integer conversion as

2 m-1 1
8 p2

Using (48), (49), and (51), as can be written as

(56)
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aX = A * 42k+kj . M-2p2k

where

4mn-k, _I
4k_II

Am=
4m-ki-k4,+k _

4k_ I

841

(57) 1014

1l02kq = k

kq < k (58)
1010

takes into account the two general classes of scaling
schemes.
One can write (53) as

a2 = 2kim-2 2(kl-1) + mOcl -- 4p8 p2

+ A * 42k+kik M-2p2k. (59)
Thus the relative mean-square error a, is expressed as a
function of the maximum magnitude M the integer conver-
sion constant P and the scaling schemes as given by k1, k,
and kq.
By differentiating (59) with respect to P, and equating the

results to zero, one obtains

2(k - 1) * 42k1*M-2p2k_ 33

+ 2k - A 42k+k M2p2k- = 0. (60)

Equation (60) can be used to determine the value of P,
expressed as a function of M, that minimizes the relative
error a, for a given scaling scheme. The results cannot be put
in a closed form expression that is practically useful.
However, for a given value of N, a given desired level of
relative error and a given specified scaling scheme, it is
possible to tabulate the interrelationships that define the
corresponding values ofM and P. A knowledge ofM and P
allow one to compute the corresponding value of the scale
factor K and the required A/D converter accuracy B.
For N = 1024 and various scaling schemes these relation-

ships have been tabulated in Table IV. For example, if an
acceptable level of relative error al is equal to 0.01 -and
scaling scheme k1 = 3 and k = 1 is used, then from Table IV
the corresponding value ofM is given by the relationship

= 4.365M- 113

and thus M is found to be equal to 0.832 x 108. In a similar
manner the corresponding value of P is given by

P.= 0.198M1/3

or P = 0.864 x 102. Using (50) the scale factorK is found to
be equal to 0.346 x 103, and using (52), the A/D converter
accuracy, B, is found to be 7.44 bits. The values ofM, P, K,
and B determined are then rounded to the closest integer
number to give the value that may be actually used in the
practical realization.
An FFT processor was simulated on a general purpose

digital computer in a manner that satisfied all the assump-
tions used in the development of (59). Simulation results
were used to establish a relationship between the error ax

,108

106
lo-'

RELATIVE RMS ERROR

(1) kl = 5 (4) kl = 2, k = 2, kq = 1
(2) kl = 1, k = 4 (5) ki = 3, k = 2

(3) kl = 1, k = 3, kq = 1 (6) kl = 1, k = 1.;
k = 2, k = 1

Fig. 6. Relative rms error versus number range for different scaling
schemes; N = 1024.

lo-0

M 10-2

u)

1

10-4
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109 1010

Fig. 7. Relative rms error versus number range for two scaling schemes;
M = 107, N = 1024.

and the range of the number system M being used. These
results are shown in Fig. 6. The corresponding results
predicted by the theoretically derived relationships tab-
ulated in Table IV have also been plotted in Fig. 6. The small
error between the theoretical and the simulation results
shown in Fig. 6 indicates that (59) and the subsequent
relationships tabulated in Table IV can be used with
confidence in the practical design of an FFT processor.

Since the scaling scheme must be specified to use Table IV,
it is desirable to determine which scaling scheme will
generate the smallest relative error for a given value of M.
Fig. 7 shows plots of M versus 21 for various scaling
schemes. The values plotted were computed using the
functional relationships between M and a, for the various
scaling schemes shown in Table IV. In Fig. 7 the lowest
curve, representing scaling schemes k1 = 1, k = 1, and
k, = 2, k = 1, indicates the smallest value oferror for a given
number system range. It is desirable to choose the scaling
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Fig. 8. Conceptual block diagram of a radix-4 FFT realization.

schemes k1 = 2 and k = 1 as the better ofthe two candidates,
siinice this scheme requires one less scaling operation and
also requires less A/D converter accuracy for a given error.
The results developed in this section can be used as the

basis of a design procedure for an FFT processor. The
scaling scheme k1 = 2, k = 1, is assumed to be used. Now,
the design procedure is given as follows:

1) Specify the level of relative error oc 1 that is acceptable
for the processor.

2) Compute the required range of the number systemM
using the relationship oc, = 10.18M-1"2 given in Table IV.

3) Select a set of relatively prime moduli which gives a
product of all moduli Mo close to the computed M from 2).

4) Compute the integer conversion constant P using the
relationship P = 0.0982M1/2 given in Table IV.

5) From the chosen set of moduli in 3), select some of
them to obtain a scale factor Ko close to 4P. The integer
conversion constant for the third and the following stages is
equal to [Ko /4]R

TABLE V
TOTAL NUMBER OF LOOK-UP TABLES FOR VARIOUS RMS ERRORS

SEQUENTIAL CASCADE
1mi K a REALIZATION REALIZATION

32, 31, 29 31, 13 I
13, 3 0.01 266 1048

32, 31, 27 31, 27
23, 7 0.005 266 1048 I

31, 19, 17 17, 13, 11
13, 11, 7 0.001 372 1416

THROUGHPUT RATE
8 8

(T IS THE ACCESS PLUS LATCH 5T T
TIME)

6) Substitute Mo and P into (47a) and solve for B. Round
B to an integer Bo. Substitute Mo and Bo into the same
equation and solve for P. The integer conversion constant
for the second stage is equal to [P]R

For a specified level of relative error, it is always possible
to select a set of relatively prime moduli such that their
product is close to the required value of M. However, this
may not be true for the selection of the scale factor, because
the scale factor must be determined from the fixed chosen
moduli. As a general comment, it is better to choose some
smaller moduli to form the moduli set such that it has more
flexibility to obtain-the desired value of the scale factor. A
conceptual block diagram ofthe implementation is shown in
Fig. 8.
For completeness, the total number of look-up tables for

the radix-4 1024-point FFT at various rms errors is given in
Table V. The scaling scheme k1 = 2, k = 1 is used. Referring
to Fig. 3, it is seen that there are 34 operations in the radix-4
basic calculation and 16 operations in the 4-point DFT.
Furthermore, as discussed in [13], the total number of
look-up tables required for the scaling array is

TS =(L-1) (S + )S2_

where Lis the total number ofmoduli and S is the number of
scaling moduli. The values given in Table V are calculated
using the following formula.

Sequential Realization:

Number of tables = 34L + 8T7

Cascade Realization:

Number of tables = 16L + (m - 1) x 34L + 8(q - 1)T

where m = 5 and q = 4 for N = 1024 and k, = 2, k = 1. It
should be noted that the number of look-up tables cal-
culated do not take into consideration the size ofROM for
different moduli. When the FFT is implemented in a
pipelined manner, the data throughput rate is a more impor-
tant parameter than number of look-up cycles (latency
time). The throughput rates for two different realizations
are given in Table V.
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E. High-Speed Convolution Filter
In this section the analysis of a finite impulse response

(FIR) digital filter realized using the RNS is considered.
When an FIR digital filter is implemented using the FFT,
there is always an inverse FFT (IFFT) to be computed.
Hence another set of hardware to compute the IFFT is also
required. If we can tolerate a factor of 2 reduction in data
throughput, then the same hardware can be used for both
forward and inverse transforms. In order to utilize the single
hardware transform effectively, the magnitude of the input
to the IFFT must be equal to the magnitude of the original
input such that there will be no overflow. This can be
achieved by properly choosing the gain GF ofthe filter. Fig. 9
shows the block diagram of a high-speed convolution filter.
We can show that the rms relative error ofthe input to the

IFFT is

G2+ +1 G2K2
aQ2 = a+6NC+ 6G + 6NG (61)

where fl is the ratio of the passband 3 dB cutoff frequency to
the folding frequency and

Kq
Gs = m

i=l

From the previous analysis, we can easily obtain the overall
ratio

a'2 = N 2+ ot+2a + Lo/22 GpK2 2 2 '2

+fi/NG2~ + N. + 2L) 2

6G2 (62)

The simplifications made in Section III-D will also be
used here to simplify the expression of QLet N = 1024 and
we will apply scaling scheme k, = 2, k = 1. When the
numbers are multiplied by the filter coefficients, their magni-
tudes can increase to an upper bound of 1.4GF. Because of
the pessimistic bound for the magnitude at the output ofthe
first FFT, we have found, empirically, that the upper bound
on the output of the filter can be set to GF. Then the value of
GF can be determined using the following equation:

Q-M GF

K
= 2B (63)K=

Substituting (51) and K= 4P into (63), we find that

(64)GF = P.

The optimum results for this case are

RNS FFT CONJUGATE OUTPUT

Fig. 9. Block diagram of a high-speed convolution filter.

2= 84.66B- 1/4M- 112

p = 0.018f3/4M/2. (65)

As we compare the results of (65) to the results in Table V,
we can see that the optimum results for the high-speed
convolution filter may not be the same as the results for the
single FFT. Thus, as far as the isolated FFT is concerned,
our results for the FFT and IFFT combination are subopti-
mal. This tradeoff will always exist.
An experiment for subjective error analysis by filtering

speech through a wide-band filter and comparing the input
to the output, for quality of reproduction, was performed.
An interesting result from this subjective analysis is that
there is a direct correlation between the subjective quality of
the output speech and the magnitude ofthe theoretical error.
As a datum for this subjective error analysis the authors
have found the following scheme yields wide-band (,B = 0.5)
filtered speech signals which are audibly indistinguishable
from the original input: k, = 2 and k = 1; M = 107.

Using Fig. -10 a theoretical error of 3.2 percent is obtained;
this error can serve as a guide for useful filter implementa-
tions. -Two RNS realizations have been found which have
errors below or about the same value as this error.
RNS Realization 1:

M= 31 x 16 x 15 x 13 x lI x 7= 7447440

K= 15 x 11 165

a1 = 3.7 percent

RNS Realization 2:

M= 31 x 29 x 16 x 15 x 13 x 11= 30853680

K=31 x 11= 341

a, = 1.8 percent
Both of these realizations are 6 moduli systems with two

moduli used, for the scale factor. The look-up tables required
for these reali-zations consist of a mixture of 5K (8K in
practice) for the moduli 31 and 29 -and 1K for the other
moduli [13]. In order to compute a data rate for filtering, we
note that for a 1024-point radix-4 transform, 5 stages are
required for both the FFT and the IFFT, hence 10 stages are
required for filtering. The data rate is therefore given by

4 X 2= 8 MHz
10ZL
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10°U [4 G. D. Bergland, "Fast Fourier transform hardware
implementations-A survey," IEEE Trans. Audio Electroacoust., vol.

THEORETICAL Au-17, pp. 109-119, June 1969.
EXPERIMENTAL: [5] G. D. Bergland and D. E. Wilson, "A fast Fourier transform algor-

loI0-'l _ -t _ithm for a global highly parallel processor," IEEE Trans. Audio Elec-
troacoust., vol. Au-17, pp. 125-127, June 1969.

[6] B. Liu and A. Peled, "A new hardware realization of high-speed fast
Fourier transform," IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-23, pp. 543-547, Dec. 1975.

[7] G. A. Jullien et al., "Hardware realization of digital signal processing
elements using the residue number system," presented at the IEEE
Int. Conf. Acoust., Speech, Signal Processing, Hartford, CT, May
9-11, 1977.
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[8] P. D. Welch, "A fixed-point fast Fourier transform error analysis,"

IEEE Trans. Audio Electroacoust., vol. AU-17, pp. 151-157, June
105 106 107 1o8 109 1010 1969.

NUMBER RANGE [9] E. 0. Brigham and L. R. Cecchini, "A Nomogram for Determining
FFT System Dynamic Range," presented at the IEEE Int. Conf.

Fig. 10. Relative rms error versus number range for the FFT convolution Acoust., Speech, Signal Processing, Hartford, CT, May 9-11, 1977.
filter on speech signal; f = 0.5; M = 10'; k, = 2, k = 1, N = 1024. [10] J. Huang and F. Taylor, Unpublished presentation at the lst Ohio

State University Workshop on Residue Arithmetic, Columbus, OH,
May 1978.

[11] W. K. Jenkins and B. J. Leon, "The use of residue number systems in
the design of finite impulse response digital filters," IEEE Trans.

for a sequential realization where rL = 100 ns. This, of Circuit Syst., vol. CAS-24, pp. 191-201, Apr. 1977.
course, is a very optimistic data rate since we have not taken [12] M. A. Soderstrand, "A high speed low-cost recursive digital filter
into account the nonzero size of the convolution kernel using residue number arithmetic," in Proc. IEEE, vol. 65, pp.1065-1067, July 1977.
(which will reduce the data rate by a factor (N - h)/N where [13] G. A. Jullien, "Residue number scaling and other operations using
h is the kernel size) and the auxiliary control equipment and ROM arrays," IEEE Trans. Comput., vol. C-27, pp. 325-337, Apr.
random access memories which may slow down the array. 1978.

[14] M. J. Corinthios et al., "A parallel radix-4 fast Fourier transform
computer," IEEE Trans. Comput., vol. C-24, Jan. 1975.

IV. CONCLUSIONS [15] A. Pomerleau et al., "On the design of a real time modular FFT

This paper has considered a quantization error analysis of processor," IEEE Trans. Circuit Syst., vol. CAS-23, pp. 630-633, Oct.1976.
an RNS based FFT processor. It was found that a radix-4 [16] L. R. Rabiner et al., "Terminology in digital signal processing," IEEE
FFT structure minimized the number of cascaded multi- Trans. Audio Electroacoust., vol. AU-20, pp. 322-337, Dec. 1972.
plication and was the most viable choice. A theoretical and [17] H. F. Silverman, "An introduction to programming the WinogradFourier transform algorithm (WFTA)," IEEE Trans. Acoust., Speech,
experimental study ofnumber growth in the FFT processor Signal Processing, vol. ASSP-25, pp. 152-165, Apr. 1977.
indicated that growth by a factor of 4 at each stage can be [18] B. D. Tseng and W. C. Miller, "Comments on An Introduction to
used as the basis for scaling. Programming the Winograd Fourier Transform Algorithm(WFTA)," IEEE Trans. Acoust., Speech, Signal Processing, voL
A general expression for the relative mean square error at ASSP-26, pp. 268-269, June 1978.

the output of the FFT processor has been derived. By [19] G. . D. Bergland, "Fast Fourier transform hardware
making a number of simplifying assumptions it has been implementations-An overview," IEEE Trans. Audio Electroacoust.,vol. AU-17, pp. 104-108, June 1969.
possible to develop a number ofexpressions that can be used [20] G. A. Gray and G. W. Zeoli, "Quantization and saturation noise due
directly in the practical design of the FFT processor to analog-to-digital conversion," IEEE Trans. Aerosp. Electron. Syst.,
described in the paper. This procedure allows one to [21]ify pp. 222-223, Jan. 1971.dc e n e1specify ] L. D. Enochson and R. K. Otnes, "Programming and analysis for
the relative output error and then determine the appropriate digital time series data," US Dep. of Defense, 1968.
values of the number system range, the number of A/D
converter quantization bits and the scale and integer conver-
sion factors.
The analysis concepts developed in this paper were

applied to the design of a high speed convolution filter
implemented with the RNS. The theoretical results
predicted for the filter were experimentally verified in a
speech processing application. The design-oriented expres-
sions given in the papers proved quite useful in a practical
signal processing environment.
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Detection of Faults in Programmable
Logic Arrays

JAMES E. SMITH, MEMBER, EEE

Abstract-A new fault model is proposed for the purpose oftesting
programmable logic arrays. It is shown that a test set for all
detectable modeled faults detects a wide variety ofother faults A test
generation method for single faults is then outlined. Included is a
bound on the size of test sets which indicates that test sets are much
smaller than would be required by exhaustive testing. Finally, it is
shown that many interesting classes of multiple faults are also
detected by the test sets

Index Terms-Programmable logic arrays, fault detection, fault
modeling, test generation.

I. INTRODUCTION
pROGRAMMABLE logic arrays (PLA's) provide the
Plogic designer with an economical way of realizing
combinational switching functions-[1]-[3]. The economy is
achieved by manufacturing standard "blank" arrays, and, as
a final step, "programming" the array to perform a particu-
lar set of functions. In some technologies programming is
performed by using a custom mask for the final metalization
step. Field programmable logic array (FPLA) technologies
allow the user to program the array by blowing fusible links
within the array.
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As with any other logic circuit, PLA's must be tested to
insure that they operate correctly. Essentially, three different
testing schemes are possible. The first is to place special test
circuitry on the array [3]. This special circuitry is then
enabled by placing voltage levels on inputs and outputs
which are beyond normal levels. This method is used to
avoid the addition ofpins for testing and checks the presence
or absence of connections in the PLA. While this method
allows the PLA to be tested quickly, a PLA tested in this way
has not been tested under normal operating conditions.
Furthermore, after such a PLA is placed in a system it may
be difficult to apply the appropriate testing signals which
require abnormal signal levels.
A second test method is to exhaustively apply all possible

input vectors to the array and check to see if it responds
correctly. Exhaustive testing more adequately reflects
normal operating conditions, but it has the disadvantage of
requiring rather sophisticated high-speed test equipment.
While a manufacturer may have such equipment, a user in
the field, w-ho often needs to test a PLA, may not. In
addition, as PLA technology advances and the number of
inputs increases, exhaustive testing will become impractical
even with high-speed equipment. Exhaustive testing can also
be very difficult in a system environment where other logic
typically separates the PLA from the "outside world." Here.
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