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Abstract—A general digit-recurrence algorithm for the computation of the mth root (with an m integer) is presented in this paper.

Based on the concept of completing the mth root, a detailed analysis of the convergence conditions is performed and iteration-

independent digit-selection rules are obtained for any radix and redundant digit set. A radix-2 version for mth rooting is also studied,

together with closed formulas for both the digit selection rules and the number of bits required to perform correct selections.
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1 INTRODUCTION

THE design of special-purpose units for the extraction of
powers has always been a challenging and stimulating

task since the birth of computer arithmetic. In the begin-
ning, the computation of powers and roots was done either
by passing through the cascaded chain logarithm-multi-
plication/division-exponential (L-M/D-E) or by applying
the Newton method of tangents to derive a function which,
once computed, provided the result. However, as the need
for results that are accurate to the last digit has increased (as
pointed out by the IEEE 754 standard), the research was
directed both to the refinement (and speedup) of these
techniques and to the derivation of suitable methods and
techniques that are able to provide results that are virtually
correct for any required precision. In addition to the
improvements of the L-M/D-E class of methods, two main
approaches have characterized the scene: the application of
general methods for function evaluation1 to the case of power
extraction and the study of special-purpose algorithms and
circuits. Extensive work on methods of the first group can be
found in [4], [5], [11], [15], and [16]. Concerning the last group,
the first power extraction case studied was square root,
mainly because it is both more frequent (with respect to other
power extractions) and relatively easy to implement. A lot of
work has been done on square root: Algorithms for any radix

and digit set have been proposed [8], [9] and similarities
between SRT-square root and division computation have
been demonstrated, resulting in the design of special-
purpose units with a combined implementation of division
and square root [1], [3], [12].

As both the need for and the offer of more computer
power has increased, the horizon has also expanded itself to
consider more root extraction cases other than simple
square rooting. Good examples showing that, nowadays,
research is still focused on the problem of computing root
powers are scientific computing, digital signal processing,
multimedia, 3D graphics, and so forth. Above all, the works
in [13], and [17] are good examples of the natural
consequence of such an interest. In particular, [17] presents
a general digit-recurrence algorithm and a block-level
scheme of an architecture for cube rooting, with particular
attention to the algorithm for the radix-2 cube root. On the
other hand, [13] presents a general higher radix algorithm/
architecture for the computation of the powering function
XY . This method belongs to the family of L-M/D-E, where,
above all, the computations are sped up by using
redundancy and online arithmetic.

In this paper, we extend the square root computation by
addressing the problem of computing the general mth root
(with m integer) for any choice of radix and digit set. We
provide a general digit-by-digit algorithm from which the
derivation of the algorithms for square root [2], [8], [9] and
for cube root [17] can be considered as special cases of the
proposed method. Implementations of architectures for SRT
digit-by-digit radix-2 cube root are presented in [14], [17].
Because of the properties of radix-2 (as already seen for
square rooting), we have dedicated an additional section for
studying the characteristics of radix-2. The results are very
interesting and intriguing, since radix-2 mth rooting shows
unexpected mathematical properties such as closed for-
mulas for the digit selection rules and the number of bits
required by these.

Certainly, two strong motivations of this study are to
show the mathematical feasibility and related requirements
of digit-by-digit mth rooting and to provide the researcher
with the results of the most general design framework for
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1. Usually, these methods are based on the use of tables plus other
circuitry, such as adders and multipliers.

0018-9340/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



digit-by-digit integer mth root. This could be used either for
the design of a special-purpose unit or for comparison
purposes. Digit-by-digit algorithms have the advantage,
with respect to other techniques, of directly providing a
result that is correct to the last bit that has been computed.
For this reason, the proposed algorithms find their domain
of existence where it is (or it will be) necessary to have a
precise result of the computations and/or in the cases
where intermediate rounding errors between atomic float-
ing-point operations must be avoided [17]. In addition, even
neglecting the results from the future development of
algorithms requiring the computation of the mth root,
nowadays, there exist a number of practical applications
where an mth rooting, with m > 2, is necessary. As cited in
[17], cube rooting is used in the numerical calculation for
solving third or fourth-degree algebraic equations and also
in computer graphics for color processing. Computer
graphics can also require even higher order root computa-
tions for volume shading, atmospheric models, and
radiance and luminance computations, which use nonlinear
models [10].

This paper is organized as follows: In Sections 2 and 3,
we first introduce the problem of mth rooting and present
the proposed algorithm. Section 4 discusses the problem of
lookup for initialization, while Section 5 is specifically
dedicated to the analysis of radix-2 mth rooting. To improve
the readability, the proofs of the theorems have been moved
to the Appendix.

2 PRELIMINARIES

2.1 Square Rooting

Digit-by-digit methods have the characteristic of producing
a new digit on the completion of each iteration. For
example, it is well known [8], [9] that the algorithm for
square rooting in radix-2 is based on the concept of
completing the square and, with reference to the symbols
defined in Table 1, is regulated by the following recurrence:

w½i� ¼ 2w½i� 1� � ð2S½i� 1� þ si2�iÞsi ¼ ðx� S½i�2Þ2i; ð1Þ

with S½i� ¼ S½i� 1� þ si2�i. In order to produce a result S
that is normalized, that is, 1=2 � S < 1, it is necessary to

consider for square root 1=4 � x < 1. Moreover, a conve-
nient choice is to have the residuals w½i� 1� in carry-save
representation since this implies a simpler and faster
updating hardware.

The determination of the digit si is carried out by

inspecting the value of the residual w½i� 1�. The use of a

redundant digit set, that is, si 2 f�1; 0;þ1g, avoids full-

length comparisons and then allows the estimate dw½i� 1� to
be considered in place of the full-precision residual w½i� 1�.
Therefore, for the digit selection procedure, it is demon-

strated [8], [9] that it is necessary to consider the estimatedw½i� 1� obtained from the four most significant bit positions

of the carry-save representation of w½i� 1� (that is, including

up to weight 2�1). In this case, the digit selection rules [8] are

si ¼ þ1 if 0 � dw½i� 1� � 3=2;

si ¼ 0 if dw½i� 1� ¼ �1=2;

si ¼ �1 if �5=2 � dw½i� 1� � �1:

ð2Þ

As the computations continue, it is possible on-the-fly to
convert [6] the partially developed square root values S½i�
into nonredundant form in order to have the conventional
representation of the final square root value S ready after
just one additional iteration.

2.2 Extension to mth Root Extraction

In this paper, we extend the SRT square rooting algorithms
presented in [2] and the cubic root algorithm in [17] to the
more general case of mth root extraction with m integer
greater than 1 and we use the notation in Table 1. In order to
produce a result S that is normalized, that is, 1=2 � S < 1,
we will consider, for the mth root, 2�m � x < 1. For our
purposes, we assume x to be available at the beginning of
the operations in full precision and in nonredundant
representation, thus exluding from this analysis the online
algorithms. As for the square root algorithms in [2], we
consider the residuals represented in carry-save form. We
show that mth root extraction requires a lookup step whose
role is to provide a starting value of the result, which allows
it to have digit selection rules that are independent of the
iteration number. Then, the next digit selection occurs by
means of rules based on the lookup value and on the value
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of an estimate of the current residual. Our analysis is rather
general since we consider any radix r and any redundant
digit set with index of redundancy � ¼ a=ðr� 1Þ � 1. The
extension to overredundant digit sets comes directly from
our analysis.

3 THE ALGORITHM

3.1 Recurrence for mth Root Extraction

Theorem 1. The recurrence for the mth root extraction in base
r ¼ 2b is based on the concept of completing the mth power
and is

w½i� ¼ rw½i� 1� þ ri½S½i� 1�m � S½i�m� ¼ ðx� S½i�mÞri; ð3Þ

with si 2 Da and S½i� ¼ S½i� 1� þ sir�i.

Observe that it is possible to substitute S½i� ¼ S½i� 1� þ
sir
�i in (3) and to expand the term S½i�m ¼ ðS½i� 1� þ

sir
�iÞm so as to obtain an expression of degree m� 1 in

S½i� 1� and si.
Based on the recurrence defined by Theorem 1, the key

point of the algorithm is to determine the digit selection

rules that permit obtaining the digit si by inspecting some

bits of an estimate dw½i� 1� of the residual w½i� 1�, together

with the value of the first lookup estimate of the result.

3.2 Region of Convergence and Intervals for Digit
Selection

We define the maximum possible domain of the residuals
w½i� 1� as the region of convergence which still permits the
algorithm to work properly [9].

Theorem 2. The region of convergence of the algorithm based on
(3) is given by

½�S½i� 1�m þ ðS½i� 1� � �r�ði�1ÞÞm�ri�1 � w½i� 1�
� ½�S½i� 1�m þ ðS½i� 1� þ �r�ði�1ÞÞm�ri�1:

ð4Þ

The intervals for digit selection are computed by
imposing that the next residual belongs to the region of
convergence.

Theorem 3. The intervals for digit selection si ¼ k are

½�S½i� 1�m þ ðS½i� 1� þ r�iðk� �ÞÞm�ri�1 � w½i� 1�
� ½�S½i� 1�m þ ðS½i� 1� þ r�iðkþ �ÞÞm�ri�1:

ð5Þ

It can be observed that the selection intervals defined by
(5) have their bounds depending on i (also including
S½i� 1�). In order to have fixed digit selection intervals (and
rules), it is necessary to eliminate these dependencies from
(5). In particular, except in specific cases [7], this requires an
initialization of the result before the iterations can start,
which is based on the process of digit selection and of
updating of the residual. We first address the problem of
initialization and then pass to the determination of
iteration-independent digit selection intervals.

3.3 Initialization

For r ¼ 2, Theorem 10 will show that the initialization phase
is trivial. On the other hand, for r > 2, we consider the

whole mth root extraction, as carried out in two different

phases. The first is an initialization where an estimate bS of

the result is obtained on � fractional bits, which is then

followed by normal iterations based on (3) and on the

iteration index p. It is assumed that p ¼ 0 during the

initialization phase, which implies that i ¼ �=bþ p. Since �

is not necessarily an integer multiple of b, i may be a

rational number. However, b � i, which is the number of bits

produced, is always integer.2 In the rest of this paper, the

algorithms will be analyzed by only referring to the index i

since this choice allows a homogeneous notation to be used

for both phases.

Theorem 4. The necessary and sufficient range for the result bS
provided by the initialization phase, which lets the algorithm

converge to the correct result, is

b1=2þ �2��c � bS � d1� �2�� � 2�ne; ð6Þ

where � is the number of fractional bits of bS.

It is observed that, for a maximally redundant digit set,

that is, � ¼ 1, (6) becomes

1=2þ 2�� � bS � 1� 2��: ð7Þ

On the other hand, for � < 1, we have 1=2 � bS � 1. The

number of bits � to be produced during the initialization

phase will be determined in the next sections for r > 2. The

case r ¼ 2 will be explicitly studied in Section 5.

3.4 Iteration-Independent Digit Selection Intervals

Now, we derive conservative intervals with (5) which do

not depend on i. In order to do this, we also have to replace

the terms S½i� 1� with conservative expressions on bS. Two

possibilities exist: bS remains fixed at the value provided by

the initialization or bS (after the initialization) is dynamically

obtained by the first � fractional bits of S½i� 1�. In the

following, we consider bS fixed, the extension to the other

case being straightforward. From the definition of bS,

max½1=2; bS � �ð2�� � r�ði�1ÞÞ� � S½i� 1�
� min½1; bS þ �ð2�� � r�ði�1ÞÞ�:

ð8Þ

Theorem 5. The most conservative intervals for the digit

selections si ¼ k derived from (5), whose bounds do not

depend on i � �=bþ 1 and when the initialization is

performed, providing bS on � fractional bits, are

for k > 0 if mðk��Þ
r ½minðbS þ �2��; 1Þ�m�1 �

w½i� 1� � mðkþ�Þ
r ½maxðbS � �2��; 2�1Þ�m�1;

for k ¼ 0 if �m�
r ½maxðbS � �2��; 2�1Þ�m�1 �

w½i� 1� � m�
r ½maxð bS � �2��; 2�1Þ�m�1;

for k < 0 if mðk��Þ
r ½maxðbS � �2��; 2�1Þ�m�1 �

w½i� 1� � mðkþ�Þ
r ½minðbS þ �2��; 1Þ�m�1:

ð9Þ
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3.5 Domain of Existence of the Residual

Let us determine from (4) the tight and conservative
domain of w½i� 1� not depending on i.

Theorem 6. The tight domain of existence of w½i� 1� derived
from the region of convergence (4), whose bounds do not
depend on i � �=bþ 1, is defined as �LW < w½i� 1� < UW ,
where

for � < 1 � �m < w½i� 1� � ð�1þ ð1þ �2��ÞmÞ2�;
for � ¼ 1 �m < w½i� 1� < m:

ð10Þ

3.6 Digit Selection Rules

It can be observed that the digit selection intervals (9)
depend on the residual w½i� 1�, which is expressed in full
precision. However, it is known [8], [9] that it is possible to
use the redundancy introduced by considering the digit set
Da to reduce the inspection of w½i� 1� to only a limited
number of bits, that is, the estimate dw½i� 1� obtained by
truncation up to the tth fractional weight position, with

0 � w½i� 1� � dw½i� 1� < 2�tþ1: ð11Þ

Now, for r > 2, since r ¼ 2 is studied in Section 5, we
derive the digit selection rules based on dw½i� 1� which are
used to determine the digits of the result. For division and
square root, it is known [8] that this problem is equivalent
to the problem of computing a set of constants g½k� such that
it is possible to write the digit selection rules as

select si ¼ k if g½k� � dw½i� 1� < g½kþ1�: ð12Þ

In the case of carry-save representation of the residual
w½i� 1�, it is known [8] that it is enough for the constants g½k�
to satisfy the necessary (but not sufficient) relation

L½k� � g½k� � U½k�1� � 2�t; ð13Þ

where L½k� and U½k� define the lower and upper bounds of

the domain of w½i� 1� related to the generic digit selection

si ¼ k given by (9), that is (for 1=2 < bS < 1, for example),

L½k� ¼
mðk� �Þ

r
ðbS þ �2��Þm�1;

U½k�1� ¼
mðk� 1þ �Þ

r
� ðbS � �2��Þm�1:

ð14Þ

Theorem 7. In order to have correct digit selection rules, in the

case of the carry-save representation of w½i� 1�, a necessary

(but not sufficient) condition is to both have an estimatedw½i� 1� of w½i� 1� up to its tth fractional bit and consider an

initial value bS on � fractional bits given by

mð�r� 1Þ
r

ð2�1 þ ð1� �Þ2��Þm�1

�m�ðr� 2Þ
r

ð2�1 þ ð1þ �Þ2��Þm�1 � 2�t � 0;

ð15Þ

that is, with

t � log2fr=fm½ð�r� 1Þð2�1 þ ð1� �Þ2��Þm�1

� �ðr� 2Þð2�1 þ ð1þ �Þ2��Þm�1�gg;
ð16Þ

� > log2

2ð1þ �� ð1� �Þ½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1ÞÞ
½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1Þ � 1

: ð17Þ

3.7 Number of Bits of dw½i� 1�
Note that, in addition to the t fractional bits, it is necessary

to inspect all of the integer bits of dw½i� 1�. From (11) and the

region of convergence given by Theorem 6, the domain ofdw½i� 1� results in

� LW � 2�tþ1 < dw½i� 1� < UW: ð18Þ

In order to represent all of the values of dw½i� 1� within

the range (18), about c ¼ log2ðLW þ UW þ 2�tþ1Þ integer bits,

plus t fractional bits, are necessary.

3.8 Algorithm for Determining the Digit Selection
Rules

The determination of the digit selection rules is well known

[8] and is carried out as follows:

1. Choose a pair of values t and � satisfying the
necessary conditions of Theorem 7.

2. Determine the constants g½k� according to (9) and (14).
3. Determine the digit selection rules according to (12).

When it is not possible to determine valid digit selection

rules (that is, when, in general, it is not true that

g½k� � g½kþ1�), it is necessary to operate with another choice

of t and �.

3.9 Avoidance of Explicit Computation of the
Powering of S½i� 1�

The computation of the powering of S½i� 1� required by the

recurrence (3) can be avoided, provided that a suitable

number of additional recurrences is carried out together with

(3). Let us define Cj½i� 1� ¼ S½i� 1�j, with C0½i� 1� ¼ 1 and

C1½i� 1� ¼ S½i� 1�. We observe that

Cp½i� ¼ ðS½i� 1� þ r�isiÞp

¼ S½i� 1�p þ
Xp
j¼1

p

j

� �
S½i� 1�p�jðr�isiÞj

¼ Cp½i� 1� þ
Xp
j¼1

p

j

� �
Cp�j½i� 1�ðr�isiÞj:

ð19Þ

Observe that, in (19), the computation of Cp½i� only

depends on values Cj½i� 1� (with j � p), that is, the values

available after the end of the previous iteration i� 1 plus

the shifted powers of si.

4 LOOKUP FOR INITIALIZATION

As seen in Section 3.3, the mth rooting computation

requires an estimate bS for r > 2. We assume the computa-

tion of the values v of the estimate bS by means of a lookup
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table, which is entered by the estimate bx obtained by

considering the radicand x up to its uth fractional bit.

Theorem 8. The lookup table intervals are

lookup bS ¼ v if ðv� �2��Þm � x � ðvþ �2��Þm: ð20Þ

Since bS is expressed on � fractional bits, “consecutive”

values of bS differ by 2��. Let us denote with L½v� and U½v� the

lower and upper bounds of (20). The problem of determin-

ing valid lookup table rules based on bx is equivalent to the

computation of a set of constants hv that guarantee

lookup bS ¼ v if hv � bx < hvþ2�� : ð21Þ

In the case of nonredundant x, it is known [8] that the

constants hv have to satisfy the sufficient (but not necessary)

relation

L½v� � hv � U½v�2�� � � 2�u: ð22Þ

Theorem 9. In order to have correct lookup table rules, a

sufficient (but not necessary) condition is to have an estimate bx
of x up to its uth fractional bit, which is given by

u � � log2½ð2�1 � ð1� �Þ2��Þm � ð2�1 � �2��Þm�: ð23Þ

The technique for devising the lookup constants is then

similar to that for the determination of the constants g½k�
outlined in Section 3.8.

5 RADIX-2 mTH ROOT

As stated in the previous sections, radix r ¼ 2 is worth a

separate analysis since a number of interesting properties

that are worth studying exist.

5.1 Starting Value and Digit Selection Intervals

Theorem 10. When r ¼ 2, it is possible to start the iterations for

the mth root extraction process by considering i ¼ 3,bS ¼ S½2� ¼ 2�1 þ 2�2, and w½2� ¼ ðx� S½2�mÞ22.

As a direct consequence of Theorem 10, there is

Theorem 11.

Theorem 11. For r ¼ 2, the digit selection intervals are

si ¼ 1 if 0 � w½i� 1� < m;
si ¼ 0 if �m2�m � w½i� 1� � m2�m;

si ¼ �1 if �m < w½i� 1� � 0:
ð24Þ

5.2 Digit Selection Rules and Number of Bits of the
Estimate

From the digit selection intervals (24), the next step is to

determine the digit selection rules. We start by identifying

the estimate dw½i� 1� of w½i� 1�.
Theorem 12. For r ¼ 2, it is necessary and sufficient to use the

estimate dw½i� 1� obtained by considering w½i� 1� up to its

t ¼ m� blog2ðmÞc fractional bit in order to obtain valid digit

selection rules, which, for a carry-save representation of the

residual dw½i� 1�, are

si ¼ þ1 if 0 � dw½i� 1� � m� 2�mþf ;

si ¼ 0 if dw½i� 1� ¼ �2�mþf ;

si ¼ �1 if �m� 2�mþf � dw½i� 1� � �2�mþfþ1;

ð25Þ

with f ¼ blog2 mc.

The problem now is to determine the number of bits that

are necessary and sufficient to represent dw½i� 1�.
Theorem 13. The estimate dw½i� 1� is obtained by the most

significant mþ 2 bits of w½i� 1�.

From (25), it can be observed that the “granularity” of the

representation of dw½i� 1� is 2�mþf .

5.3 Application Examples

The case of square root (that is, m ¼ 2) is included in the
algorithm that we have presented in Section 5. By doing the
proper substitutions, we obtain the same results as in
Section 2.1 and [9].

5.3.1 Radix-2 Cube Root

Our algorithm also applies to the analysis of cube root (that
is, m ¼ 3). From Theorem 1, we have that, for cube root, the
recurrence is

w½i� ¼ 2w½i� 1� � ½3S½i� 1�2 þ 3S½i� 1�si2�i þ s2
i 2
�2i�si:
ð26Þ

From Theorem 12, we get t ¼ 2 and the digit

selection rules select si ¼ þ1 if 0 � dw½i� 1� � 11=4,

select si ¼ 0 if dw½i� 1� ¼ �1=4, and select si ¼ �1 if

�13=4 � dw½i� 1� � �1=2.
Some implementations of architectures for SRT digit-by-

digit radix-2 cube root are also presented in [14], [17].

5.3.2 Radix-2 Quadric Root

From Theorems 1, 12, and 13, we get t ¼ 2, w½i� 1�
truncated to its 6 most significant bits (four integer plus

two fractional). The recurrence is w½i� ¼ 2w½i� 1� � ½4S½i�
1�3 þ 6S½i� 1�2si2�i þ 4S½i� 1�2s2

i 2
�2i þ s3

i 2
�3i�si, while the

digit selection rules are select si ¼ þ1 if 0 � dw½i� 1� � 15=4,

select si ¼ 0 i f dw½i� 1� ¼ �1=4, a n d select si ¼ �1 i f

�15=4 � dw½i� 1� � �1=2.

6 CONCLUDING REMARKS

In this paper, we have presented a general radix-r digit-
recurrence algorithm for the computation of the mth root
(with an m integer). We have proposed expressions and
techniques for devising valid digit selection and lookup
tables which allow the algorithm to converge. We have also
considered in detail a radix-2 version for mth rooting and
we have found that it has several interesting properties,
including the existence of closed formulas for both the digit
selection rules and the number of bits required for
performing correct selections. With this research, we have
shown both the mathematical feasibility and the related
requirements of digit-by-digit mth rooting. In addition, we
have provided the results of the most general design
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framework for digit-by-digit integer mth root, which could

be used either for the design of a special-purpose unit or for

comparison with future architectures.

APPENDIX

PROOFS OF THEOREMS

Theorem 1. The recurrence for the mth root extraction in base

r ¼ 2b is based on the concept of completing the mth power

and is

w½i� ¼ rw½i� 1� þ ri½S½i� 1�m � S½i�m� ¼ ðx� S½i�mÞri; ð3Þ

with si 2 Da and S½i� ¼ S½i� 1� þ sir�i.
Proof of Theorem 1. Let us define the residual w½i� as

w½i� ¼ ðx� S½i�mÞri: ð27Þ

Since, from (27), we have w½i� 1� ¼ ðx� S½i� 1�mÞri�1, it

follows that w½i� ¼ rw½i� 1� þ ri½S½i� 1�m � S½i�m�. tu

Theorem 2. The region of convergence of the algorithm based on

(3) is given by

½�S½i� 1�m þ ðS½i� 1� � �r�ði�1ÞÞm�ri�1 � w½i� 1�
� ½�S½i� 1�m þ ðS½i� 1� þ �r�ði�1ÞÞm�ri�1:

ð4Þ

Proof of Theorem 2. We first prove that if the residual w½i�
1� belongs to (4), then w½i� also belongs to (4). Then, we

show that (4) both ensures the convergence of the

algorithm and expresses the widest region of conver-

gence of the algorithm.
Region (4) ensures that the next residual belongs

to the same region. We observe that both bounds of
(4) share the property of satisfying the full induction
principle, that is, if Bi�1 � w½i� 1� � Bi�1, then it is
also Bi � w½i� � Bi. In fact, let us consider w½i� 1� ¼
Bi�1 ¼ ½�S½i� 1�m þ ðS½i� 1� � �r�ði�1ÞÞm�ri�1. In such a
case, this corresponds to the selection si ¼ �a ¼
��ðr� 1Þ and, according to (3), we get

w½i� ¼ rw½i� 1� þ ri½S½i� 1�m � S½i�m�
¼ ri½�S½i� 1�m þ ðS½i� 1� � �r�ði�1ÞÞm

þ S½i� 1�m � S½i�m�:
ð28Þ

Now,

S½i� ¼ S½i� 1� þ sir�i ¼ S½i� 1� � �ðr� 1Þr�i:

Then, S½i� 1� � �r�ði�1Þ ¼ S½i� � �r�i and (28) becomes

w½i� ¼ ri½�S½i�m þ ðS½i� � �r�iÞm� ¼ Bi. Similar computa-

tions can also be carried out for the upper bound of (4)

and the selection si ¼ þa.
Region (4) ensures the convergence of the algorithm.

The algorithm converges if limi!1 w½i�r�i ¼ 0 as it is
w½i� ¼ riðx� S½i�mÞ. Relation (4) can be rewritten for
w½i�r�i as follows:

½�S½i�m þ ðS½i� � �r�iÞm� ¼ �r�i½�mS½i�m�1 þ �� � w½i�r�i

� ½�S½i�m þ ðS½i� þ �r�iÞm� ¼ �r�i½mS½i�m�1 þ ��;

where � and � denote the terms containing higher

powers of r�i in the binomial expansion of ðS½i� �
�r�iÞm and ðS½i� þ �r�iÞm, respectively. From their

definition, both � and � ! 0 for i!1. By taking

the limits for i!1 of all the terms, it can be seen that

limi!1 w½i�r�i ¼ 0 since limi!1 �r
�i½�mS½i�m�1 þ �� ¼ 0

and limi!1 �r
�i½mS½i�m�1 þ �� ¼ 0.

Region (4) expresses the widest region of conver-

gence of the algorithm. By contradiction, let us consider

the term �P�i�1 � 0 and the “enlarged” upper bound of

the region of convergence defined by (29) as follows:

w½i� 1� ¼ ½�S½i� 1�m þ ðS½i� 1� þ �r�ði�1ÞÞm�ri�1 þ �P�i�1:

ð29Þ

By applying (3) for the minimal digit selection si ¼ �a,
we getw½i� ¼ ri½�S½i�m þ ðS½i� þ �r�iÞm� þ r�P�i�1. Since,
by hypothesis, w½i� 1� belongs to the region of conver-
gence, w½i� does too. Therefore, (29) also applies to w½i�
and the values of the coefficient �P can be determined.
From the equations, we obtain r�P�i�1 ¼ �P�i, which
has the solutions �P ¼ undefined value and �i�1 ¼ ri�1.
A similar approach can also be applied for the negative
bound, which is “enlarged” by adding �N�i�1 � 0. In
this case, the “enlarged” region of convergence of w½i�r�i
becomes

½�S½i�m þ ðS½i� � �r�iÞm� þ �N � w½i�r�i

� ½�S½i�m þ ðS½i� þ �r�iÞm� þ �P :
ð30Þ

By again taking the limits of all three terms in (30), we

obtain �N � limi!1ðx� S½i�mÞ � �P . Only the values

�P ¼ �N ¼ 0 guarantee convergence and this completes

the proof. tu

Theorem 3. The intervals for digit selection si ¼ k are

½�S½i� 1�m þ ðS½i� 1� þ r�iðk� �ÞÞm�ri�1 � w½i� 1�
� ½�S½i� 1�m þ ðS½i� 1� þ r�iðkþ �ÞÞm�ri�1:

ð5Þ

Proof of Theorem 3. We look for the largest value U½k;i�1� of

w½i� 1� for which the digit selection si ¼ k ensures that

w½i� belongs to the region of convergence (4). From (3)

and (4), we have

w½i� ¼ rU½k;i�1� þ ri½S½i� 1�m � S½i�m�
¼ ½�S½i�m þ ðS½i� þ �r�iÞÞm�ri:

ð31Þ

Since S½i� ¼ S½i� 1� þ sir�i, we have S½i� ¼ S½i� 1� þ
kr�i and, hence, (31) becomes

U½k;i�1� ¼ ½�S½i� 1�m þ ðS½i� 1� þ r�iðkþ �ÞÞm�ri�1:

With a similar approach, it is possible to also prove the

lower bound of (5). tu

Theorem 4. The necessary and sufficient range for the result bS
provided by the initialization phase, which lets the algorithm

converge to the correct result, is
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b1=2þ �2��c � bS � d1� �2�� � 2�ne; ð6Þ

where � is the number of fractional bits of bS.

Proof of Theorem 4. For p ¼ 1, we get i ¼ �=bþ 1.

Remembering (3) and denoting with bS the lookup value

S�=b, we have (4) evolving into

½�bSm þ ðbS � �2��Þm�2� � w½i� 1� ¼ ðx� bSmÞ2�
� ½�bSm þ ð bS þ �2��Þm�2�

and, then, ðbS � �2��Þm � x � ðbS þ �2��Þm, that is,

bS � �2�� � ðxÞ1=m � bS þ �2��: ð32Þ

Since x is normalized to 2�m � x < 1, it is

1=2 � ðxÞ1=m � 1� 2�n: ð33Þ

In order to have convergence, (32) must guarantee (33),

that is, bS � �2�� � 1=2 and bS þ �2�� � 1� 2�n. Since bS
has granularity 2��, we get

b1=2þ �2��c � bS � d1� �2�� � 2�ne:
ut

Theorem 5. The most conservative intervals for the digit

selections si ¼ k derived from (5), whose bounds do not

depend on i � �=bþ 1, and when the initialization is

performed, providing bS on � fractional bits, are

for k > 0 if mðk��Þ
r ½minð bS þ �2��; 1Þ�m�1 �

w½i� 1� � mðkþ�Þ
r ½maxð bS � �2��; 2�1Þ�m�1

for k ¼ 0 if �m�
r ½maxð bS � �2��; 2�1Þ�m�1 �

w½i� 1� � m�
r ½maxðbS � �2��; 2�1Þ�m�1

for k < 0 if mðk��Þ
r ½maxð bS � �2��; 2�1Þ�m�1 �

w½i� 1� mðkþ�Þ
r ½minð bS þ �2��; 1Þ�m�1:

ð9Þ

Proof of Theorem 5. Let us start with 1=2 < bS < 1 and k > 0

so that the max and min functions in (9) can be easily

removed. For the upper bound of the interval (5), we

have

½�S½i� 1�m þ ðS½i� 1� þ r�iðkþ �ÞÞm�ri�1

¼ mðkþ �Þ
r

S½i� 1�m�1

þ r�i�1
Xm
j¼2

m

j

� �
ðkþ �Þjr�ijS½i� 1�m�j:

ð34Þ

Now, since the rightmost term of (34) (that is, the sum

times r�i�1) is positive and goes to zero for i!1, it can

be neglected, still obtaining a conservative and tight

bound

½�S½i� 1�m þ ðS½i� 1� þ r�iðkþ �ÞÞm�ri�1

>
mðkþ �Þ

r
S½i� 1�m�1

: ð35Þ

While initializing bS 2 ð1=2; 1Þ on � fractional bits, (8)
holds and, hence,

mðkþ �Þ
r

S½i� 1�m�1 � mðkþ �Þ
r

ðbS � �2�� þ �r�ði�1ÞÞm�1:

ð36Þ

Again, a conservative and tight upper bound of the

digit selection interval when si ¼ k > 0 is obtained from

(36) by neglecting the positive contribution due to

�r�ði�1Þ and, hence,

mðkþ �Þ
r

S½i� 1�m�1 >
mðkþ �Þ

r
ð bS � �2��Þm�1: ð37Þ

Now, let us consider the lower bound of (5) and observe

that �� � �� ¼ ð�� �Þð
P�

j¼1 �
��j�j�1Þ:

½�S½i� 1�m þ ðS½i� 1� þ r�iðk� �ÞÞm�ri�1 ¼ r�1�

ðk� �Þ
Xm
j¼1

S½i� 1� þ r�iðk� �Þ
� �m�j

S½i� 1�j�1:
ð38Þ

Since k � 1 and � � 1, it follows that (38) is not

decrescent in S½i� 1� and, hence, the most conservative

lower bound for the digit selection interval is obtained in

correspondence to the upper bound of (8), that is,

S½i� 1� ¼ bS þ �ð2�� � r�ði�1ÞÞ. Therefore,

½�S½i� 1�m þ ðS½i� 1� þ r�iðk� �ÞÞm�ri�1

� ðk� �Þr�1
Xm
j¼1

ðbS þ �2�� � �r�ði�1ÞÞm�j�

½bS þ �2�� þ r�iðk� �� �rÞ�j�1:

We observe that ð bS þ �2�� � �r�ði�1ÞÞ < bS þ �2�� and,
since 1 � k � �ðr� 1Þ, it is also

bS þ �2�� þ r�iðk� �� �rÞ < bS þ �2��:

For this reason, we get

ðk� �Þr�1
Xm
j¼1

ð bS þ �2�� � �r�ði�1ÞÞm�j�

½bS þ 2�� þ r�iðk� �� �rÞ�j�1

< ðk� �Þr�1
Xm
j¼1

ð bS þ �2��Þm�j½bS þ �2���j�1

¼ mðk� �Þr�1ð bS þ �2��Þm�1;

which is actually the tightest conservative lower bound

of the digit selection interval when si ¼ k > 0. The

analysis of 1=2 < bS < 1, together with k ¼ 0 and k < 0,

produces the results given by (9), which express the

widest conditions that are still conservative with (5). The

analysis of the cases bS ¼ 1=2 and bS ¼ 1 is similar and,

therefore, is not considered in detail here. tu

Theorem 6. The tight domain of the existence of w½i� 1� that is

derived from the region of convergence (4), whose bounds do not

depend on i � �=bþ 1, is defined as �LW < w½i� 1� < UW ,

where
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for � < 1 � �m < w½i� 1� � ð�1þ ð1þ �2��ÞmÞ2�

for � ¼ 1 �m < w½i� 1� < m:

ð10Þ

Proof of Theorem 6. Let us first consider the upper bound

of the interval (4). We have to split our analysis into two

cases: � ¼ 1 and � < 1. We start with � ¼ 1 and observe

that

½�S½i� 1�m þ ðS½i� 1� þ r�ði�1ÞÞm�ri�1

¼ ri�1½�S½i� 1� þ S½i� 1� þ r�ði�1Þ��

�
Xm
j¼1

ðS½i� 1� þ ri�1Þm�jS½i� 1�j�1

¼
Xm
j¼1

ðS½i� 1� þ ri�1Þm�jS½i� 1�j�1

ð39Þ

achieves the largest value for the largest value of S½i� 1�.
We remember from (7) that bS � 1� 2�� and, from (8),

that S½i� 1� � bS þ 2�� � r�ði�1Þ. Therefore, by substitut-

ing S½i� 1� ¼ 1� r�ði�1Þ in (39) and by observing that

ð1� ri�1Þj < 1, we get the tight conservative condition

(40) for the upper bound of the domain of w½i� 1�:

Xm
j¼1

½ðS½i� 1� þ ri�1Þm�jS½i� 1�j�1� �
Xm
j¼1

ð1� ri�1Þj < m:

ð40Þ

For � < 1, the approach is similar and we observe that

the upper bound of (4) achieves the largest value for the

largest value of S½i� 1�. Since bS � 1 from (7) and S½i�
1� � minð1; bS þ �ð2�� � r�ði�1ÞÞ� from (8), we substitute

S½i� 1� ¼ 1 in the upper bound of (4):

½�S½i� 1�m þ ðS½i� 1� þ �r�ði�1ÞÞm�ri�1

� ð�1þ ð1þ �r�ði�1ÞÞmÞri�1

¼ ri�1ð�1þ 1þ �r�ði�1ÞÞ
Xm
j¼1

1þ �r�ði�1Þ
� �j�1

¼ �
Xm
j¼1

1þ �r�ði�1Þ
� �j�1

;

ð41Þ

from which it follows that r�ði�1Þ must be made as large

as possible. Since, from i ¼ �bþ p, we have r�ði�1Þ � 2��,

its substitution in (41) leads to the tight conservative

upper bound:

ð�1þ ð1þ �r�ði�1ÞÞmÞri�1 � ð�1þ ð1þ �2��ÞmÞ2�:

For the lower bound, it is not necessary to split the
analysis in the cases � ¼ 1 and � < 1:

½�S½i� 1�m þ ðS½i� 1� � �r�ði�1ÞÞm�ri�1

¼ ri�1½�S½i� 1� þ S½i� 1� � �r�ði�1Þ�

�
Xm
j¼1

ðS½i� 1� � �r�ði�1ÞÞm�jS½i� 1�j�1

¼ ��
Xm
j¼1

ðS½i� 1� � �r�ði�1ÞÞm�jS½i� 1�j�1:

ð42Þ

We observe that (42) achieves the smallest value for
the largest value of S½i� 1�. Therefore, from (8), by
substituting S½i� 1� ¼ 1, we get the tight conservative
lower bound,

� �
Xm
j¼1

ðS½i� 1� � �r�ði�1ÞÞm�jS½i� 1�j�1

� ��
Xm
j¼1

ð1� �r�ði�1ÞÞm�j > ��m;
ð43Þ

since the term in the sum is less than 1 and approaches 1

for i!1. tu

Theorem 7. In order to have correct digit selection rules, in the

case of the carry-save representation of w½i� 1�, a necessary

(but not sufficient) condition is to have both an estimatedw½i� 1� of w½i� 1� up to its tth fractional bit and consider an

initial value bS on � fractional bits given by

mð�r� 1Þ
r

ð2�1 þ ð1� �Þ2��Þm�1

�m�ðr� 2Þ
r

ð2�1 þ ð1þ �Þ2��Þm�1 � 2�t � 0;

ð15Þ

that is, with

t � log2fr=fm½ð�r� 1Þð2�1 þ ð1� �Þ2��Þm�1

��ðr� 2Þð2�1 þ ð1þ �Þ2��Þm�1�gg;
ð16Þ

� > log2

2ð1þ �� ð1� �Þ½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1ÞÞ
½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1Þ � 1

: ð17Þ

Proof of Theorem 7. Let us first consider 1=2 < bS < 1. We

assume that k > 0. The extension to the other cases is

straightforward. From (9), we have obtained (14), that is,

L½k� ¼ mðk� �Þ
r

ðbS þ �2��Þm�1;

U½k�1� ¼ mðk� 1þ �Þ
r

ð bS � �2��Þm�1;

while, for the carry-save representation of w½i� 1�, we

consider (13), which implies that it is necessary to have

U½k�1� � 2�t � L½k�, that is,

mðk� 1þ �Þ
r

ðbS � �2��Þm�1

�mðk� �Þ
r

ðbS þ �2��Þm�1 � 2�t � 0 :

ð44Þ

Now, (44) is a function of k and bS. By assuming having a

fixed bS, the left-hand side of (44) decreases as k > 0

increases. Therefore, the worst case in (44) occurs for

k ¼ a ¼ �ðr� 1Þ. Let us study the function obtained from

the left-hand side of (44), without the term 2�t, that is,
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F ð bSÞ ¼mðk� �Þ
r

ðbS � �2��Þm�1 ðk� 1þ �Þ
ðk� �Þ

�

� 1þ �2��þ1bS � �2��

 !m�1
35: ð45Þ

This function expresses the overlap [7] between the two
consecutive digit selections k� 1 and k. Now, let us
study (45) by assuming that, since we are looking for the
most critical value of bS, k is kept fixed. We know that
F ðbSÞmust be positive for all of the domains of bS in order
to have a valid overlap and, hence, digit selections. We
observe that F ð bSÞ is crescent in bS since both ðbS �
�2��Þm�1 and

ðk� 1þ �Þ
ðk� �Þ � 1þ �2��þ1bS � �2��

 !m�1
24 35

are crescent in bS. This implies that the worst case in (45)
and (44) occurs for the smallest bS. By substituting, in (44),
k ¼ a ¼ �ðr� 1Þ and bS ¼ 1=2þ 2��, we get

mð�r� 1Þ
r

ð2�1 þ ð1� �Þ2��Þm�1

�m�ðr� 2Þ
r

ð2�1 þ ð1þ �Þ2��Þm�1 � 2�t � 0

(that is, (15)), which expresses the condition on the
overlap to be satisfied in order to have valid digit
selection rules. From (15), we get the following necessary
condition (16) on t:

t � log2fr=fm½ð�r� 1Þð2�1 þ ð1� �Þ2��Þm�1

� �ðr� 2Þð2�1 þ ð1þ �Þ2��Þm�1�gg:

From (16), we observe that it must be (for r > 2)

½ð�r� 1Þð2�1 þ ð1� �Þ2��Þm�1

� �ðr� 2Þð2�1 þ ð1þ �Þ2��Þm�1� � 0;

that is (17),

� > log2

2ð1þ �� ð1� �Þ½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1ÞÞ
½ð�r� 1Þ=ð�r� 2�Þ�1=ðm�1Þ � 1

:

Therefore, in the case of the carry-save representation of
w½i� 1�, it is necessary for t and � to satisfy (16) and (17),
respectively. Observe that (17) is valid for r > 2. For
r ¼ 2, it was shown in Section 5 (see Theorems 10 and 11)
that no lookup table for bS is necessary. The analysis of
the other cases k ¼ 0 and k < 0 provides results that are
conservative with (16) and (17).

The study of the case bS ¼ 1=2 and k > 0 yields the
necessary condition:

mð�r� 1Þ
r

ð2�1Þm�1 �m�ðr� 2Þ
r

ð2�1 þ �2��Þm�1

� 2�t � 0 :

ð46Þ

Now, the point is to show that (46) is less restrictive than
(15), that is, that the left-hand side of (46) is larger than
the corresponding left-hand side of (15). To do this, we
subtract the left-hand side of (15) from the left-hand side

of (46) and show that the result is greater than or equal to

zero. After some simple manipulations, we get

ð2�1 þ ð1þ �Þ2��Þm�1 � ð2�1 þ �2��Þm�1

� �r� 1

�ðr� 2Þ ð2
�1 þ ð1� �Þ2��Þm�1 � ð2�1Þm�1

h i
:

Then, by observing that

�� � �� ¼ ð�� �Þ
X�
j¼1

���j�j�1

 !
;

we get

2��
Xm�1

j¼1

ð2�1 þ ð1þ �Þ2��Þm�1�jð2�1 þ �2��Þj�1 �

�r� 1

�ðr� 2Þ ð1� �Þ2
��
Xm�1

j¼1

ð2�1 þ ð1� �Þ2��Þm�1�jð2�1Þj�1;

where we observe that the left-hand side sum is greater

than the right-hand side sum since each term is greater in

the first sum than the corresponding in the second sum.

In addition, we observe that 2�� � �r�1
�ðr�2Þ ð1� �Þ2��.

3 This

confirms that (15) is more restrictive than (46). Therefore,

(15), (16), and (17) are still valid. The analysis of the other

cases k � 0 and bS ¼ 1 provides results that are con-

servative with (15), (16), and (17). tu

Theorem 8. The lookup table intervals are

lookup bS ¼ v if ðv� �2��Þm � x � ðvþ �2��Þm: ð20Þ

Proof of Theorem 8. The starting point is the expression of

the region of convergence (4). By substituting (3) in (4),

we get

ðS½i� 1� � �r�ði�1ÞÞm � x � ðS½i� 1� þ �r�ði�1ÞÞm: ð47Þ

Now, the lookup process which occurs for i ¼ �=bþ 1
must ensure that the estimate bS is selected such that (47)
holds. By calling v the generic value for bS, and by
substituting in (47) (as well as r�ði�1Þ ¼ 2��), we get the
lookup table intervals expressed by (20). tu

Theorem 9. In order to have correct lookup table rules, a

sufficient (but not necessary) condition is to have an estimate bx
of x up to its uth fractional bit, given by

u � � log2½ð2�1 � ð1� �Þ2��Þm � ð2�1 � �2��Þm�: ð23Þ

Proof of Theorem 9. Let us apply (22) for the two

consecutive values of bS, v and vþ 2��. We get

ðv� ð1� �Þ2��Þm � ðv� �2��Þm � 2�u, which can be

easily observed to be crescent in v. Therefore, the most

critical case occurs for v ¼ 2�1, which leads to (23). tu
Theorem 10. When r ¼ 2, it is possible to start the iterations for

the mth root extraction process by considering i ¼ 3,bS ¼ S½2� ¼ 2�1 þ 2�2, and w½2� ¼ ðx� S½2�mÞ22.
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3. In fact, after some passages, it leads to �2r� 3�þ 1 � 0, which is
certainly true for r > 2, as assumed here.



Proof of Theorem 10. We prove that, with r ¼ 2, if
S½2� ¼ 3=4, then w½2� ¼ ðx� S½2�mÞ � 22 certainly belongs
to the region of convergence, which is derived in such a
case given by (4), that is,

½�ð3=4Þm þ ð3=4� 2�2Þm�22 ¼ ½�ð3=4Þm þ ð1=2Þm�22

� w½2� � ½�ð3=4Þm þ ð3=4þ 2�2Þm�22 ¼ ½1� ð3=4Þm�22:

ð48Þ

When x is at the lower bound of its domain (that is,
x ¼ 2�m), we have w½2� ¼ ½�ð3=4Þm þ ð1=2Þm�22, which
corresponds to the lower bound of (48). In addition,
when x ¼ 1, it is at the upper bound of its domain and
we have w½2� ¼ ½1� ð3=4Þm�22, which is equal to the
upper bound of (48). Since w½2� is monotonic in x, it
follows that, for all of the x values belonging to the
interval 2�m � x < 1, w½2� belongs to the region of
convergence (48). tu

Theorem 11. For r ¼ 2, the digit selection intervals are

si ¼ 1 if 0 � w½i� 1� < m
si ¼ 0 i!f �m2�m � w½i� 1� � m2�m

si ¼ �1 if �m < w½i� 1� � 0:
ð24Þ

Proof of Theorem 11. Let us consider the expression of the
digit selection intervals given by (9) and, for the bounds
of the region of convergence, the results of Theorem 6.
We observe that, thanks to Theorem 10, when r ¼ 2, the
value bS in (9) is substituted by 3/4 (with � ¼ 2) and the
expressions in (24) are consequently obtained. Observe
that the selection intervals of (24) (and, hence, also the
rules that will be derived from this) do not depend on �
and on bS. tu

Theorem 12. For r ¼ 2, it is necessary and sufficient to use the

estimate dw½i� 1� obtained by considering w½i� 1� up to its

t ¼ m� blog2ðmÞc fractional bit in order to obtain valid digit

selection rules, which, for a carry-save representation of the

residual dw½i� 1�, are

si ¼ þ1 if 0 � dw½i� 1� � m� 2�mþf

si ¼ 0 if dw½i� 1� ¼ �2�mþf

si ¼ �1 if �m� 2�mþf � dw½i� 1� � �2�mþfþ1;

with f ¼ blog2 mc.
Proof of Theorem 12. As in Section 3.6, we use L½k� and U½k�,

which define the lower and upper bounds of the domain of
w½i� 1� related to the generic digit selection si ¼ kgiven by
(24) to determine the set of constants g½k�. By replacing the
values of the bounds for the case k ¼ 1, we get

L½1� ¼ 0 � g½1� � m � 2�m � 2�t ¼ U½0� � 2�t: ð49Þ

A necessary and sufficient condition is to have L½k� �
U½k�1� � 2�t in (13) (and, hence, in (49) too). Conse-
quently, the minimum value for t that produces a valid
set of digit selection rules is

t ¼ dm� log2ðmÞe ¼ m� blog2ðmÞc ¼ m� f � 1; ð50Þ

where f ¼ blog2 mc. With this value of t, from (49), we

can use g½1� ¼ 0. By now considering the case k ¼ 0, we

get L½0� ¼ �m � 2�m � g½0� � 0� 2�t ¼ U½�1� � 2�t, which

again leads to (50) and to g½0� ¼ �2�t. The domain of

w½i� 1� is provided by Theorem 6 and (10) for � ¼ 1.

Therefore, the domain of dw½i� 1� is identified in

�m� 2�t � dw½i� 1� � m� 2�t: ð51Þ

All of the above leads to the digit selection rules given
by (25). tu

Theorem 13. The estimate dw½i� 1� is obtained by the most

significant mþ 2 bits of w½i� 1�.
Proof of Theorem 13. Let us denote with c the number of

integer bits of dw½i� 1� and with g the global number of

bits required to represent dw½i� 1�. From (25), (50), and

(51), by observing that the lower bound is the most

“critical,” we have c ¼ 1þ dlog2ðmþ 2�mþfÞe. We know

from (50) that the term 2�mþf < 1 for m � 1. Therefore,

by observing that, from the definition of f , we have

2f � m < 2fþ1, we get c ¼ 1þ dlog2ðmþ 2�mþfÞe ¼ f þ 2

integer bits, which then gives the following value as the

global number of bits:

g ¼ cþ t ¼ f þ 2þm� f ¼ mþ 2: ð52Þ

This implies that the number of bits of w½i� 1� to be
considered for the estimate increases linearly with the
value of m. tu
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