
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-24, NO. 9, SEPTEMBER 1975

A Piecewise Linear Approximation of l092x with

Equal Maximum Errors in All Intervals

JOHN B. KIOUSTELIDIS AND JOHN K. PETROU

Abstract-In this paper it is shown how to divide the interval
[1,2] into n parts so that the uniform linear approximation of log2x
in each subinterval has the same maximum error. This error is, in
the case n = 4, smaller by a factor of 2.3 than the error of the linear
mean-square approximation given by Hall et al. [1]. The final products
of the mathematical analysis are explicit formulas which allow the
direct determination of all parameters and the maximum error for
any desired number n of subdivisions of [1,2].

Index Terms-Approximate computation, approximate evaluation
of elementary functions, binary logarithm, linear Chebyshev ap-
proximation.

INTRODUCTION

THE construction of a formant vocoder (see Shafer and
Rabiner [2]), as well as many other systems for the

processing of analog signals, requires a fast and very
accurate method for the determination of the logarithm.
This problem has been already treated in the literature
(see Hall et al. [1]) by use of a linear approximation which
is the fastest computable approximation. But the approxi-
mations which have been proposed do not exhaust the
limits of accuracy which a linear approximation can yield.

Therefore, the best possible uniform linear approxima-
tion will be determined in this paper, and it will be shown
that it has considerably better error bounds. In order to
make the comparison easier in the further considerations,
the special case of the binary logarithm will be discussed.
This does not in'any way restrict the applicability of the
proposed method because the logarithm with respect to
any other basis is proportional to the binary logarithm
(logbx = k.log2x withk = log2b = 1/logb2).
To begin with, it-can be easily seen how an approxima-

tion, which is valid only for a finite interval, can be used
for the determination of the logarithm of an arbitrary
number, and why the linear approximation is, as above
claimed, the fastest computable approximation.

For an arbitrary positive number y, there is an integer
power k of 2 such that

2k < y < 2k+1( (1)

consequently,

0 < log2 y - k < 1
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and we conclude that any binary logarithm is given by the
formula

log2 y = k+ log2 x

where k is the first significant binary digit of y and

x = y/2k C [1,2].

(2)

(3)

The above division, as well as the determination of k,
can be achieved by simple shifting if the numbers are
expressed in binary.
For the above applications, it is therefore sufficient to

find an appropriate approximation of log2 x for [1,2]. In
order that this approximation may be quickly computed,
it must involve as few multiplications as possible. Conse-
quently, we use only one multiplication and one addition.
On the other hand, this is not sufficiently accurate unless
we divide the interval [1,2] in smaller parts [x0,xl],
[x1,X2], ,[x,1,x. ] with xo = 1,Xn = 2 and determine a
separate linear approximation for each subinterval.

Besides that, for the sake of uniformity of the approxi-
mation, we try to make the maximuLm errors in all intervals
equal. The most suitable approximation method in this
case is that of the minimization of the maximum error,
that is, the Chebyshev approximation (see Cheney [3]).

DETERMINATION OF THE BEST UNIFORM
LINEAR APPROXIMATION OF 1og2 x IN THE

INTERVAL Im±1 = Exm,xm+1]
It is known that

log2 x = c-ln x,

We therefore want to determine

C = 1/In 2. (4)

Em+l = Min (maxI c.ln x - ax - b 1)
a,beR xeIm+1

and the corresponding a,b.
Let

g(x) := c-ln x - ax - b.

(5)

(6)
maxxr +1 g (x) appears either at the endpoints Xm,Xm+1
of the interval or at the point

x = c/a
where the derivative of g(x) equals zero.
Thus we have

(7)
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Fig. 1. Functions yj(b) and maxj-1,2,ayj(b).

./

max lc.lnx-ax-b l= max c-lnx-ax-bI
Xer+lm +1-X=m,Xm+1,cla

(8)-max b - si(a)
j=1,2,3

with

si(a) < 82(a)

for

a < C/ Xm+1/2

where

s1(a) = c In xm- axm

82(a) = c ln xm+1-ax+
s3(a) = c*In (c/a) - c.

The functions

y (b) := 6 -sj (a) 1, j = 1,2,3
are shown in Fig. 1 where

si(a) = min {sj(a)}
j-1,2,3

sk(a) = max {sj(a)}.
j-1,2,3

In Fig. 1, the plot of the function max.=1,2,3 {yj(b) } is
given by the full line, and the point minb (maxj (yj(b)))
is the intersection point of yi (b) and yk (b). The corre-
sponding b value is

(15)b =
Si + Sk

2

Therefore,

y(a) :=mi (max (yj(b))) yi
b j

- 1Jsi (a) - 8k(a) |. (16)
For the further determination of y (a), we must find the

indices i and k, that is, the relative position of the s1(a) to
each other.
At first we note that it is

(9)
(10)
(11)

Xm±1 - Xmn
Xm+1/2 = in(m+/Xm)

Furtwllnn(ixq+luxa)
Further, we use the well-known inequality

lnt<t-1l fort>0. (20)

If we successively substitute in it the values xm+i/lxm,
(12) Xm/xm+l, axm/c, and axm±+/c for t, we get the inequalities

(13)

(14)
The relative positions of the sj(a) and the value of

y (a) are therefore as shown in Fig. 2.
Considering now y (a) in each of the subintervals

[C/Xm+l,C/Xm+1/2] and [c/Xm+1/2,C/X,m±i], we can show by
means of inequality (20) that it is monotonically de-
creasing in the first subinterval and monotonically in-
creasing in the second. We therefore have

Em+j = min y(a) = Y(C/Xm+112)
ae [c/Xm +1, c/xml

(24)C xm - 1 i)=-~~-1-lIn.
2 XSm+1/2 KXm+1/2

The corresponding values of a and b, which give the
optimal approximation, are

y

I S (a)-Sk(a)|
2

0

(17)

(18)

(19)

Xm < Xm+1/2 < Xm+l

si(a) < s3(a)

82(a) < s8 (a).

(21)

(22)

(23)

am+l = C/ Xm+1/2

bm+l =- {ln (XmXm+1I2) - 1 - _ m )}2 XM+1/2,

(25)

(26)
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Fig. 2. Relative position of the functions sj(a),82(a),s3(a).

DETERMINATION OF INTERVALS

[xo,xl.* * *,[x.-1,x,] (X0 = 1,x, = 2)
WITH EQUAL MAXIMUM ERRORS E1,. E,
Let fm(x) be any approximation of log2 x = clIn x in

the interval Im = [xm-i,xmiI and em(x) the corresponding
error function:

c*ln x = fm(x) + em(x),

or

d = 21/n.

With this value for d, we get

fm+l(t) = 1/n + fm(t/d) = * * * = m/n + fi(t/dm)

= m/n + fi (2-mfnt) .

(38)

(39)

for x E Im (27) SUMMARY OF THE RESULTS AND COMPARISON
TOa A lNfTT-T-P A PPRPfWTTM AATTOI

Considering the next interval Im.1, we may now observe
that if to every t E Im+1 there corresponds an x E Im by
means of

t = d.x, (28)

then

c.ln t = c.ln (d.x) = c*ln d + c*ln x (29)

Summarizing the above results, we have for the best
uniform linear approximation

fm+i(x) = am+lx + bm+i, for x E [xm,xm+l] (40)

with

xm = 2m/, nm = 1,2,3,*.. n (41)

= cln d + fm(x) + em(x) = fmi+(t) + em+i(t). (30)

Thus, in order to have

1
am,=n2mln(211n - 1)

m = 0,1,2,3,*..,n - 1

em.+(t) = em(x) = em(t/d), (31)

it is sufficient to set

fm+i (t) = c * ln d + fm (x) = c * ln d + fm (t/d). (32)

Then we have also for the maximal errors

Em+, = max em+i(t) I = max em(x) = Em.
teIm +1 xeIm

(33)

Further, it should be noted that if fm (x) is the best
uniform approximation of log2 x in Im, then fm,+(t) is the
best uniform approximation of log2 x in Im+1. If a better
uniform approximation hm+i(t) existed in Im±1, that is,

one with maximum error Em+±' < Em+, = Em, then the
function

hm (x) = hm+i (d - x) -c *ln d (34)

would be a better uniform approximation of log2 x in Im

than fm (x).
Let us now divide [1,2] in n subintervals of the above

kind. From (28), we get for the initial points and the
final points of these intervals (with xo = 1,xn = 2)

Xn-1= dXn-2 = ... = d"-l-xo = dn-1

2 = Xn= dXn1 = ... = dn-1Xl
that is,

2 = d xn-, = dn

(35)

2mr+1 1 1

bm+i=± 2n 2lnn 2n(21/--1)'
m = 0,122, .*,n- 1 (43)

1 ln2 1
Em+j In

2n(2"1 1) n (21/n- 1) 21n2 '

m = 0,1,2,. *,n - 1. (44)

In the special case n = 4, by use of six decimals, we have
the following results.

m Xm

0 1.000000
1 1.189207
2 1.414214
3 1.681733
4 2.000000

am

1.321303
1.111079
0.934303
0.785652

-1.318597
-1.068597
-0.818597
- 0.568597

Em

0.002707
0.002707
0.002707
0.002707

The maximum error is the same for all intervals and
equals 2.707 10-3. The maximum error in the approxima-
tion given by Hall et al. [1, P. 99, Table I] for n = 4 with
six decimals is, on the contrary, 6.243 10-3, that is, greater
by 2.3 times.
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Design Verification at the Register
Transfer Language Level

HAROLD HOEHNE AND ROBERT PILOTY, MEMBER, IEEE

Abstract-Computer description languages can be used as input
to software tools which aid in the design of digital hardware struc-
tures. One of the important phases in the design process is verifica-
tion. A software system is described which aids the verification
process of a computer description at the register transfer language
(RTL) leveL It is based on the concept of concurrent simulation and
comparison of the functional and the structural description of a
computer. Error types, in particular consistency and semantic errors,
and algorithms for their detection are discussed. The tools necessary
to implement these detection procedures are outlined.

Index Terms-Compiler-interpreter system, computer description
language, design verification, error detection, hardware design auto-
mation, register transfer language (RTL), simulation.

I. INTRODUCTION

N the past decade numerous languages for the formal
description of sequentially operating computer hard-
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ware units and systems have been proposed. The majority
of them are designed to describe the operation of func-
tional units in terms of the state transition of all their
actual data storage elements, some even including the
control storage elements [l}-[4]. They are of the register
transfer (RT) type in the sense that the transfer of bit
strings between groups of storage elements, i.e., registers,
is considered and notationally treated as a base operation.

Other more functionally oriented languages restrict
themselves to the description of the input-output be-
havior of hardware units [5]-[7]. With this approach,
only the input-output registers or terminals of the hard-
ware unit and their state transitions are described, while
the internal storage elements necessary to implement these
transitions with a reasonable balance between speed and
cost remain unspecified.
The motives behind the introduction of these languages

has been the assumption that an unambiguous, concise,
and still readable notational system to express what a
hardware system should do and how it should be built
would contribute to speed up and reduce the cost of the
design process of increasingly complex computers. How-
ever, the notions of just how this can be achieved remain
vague.


