
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-26, NO. 7, JULY 1977

On-Line Algorithms for Division and Multiplication
KISHOR S. TRIVEDI AND MILO0 D. ERCEGOVAC

Abstract-In this paper, on-line algorithms for division and
multiplication are developed. It is assumed that the operands as well
as the result flow through the arithmetic unit in a digit-by-digit,
most significant digit first fashion. The use of a redundant digit set,
at least for the digits of the result, is required.

Index Terms-Computer arithmetic, division, multiplication,
on-line algorithms, pipelining, radix, redundancy.

I. INTRODUCTION

IN THIS PAPER we consider problems of divi-
sion and multiplication in a computational environ-

ment in which all basic arithmetic algorithms satisfy the
"on-line" property. This implies that to generate the jth
digit of the result, it is necessary and sufficient to have the
operands available up to the (j + 6)th digit, where the
index difference 6 is a small positive constant. It is neces-
sary to accumulate 6 initial digits of the operands in order
to produce the first digit of the result. Subsequently, one
digit of the result is produced upon receiving one digit of
each of the operands. Thus (is the on-line delay. Such al-
gorithms can be used to speed up an arithmetic multi-
processor structure due to their potential to perform a
sequence of operations in an overlapped fashion. Another
possible application is in performing variable precision
arithmetic. The on-line property implies a left-to-right
digit-by-digit type of algorithm and consequently, a re-
dundant representation, at least, of the results. For addi-
tion and subtraction, algorithms satisfying the on-line
property can be easily specified. Multiplication requires
a somewhat more elaborate approach arnd there are several
possible ways of defining an on-line algorithm. However,
the existence of an on-line division algorithm is not obvious
and its analysis appears interesting.
Note that it is possible to define the on-line property

with respect to a subset of the operands and/or the result.
For example, conventional division has the on-line prop-
erty with respect to the quotient. Similarly, conventional
multiplication has the on-line property with respect to the
multiplier. Several authors have extended the on-line
property of multiplication to the product digits as well [1],
[2]. It is also possible to define the on-line property with
respect to a right-to-left mode of operation. Addition and

Manuscript received January 20, 1976; revised January 5, 1977. This
work was supported in part by the National Science Foundation under
Grant US NSF DCR 73-07998.

K. S. Trivedi was with the University of Illinois at Urbana-Champaign,
Urbana, IL 61801. He is now with the Department of Computer Science,
Duke University, Durham, NC 27706.
M. D. Ercegovac was with the Department of Computer Science,

Universityof Illinois at Urbana-Champaign, Urbana,IL 61801. He is now
with the Department of Computer Science, School of Engineering and
Applied Science, University of California, Los Angeles, CA 90024.

subtraction operations always satisfy this property.
Atrubin [3] has developed a right-to-left on-line algorithm
for multiplication. In this paper, we will retain our earlier
definition of the on-line property where all of the operands
as well as the result digits flow through the arithmetic unit
in a left-to-right digit-by-digit fashion.

Consider an mr-digit radix r numberN = 1=l nir-i. In
the conventional representation, each digit ni can take any
value from the digit set 0,1, - - ,r - 1}. Such representa-
tions, which allow only r values in the digit set, are non-
redundant since there is a unique representation for each
(representable) number. By contrast, number systems that
allow more than r values in the digit set are redundant.
Redundant number representations are often useful in
speeding up arithmetic operations [4], [5]. It is not difficult
to see that the use of redundant number representation is
mandatory for on-line algorithms. If we were to use a
nonredundant number system, then even for simple op-
erations like addition and subtraction, there is an on-line
delay 6 = m due to carry propagation. If we allow redun-
dancy in the number representation, then it is possible to
limit carry propagation to one digital position. A well-
known example is the totally parallel addition in the signed
digit representation [4]. This gives us an on-line algorithm
for addition (and subtraction) with 6 = 1. Campeau [6] has
developed an on-line algorithm for multiplication with (
= 1. In this paper, we develop a new on-line algorithm for
division where the value of 6 depends upon the radix and
other properties of the number system employed. In par-
ticular, we will present an on-line binary division algorithm
with 6 = 4 (i.e., a 4-bit on-line delay). We will also show that
an on-line decimal division algorithm can be obtained with
6 = 4 (i.e., a 4-digit on-line delay). We also develop a
compatible on-line multiplication algorithm with 6 = 1.

After introductory remarks, an analysis of the on-line
division problem is given in Section II. The radix-2 case
with nonredundant operands is considered first and a
feasible on-line algorithm is defined. Later, a generaliza-
tion of this on-line algorithm for redundantly represented
operands and higher radices is given. In Section III, a
compatible on-line multiplication ailgorithm is consid-
ered.

II. DIVISION

Let the radix r representations of the positive dividend,
divisor, and quotient be denoted by N, D, and Q, respec-
tively, such that

m m
N= ,nirTh D= Edir-i,

i=l i=l

m
Q = E qir-

i=l

681

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

and

Q = N/D to m digit precision.

If all the digits of the operands N and D are known in
advance then the division can be carried out by the fol-
lowing well-known algorithm DI.
Algorithm D1:
Step 1 [Initialize]: PO - N; j O- 0;
Step 2 [Selection]: qj+1 <- Select (rP1,D);
Step 3 [Basic Recursion]: Pj+j l- rPj -qj+D;
Step4 [Test]: Ifj <m - 1thenj 4]j + 1, andgoto Step

2;
End D1;

In this algorithm, Pj is known as the jth partial remainder
and rPj is known as the jth shifted partial remainder. The
selection procedure of Step 2 obtains the new quotient
digit qj+1 such that Pj+1 satisfies certain range restrictions
[5]. This process requires the comparison of rPj against
some constant multiples of D. The use of redundancy in
the representation of each digital position of the quotient
allows us to select qj+ I based on the inspection of a limited
number of leading digits of rPj and D [5]. Furthermore,
these methods can also be extended to the case when both
the partial remainder and the divisor are in redundant
form [7]. It is clear that without the use of redundancy it
is not possible to avoid a set of full precision compari-
sons.
The present problem is that the digits of the dividend

and the divisor are not known in advance but are available
on-line, digit-by-digit, most significant digit first. It should
be clear at the outset that in the absence of redundancy the
problem cannot be solved.

Let us assume that the first digit (q 1) of the quotient can
be obtained after 6 leading digits of the dividend and the
divisor are known. Thereafter, one new digit of the quo-
tient can be obtained upon receiving one digit each of the
dividend and the divisor. We can then specify the following
algorithm D2.
Algorithm D2:

Step 1 [Initialize]: Po nir-i4
i=l1

Do E dir-i; j 0;
i=l1

Step 2 [Selection]: qj+1 -- Select (rPj,D1)
Step 3 [Basic Recursions]:

f)j+l fi+ dj4++l-ri45
Pj+1 P+ n-+b+lr-6

- qj+lf+l - (qir-i) * dj+b+lr-

Step 4 [Test]: Ifj < m - 1 then j i + 1 and go to Step
2;
End D2;
Note that we have assumed that the dividend and the

divisor are padded with 6 zero digits to the right. The basic
recursion of algorithm D2 is slightly more complex than

that in algorithm D 1 due to the corrective action necessi-
tated by the operand digits that arrive at the jth step.
The convergence of algorithm D2 can be established as

follows. From the recursions of algorithm D2, the following
expression for Pj is easily established by induction on j.

= r[nir-i - (IE qiri) (diri)], (2.1)

which implies that

Pm = rm[N - QD]
and

Q = NID - Pmr-m/D.

Therefore, if we can establish a range restriction

PjA < caD

(2.2)

(2-3)
with ½ < a < 1, then from (2.2) we deduce that Q is the
required quotient to mr-digit precision [5]. Note that the
value of a is determined by the properties of the number
system employed [5]. For j = 0, (2.3) can be satisfied by
appropriately preshifting the dividend. Assume that there
is a selection procedure that generates the quotient digit
qj+1 so as to guarantee Ip1i+I < aD given that IPj < aD.
Then by induction, the range restriction (2.3) will hold for
all values of j. Therefore, we will now derive such a selec-
tion procedure. Instead of proceeding directly, we will first
establish a bound on IPj - Pj and then a selection pro-
cedure will be developed that guarantees IPj < a 'D. This
in turn gives us a bound on Pj. We will first discuss a simple
case in which the radix is two and the divisor and the
partial remainders are in nonredundant forms. Later, we
will generalize to an arbitrary radix with all operands in
redundant form.

A. Binary Division with Nonredundant Operands
From the recursions of algorithm D1, the following

equation can be derived by induction.
P m

Pi = ri -E nir-i -
_i=l

(ii qir-i) (dir-i)]. (2.4)

From (2.1) and (2.4) we have

pi -Pi = ri [E nir-i
i=j+b+1

- (. qir-i)(=E dir-i)]. (2.5)
i=l i=j+b+l

Recall that a binary (r = 2) nonredundant form of the
dividend and the divisor implies that ni,di E {0,1}. Since the
quotient is required to be in a redundant form, we let qi e
10j,-11. Therefore, from (2.5) we can get the bounds on P1
-P.J'

P-Pj < 2j[
i=j+b+l

2-i + (f 2-i) E 2-i)]
i=l i=j+b+l

682

TRIVEDI AND ERCEGOVAC: ALGORITHMS FOR DIVISION AND MULTIPLICATION

2 . 2-6 < %/ - 4 - 2-6.
pj _P > -2] [(i 2i) (i=+1 -i)]

from which we have

-2-6 < Pj - Pj < 2 .2-6. (2.6)

Assuming that the divisor is the fractional part of a
normalized floating-point number, we have i < D < 1.
From the digit set t0,1,-11 of quotient digits, we obtain the
range restriction on Pj [5],

-D<Pj<D. (2.7)

From (2.6) and (2.7) we get opaque

-D+ 2- <P.j<D-2.2-6. (2.8)

From (2.7), we get

-2D < 2Pj < 2D.

For a given value of qj+1, there is a range of 2Pj values such
that the selection of this value of qj+1 in step 2 of algorithm
D1 will force the subsequent value of Pj+1 to satisfy the
range restriction (2.7). These ranges can be specified as
follows:

If0< 2Pj <2D, then qj+1= 1,

if -D < 2Pj < D, then qj+l =0,and

if-2D < 2P] < 0, then qj+l =-1.

Corresponding ranges of 2Pj values can be obtained by
using-the inequality (2.6).

If 2 2-62< 2Pj < 2D - 2-6, then qj+1 = 1,

if -D +2-2-6 < 2Pj < D -4- 2-6, then qj+I =0, and

if -2D + 2 .2-6 '< 2Pj < 0-4.* 2-b, then qj+l =-1.

(2.9)
It is not possible to use these rules for quotient digit

selection in algorithm D2 since the knowledge of all the bits
of the divisor D is implied above. However, the redundancy
in the representation of the quotient allows us to make the
selection, independent of the value of D.
Each inequality of (2.9) determines a wedge-shaped area

on the 2P1 versus D plane as shown in Fig. 1. This area
together with its associated value of qj+l = i will be called
the i-selection region. Let the intersection of the i-selection
region with (i + 1)-selection region be called (i,i + 1)-se-
lection overlap region. The existence of nonnull selection
overlap regions is due to the redundancy in quotient digits.
The (-1,0) and (0,1)-selection overlap regions are re-
spectively given by

-D + 2 - 2-6 < 2Pj < -4.2-6
and

2-2-6<2Pj <D-4.2-6.

Now we require that there be nonzero-selection overlap
for all values of 1 < D < 1. Since the worst case occurs
when D = ', we get the condition

Since 6 is required to be an integer, we get 6 > 4. Next we
select two constants C1 and C2 such that the line 2Pj = C1
is entirely within the (0,1)-selection overlap region. A
similar condition holds for C2 with respect to the (-1,0)
-selection overlap region. These two lines can be used as
the selection lines to obtain the following selection pro-
cedure.

If 2Pj > C1, then qj+1 = 1,

if 2Pj < C2, then qj+ 1 = -1

otherwise qj+ = 0. (2.10)

The development of the selection rules (2.10) was based
on range restriction (2.8). Therefore, using (2.2), we see
that algorithm D2 will converge. We choose the following
values of the constants C1 and C2 from Fig. 1: Ci = 'A and
C2 = -%-

If we substitute the selection rules (2.10) in algorithm
D2 together with 6 = 4, r = 2, C1 = ', and C2 =-'A4, then
we have a binary on-line division algorithm. In a similar
fashion, we can also obtain on-line division algorithms for
higher radices.
An example of binary on-line division now follows.
Let m = 24,

N = 0.101000110110101110010101, and
D = 0.111101100101100011110011.

P1 qj+
0.10100000000000000000000 1.
0.01010000000000000000000 1
1.10100100000000000000000 -1
0.01000010000000000000000 1
1.10011110000000000000000 -1
0.00110010000000000000000 1
1.01110011010000000000000 -1
1.11101100110000000000000 0
1.11001110111000000000000 -1
0.10011001011110000000000 1
0.00111100100110000000000 1
1.10010010110110000000000 -1
0.00101100000010000000000 1
1.01100111000110101000000 -1
1.10111001111100000100000 -1
0.01011111100111000010000 1
1.11001110010000100011000 -1
0.10010010110111010101000 1
0.00111111011000011011000 1
1.01111101110011010100001 -1
1.11110111010101100100100 0
1.11101110101011001001001 0
1.11011101010110010010010 -1
0.10110001000010110011101 1

We note that negative values of P1 are represented in two's
complement notation.

683

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

which implies that

-(K + K2)r-6 < Pj- Pj < (K + K2)r-6. (2.12)
From (2.11) and (2.12), we get the range restriction on

pi:
-KD + (K + K2)r-6 < Pj < KD - (K + K2)r-6.

(2.13)
For a given value of -p < i < p, there exists a range of

values of rPj such that the selection qj+I = i guarantees the
range restriction (2.11) on Pj+1. The range of rPj values
for qj+1 = i is given by

(-K+i)D <rPj < (K+i)D. (2.14)

Fig. 1. The selection regions for binary on-line division (6 = 4).

B. Division with Redundant Operands

In Section A, we required that the operands and the
partial remainder be in nonredundant form. As a result,
we cannot use carry-free addition (or subtraction) in Step
3 of algorithm D2. In this section we generalize to the case

where the dividend, the divisor, and the partial remainder
are in a redundant form. As a result, carry-free addition
in Step 3 of algorithm D2 can be used. For a discussion of
carry-free addition see [4].
We assume that the digits of the dividend, the divisor,

and the quotient are all chosen from the symmetric re-

dundant digit set

Dp= -p, -1,0,1, *,pi andr2< P < r - 1.
p ~~~~~~~2

K = p/(r - 1) is known as the degree of redundancy. It
can be shown that the appropriate range restriction on P1
is given by [5], [7]

-KD <Pj <KD. (2.11)

From (2.5) and the fact that Inni, Idiqi < p, we

have

IPj - Pl < ri rr

r~l _ r-i-- rij-b-r-m-l-

(K + K2)r6- (K + K2)r-m+i
- K2r-i-6 + K2r-m,

The corresponding i-selection region for rPj is obtained
using (2.12) and (2.14) as

(-K + i)D + (K + K2)rb+l .< rP3

< (K + i)D - (K + K2)r-6+1. (2.15)

In Fig. 2, we have shown these selection regions on a
graph of rp1 versus D. Such a graph is known as a P-D plot
in the literature [7]. But for obvious reasons, we call it a
P-D plot. The use of inequality (2.15) in a selection pro-
cedure will imply a set of full precision comparisons be-
tween rPj with several multiples of D. However, only 6
digits ofD are known initially. The existence of ranges of
rPj values, where more than one value of qj+1 is possible,
allows us to make a selection with the limited information
on D [6], [71. Recall that the redundancy in number rep-
resentation is the cause of such selection overlap regions.
Quotient digit selection can now be made from the esti-
mate Rj ofPj and the estimate D1 of D. Assume that 6 most
significant digits of P1 are used as its estimate Rj, and ,B
most significant digits of the divisor D are used as its es-
timate D. Since only 6 digits of the divisor are available
initially, (3 < 6 must hold. Let Ap denote the upper bound
on the error made in estimating ri-j by rRj, i.e., IrPj - rRj
< Ap. Similarly, let ID -DI < Ad. The rest of the analysis
for determining the appropriate selection rules and de-
termining the values of 6 and fd is very similar to the anal-
ysis in Atkins' Ph.D. dissertation [7]. The difference is that
his P-D plot is that of rPj versus D, whereas ours is that
of rp1 versus D. The main point is that the errors of esti-
mation (Ap and Ad) should be small compared to the lat-
itude of choice allowed by the selection overlap regions. It
may be deduced from (2.15) that the smallest selection
overlap region occurs near the minimal value, Dmin, of the
divisor [7]. Therefore, we require that the rectangle of
height 2Ap, width 2Ad, and with its center at l5min, should
be completely contained in the (i - 1,i)-selection overlap
region (see Fig. 2). The above condition is equivalent to the
condition [7] opaque
Ap + %2(2i - 1)Ad + (K + K2)ri6+l < ½(2K - 1)DImin.
Note that the worst case occurs when i = p, therefore, we
get the condition

684

TRIVEDI AND ERCEGOVAC: ALGORITHMS FOR DIVISION AND MULTIPLICATION

Ap + (p- /2) Ad + (K + K2)r-b+l
. (K - /2)Dmin. (2.16)

To obtain a bound on Ad, we note that it consists of the
trailing digits of D starting from the (f + 1)st digit. The
largest value of each of these digits is p.

Therefore,
m

Ad < L pr-i
i=03+1
p

r- 1

=Kr-#.

Similarly,
Ap.

A\P< rPr6+1
r- 1

= Kr-6+l.

Therefore, the inequality (2.16) reduces to

Kr-6+1 + (p - /2)Kr-6 + (K + K2)r-b+l
< (K -Y2)Dmin

(2K + K2)r-b+l + K(p - 2)r- < (K - A)fbmin.
(2.17)

If we assume that the divisor D is standardized [7], i.e.,
d$ 0, then since di < p, we have

1 d1Dmin =- - E pr-i
r i=2

or
1 p 1-r-#+l
r r2 1-r-1

1 p 1-r-d
r r r-1

= - (1 - K(1 - r-#+')).
r

Therefore, the condition (2.17) reduces to

(2K + K2)r-b+l + K(p - 2)r-O

< - (K - Y2)[1 - K(1 - r-+1)]
r

or

(2K + K2)r-B+2 + K(p -K)r-+l
<5 (1 -K)(K -1/ (2.18)

Once r andK are decided, we can determine d and 6 from
this condition. From condition (2.18) we infer that number
systems withK = i (i.e., a nonredundant system) and K
= 1 (i.e., a maximally redundant system) are not permis-
sible. As an example, let r = 10, p = 6 and K = /3. Then
from (2.18), we have

rP.

D

Dm.

Fig. 2. P-D plot for higher radix on-line division.

or

(3200)10-6 + (640)10-0 < 1.

If we let 6 = ,B + 1, then

(320 + 640)10-d < 1

or

> 3, 6 > 4.

Thus, we can define a decimal on-line division algorithm
with a four digit on-line delay. The selection rules may be
obtained from the P-D plot following the procedure in [7],
but the details are omitted here.

III. MULTIPLICATION

An on-line algorithm for multiplication, compatible with
the previously considered on-line division algorithm, can

be conveniently derived following the well-known tech-
nique of incremental multiplication, as used in the digital
differential analyzers [6], [81, combined with the use of
redundant number of systems.

Let
m

X= E x-r
i=l

m

Y= yi-r-
i=l

(3.1)

be the radix r representations of the positive multiplicand
and the multiplier, respectively. Define

Xi = EXi * ri = Xj-l + Xj r-
i=l

(4/3 + 4/9)10-6+2 + 2/3(16/3)10f-i1 < r r (2+2/(16/)10-- -3 6' i

685

i
Yj = E yi - r-i = Yj-l + yj - r-i

i=l
(3.2)

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

to be the j digit representations of the operands X and Y,
available at the jth step by definition of an on-line algo-
rithm. The corresponding partial product is, then,

Xj - Yj = Xj-l - Yj-l + (Xj - yj + Yj-l - xj)r-d.
(3.3)

Let Pj be the scaled partial product, i.e.,

Pi = Xj * Yj * ri (3.4)

so that the recursion of the multiplication algorithm can

be expressed as follows:

Pj = rPjpl + Xj * yj + Yj- * xj. (3.5)

Defining Po =0, the scaled product Pm = X * Y * rm can

be generated in m steps (3.5). If a nonredundant number
system is used in representing the partial products, the
digits of the desired product appear in a right-to-left
fashion, as determined by the conventional carry propa-

gation requirements. If, however, a redundant number
representation is adopted, the desired left-to-right gen-

eration of the product digits, as required by the on-line
property, can be easily provided. Moreover, the redun-
dancy in number representation can make the time re-

quired to perform the recursive step independent of the
operand precision (i.e., a carry-free addition is possible).
We will use a symmetric redundant digit set

Dp = V-p,-(p - 1), *- ,-1,0,1, * ,p -1,p} (3.6)

where-
r

< p < r -1.
2

Following the general computational method described
in [9], the basic recursion (3.5) of the multiplication algo-
rithm is redefined in the following way:

wj = r(wj1- dj1) + Xj * yj + Yj1l xj (3.7)

where the digits dj E Dp, can be determined by the fol-
lowing selection function:

dj = S(wj) = sign wj * L[wjI + 1/2] (3.8)
which clearly corresponds to a rounding procedure.

Then, from (3.5) and (3.7), the following relation can be
obtained by induction

1-1

wj = Pj - di * r&i).
i=1

(3.9)

Substituting j = m in (3.9) and rearranging, we have
m-1

Pm=X-Y-rm=rm E dir-i+wm
i=l

(3.10)

or
m

X Y= Ldir-i+(wm-dm)r-m.
i=l

By definition of the selection function S(wj), Wm - dm l
< i, so that 2; l dir-i is indeed the redundant represen-
tation of the most significant half of the product X. Y.
Thus, the algorithm will converge.

We have assumed above that the selection function (3.8)
will produce the digit di such that Idi < p. This condition
will be satisfied provided

lwjl <p+ % (3.11)
holds for j = 1,2,--,m. We will now obtain an upper
bound M, on the values of the operands X and Y such that
(3.11) holds. Let IX I, YI < M. Noting that wj-1 - dj_1
< %and 1yj1xj I. p, from (3.7) we get

r

Iwjl < + 2Mp.
2

Now using (3.11) and rearranging we get
< 1r-1

2 4p
Thus, for a minimally redundant system, defined by p =

r/2, the required operand bound is

IXI,IYl<_
2r

and for a maximally redundant system, defined by p = r

- 1, the required operand bound is

IXI,|YI <-.
4

On closer inspection, we are often able to improve upon
these bounds. For example, X I, YI < Y2 suffices for r =
2.
As discussed in detail elsewhere [9], it is a simple matter

to make the time required for the computation of wj in-
dependent of the precision of the corresponding operands.
Thus, by allowing

Y2< wj -djl <
a carry propagation free addition can be utilized in
(3.7).
The following example illustrates the on-line multipli-

cation algorithm for r = 2.
X = 0.01101001
Y = 0.01110011

j Xjyj + YjFlxj WI dj 2(wj- dj)

1 0.0 0.0 0 0.0
2 0.01 0.01 0 0.1
3 0.101 1.001 1 0.01
4 0.0110 0.1010 1 -0.11
5 0.0111 -0.0101 0 -0.101
6 0.0 -0.101 -1 0.11
7 0.0110100 1.0010100 1 0.010100
8 0.11011011 1.00101011 1 0.0101011

8
E dj2-I + 2-8(w8- d8) = 0.0010111100101011
J=X

= X.*Y. o

686

TRIVEDI AND ERCEGOYAC: ALGORITHMS FOR DIVISION AND MULTIPLICATION

IV. CONCLUDING REMARKS

Two compatible algorithms for on-line division and
multiplication, based on the redundant number systems,
have been presented. These on-line algorithms provide an
effective way of speeding up the execution of sequences of
the basic arithmetic operations by minimizing the delay
between successive operations in an overlapped mode of
operation. In real-time applications, where the inputs are
serially generated by an analog-to-digital conversion
process beginning with the most significant digits, the
on-line algorithms can be used to increase the overall speed
by overlapping the computation with the conversion. The
described algorithms can be seen to have rather simple
implementation requirements and properties which are
compatible with the desirable modularity in implemen-
tation and variable precision operations.
At the present time, computer systems employing a

pipelined arithmetic unit for floating-point computation
consider fraction arithmetic as a single stage of the pipeline
[10], [111. The on-line algorithms presented in this paper
will allow further decomposition of this stage so that a
digitally pipelined arithmetic unit will be possible.

REFERENCES

[1] A. Avizienis, "On a flexible implementation of digital computer
arithmetic," in Proc. IFIP, pp. 664-668, 1962.

[21 M. J. Pisterzi, "A limited connection arithmetic unit," Ph.D. dis-
sertation, Dep. Comput. Sci., Univ. of Ellinois, Urbana-Champaign,
IL, June 1970.

[3] A. J. Atrubin, "A one-dimensional real-time iterative multiplier,"
IEEE Trans. Comput., vol. C-14, pp. 394-399,1965.

[4] A. Avizienis, "Signed digit number representation for fast parallel
arithmetic," IRE Trans. Electron. Comput., vol. EC-10, pp. 389-
400, 1961.

[5] J. E. Robertson, "A new class of digital division methods," IRE
Trans. Electron. Comput., vol. EC-7, pp. 218-222, Sept. 1958.

[6] J. 0. Campeau, "Communication and sequential problems in the
parallel processor," in Parallel Processor Systems, Technologies
and Applications. New York: Spartan, 1970.

[7] D. E. Atkins, "A study of methods for selection of quotient digits
during digital division," Ph.D. dissertation, Dep. of Comput. Sci.,
Univ. of Illinois, Urbana-Champaign, IL, June 1970.

[8] E. L. Braum, Digital Computer Design-Logic, Circuitry, and
Synthesis. New York: Academic Press, 1963.

[9] M. D. Ercegovac, "A general method for evaluation of functions and
computations in a digital computer," Ph.D. dissertation, Dep.
Comput. Sci., University of Illinois, Urbana-Champaign, IL, July
1975.

[10] C. Stephenson, "Case study of the pipelined arithmetic unit for the
TI advanced scientific computer," in IEEE Proc. 3rd Symp. on
Computer Arithmetic, Dallas, TX, Nov. 1975.

[11] S. F. Anderson et al., "The system/360 model 91 floating-point
execution unit," IBM Syst. J., vol. 11, p. 34, 1967.

Kishor S. Trivedi was born in Bhavnagar,
India, on August 20, 1946. He received the

N Ph.D. degree in computer science from the
X I University of Illinois, Urbana-Champaign, IL,

2 in1974.
From 1974-1975 he was a Visiting Research

Associate at the University of Illinois. In the
summer of 1976, he was a Visiting Scientist at
the Institute for Computer Applications to

W * ~Science and Engineering, NASA Langley Re-
search Center, Hampton, VA. He is currently

an Assistant Professor of Computer Science at Duke University, Durham,
NC. His current interests include computer architecture and operating
systems.

Milos D. Ercegovac, for a photograph and biography please see this
issue, p. 680.

687

