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When division is performed by a power series 
implementation with additions, subtractions, digit shifts, 
and multiplications, the convergence rate of the power 
series is important in practical application. Particularly 
if the rate of the power series is close to one, the 
convergence is slow and therefore a special method to 
accelerate the convergence is needed. Without such an 
acceleration, the power series implementation is less 
attractive. An acceleration method is proposed for the 
slow convergence rate. First, the worst case 
convergence rate of the power series is determined for 
a given appropriate acceleration factor. Next, a simple 
way to choose the appropriate acceleration factor is 
presented. 
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1. Introduction 

A division process is not only the most complex 
arithmetic process but also the most time-consuming 
arithmetic operation in a digital computer. Any simpli- 
fications and timesaving processes for arithmetic division 
are useful. 

The classical division processes for positive radix 
numbers are essentially repeated operations of divisor 
subtractions from dividend and divisor digit shifting [6, 
11]. Division processes for negative radix numbers are 
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also a sequence of subtractions and digit shifts of  divisor 
quantity [1, 13]. An operational sequence which performs 
a division in a positive or negative radix is described in 
the form of a power series [4]. 

Gilman proposed a division process by multiplication 
[8]. In his process, divisor and dividend are initially 
stored in a divisor register and a dividend register, re- 
spectively. Each step in his iterative process is a serial 
operation of (1) a multiplication of a constant to the 
current contents of these registers and (2) an addition (or 
a subtraction) of the results of the multiplication to the 
current contents in order to produce new register con- 
tents. The multiplying constant is chosen by sensing D- 
1 or zero digit in the second most significant digit position 
of the divisor register where D denotes a radix. The 
determination of the first multiplying constant is spe- 
cially treated as a preliminary operation. A power series 
algorithm of a generalized Newton's approximation 
method for division process using a parallel multiplier 
was reported by Ferrari [7]. A product form of the power 
series has been discussed by many other authors [2, 3, 
11, 14]. 

All the division processes by multiplication are iter- 
ative and converge quadratically to obtain a quotient so 
that a number of the iterative steps to get a desirable 
accuracy of a quotient depends upon a starting value 
used in the iteration whose value is predetermined from 
a given divisor. Anderson et al. [3] and Ferrari [7] 
discussed selection of the starting value of the iteration 
from a suitably predetermined value in order to attain 
fewer steps. In this presentation, a new process to deter- 
mine the smallest possible starting value for an iterative 
evaluation of terms in the power series is proposed. 

Although the product form of a power series has 
been implemented in the CRAY-I [12] and the IBM 
System/360 Model 91 [3], it is very important not only 
for the power series to converge but also for it, in a 
practical application, to converge quickly. When conver- 
gence of the power series for division is slow, an accel- 
eration factor may be introduced, forcing the division by 
the power series to converge', more quickly. Thus, this 
process becomes practical and useful as long as the 
appropriate acceleration factor is chosen for the division. 
Furthermore, the acceleration factor eventually becomes 
an approximate quotient for the reciprocal of a divisor. 

When the convergence ratio of a power series for a 
numerical inverse of a constant is very close to one, a 
lengthy and time-consuming iteration to obtain a reason- 
ably good approximation of 1Lhe reciprocal results, even 
if the convergence is a second order. An accelerating 
process for slowly converging ratios of the power series 
is presented. 

Svoboda proposed a division algorithm that is based 
on the fact that when the divisor B is of the form B = 
1 + h where h is suitably small, the information about 
determining the digit of the quotient can be estimated 
by considering the highest digit of the dividend [15]. An 
improvement of Svoboda's transformation of the divisor 
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B into the form 1 + h was presented by Klir [10]. Their 
transformation processes provide for a value of h as large 
as 1/D where D denotes a radix used by representing 
divisor and dividend, and each digit of  the quotient is 
determined by a multiplication and an addition (or a 
subtraction). 

This proposed method guarantees that a value of h is 
as large as 1/(2D-3). Furthermore, this method can be 
used repeatedly by expanding a radix D to the radix D 2 
[5]. Moreover, an advantage of this method is summa- 
rized as follows: It is well-known that the m most sig- 
nificant bits of  the reciprocal of  an m-bit constant can be 
obtained in essentially the same time it takes to multiply 
two m-bit numbers. This statement can be described in 
a form such as R ( m )  <_ C M ( m )  where R ( m ) ,  M ( m ) ,  and 
C denote a time to compute the reciprocal of  an m-bit 
constant, a time to multiply two m-bit numbers, and a 
constant, respectively [2]. This proposed acceleration 
process is an attempt to lower the constant C. It is 
demonstrated in [5] that by defining a complexity mea- 
sure of  multiplication steps under certain conditions, the 
number  of  multiplication steps of  the division process 
using the proposed acceleration is less than half  the 
number  of  steps of  the best known process [14], when an 
approximate reciprocal of  a 32-bit constant is computed. 
The complexity measure is obtained from Karatsuba 's  
complexity of  multiplication [2] and [14] by generalizing 
it for a multiplication of  two arbitrary digit lengths. 

However, this reduction of  the multiplication steps 
achievable through the proposed process must be paid 
for in terms of a more complex control requirement such 
as a table lookup mechanism and additional logic control 
of  bit level multiplication, in which a table lookup mech- 
anism determines acceleration constants used in this 
process. Although costs are incurred when implementing 
logic circuits in a table lookup and a bit level control in 
hardware, the expenses of  such implementations are 
worthwhile to ensure the reduction to half  the number  
of  multiplication steps. 

2. An Acceleration Factor 

A division A / B  where A and B are represented in a 
radix D (assuming ]D] < 1) can be accomplished by 
evaluating a power series 

A / B  = A (1 - P / D  + ( P / D )  2 
- (P /n)  3+ . . . } /D  (2.1) 

if[ P / D  ] < 1 where B = D + P. This evaluation does not 
involve any division since ( l / D )  i is a digit shift operation 
to the left by/-digits.  The series evaluates the numerical 
inverse of  a constant B. When a pseudoradix D'  is 
introduced such that D'  = D n with [ D ~ I > [ B[ for the 
smallest integer n = l, 2, 3, 4 . . . . .  the convergence 
condition [P /D ' ]  < 1 in eq. (2.1) is always satisfied. 
However, when the ratio [ P / D ' [  is close to one, the 
convergence rate of  (2. l) is slow and the division process 
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of  (2.1) is practically useless due to the required com- 
putation of many  terms. Since the truncation errors [e I 
at the i th term of  (2.1) are given by [ A / B  I. I P / D  [i, the 
number  i could be a large quantity to obtain a small e. 
Therefore, an acceleration factor a for a slowly conver- 
gent power series is needed. The factor a is a constant 
which maps P into a narrow vicinity of  D "  where m _> 
n, in order to obtain the smallest possible I p / D m l  • 

2.1 The Largest Ratio P/D Without Applying an 
Acceleration Factor 

Consider the ratio P / D '  for a division A / B  in a radix 
D, where D '  = D n is a pseudoradix, and B = D n + P. 
We shall call n the power of  a pseudoradix of  B. When 
the power is increased by one, the value of  P, for a given 
B, becomes a negative number.  When P is a positive 
number, we shall denote it as q. Thus we have the 
following eqs. when D n < B = Dn + q < D n+' 

P = q if P > 0 (2.2a) 
e = (D n + q) - D "+1 i f e  < 0 (2.2b) 

Note: When P = 0, namely B = D '  = D" or D n+', the 
division process A / B  becomes A / D ' ;  that is, just a digit 
shift operation. The ratio P / D '  in (2.1) is represented by 
functions of  q. 

P / D  n = f i ( q )  = q / D  n for P > 0 (2.3a) 
P / D  "+' = - f 2 ( q )  = 

- ( O n + l - ( O n + q ) } / O n + ~  f o r e <  0 (2.3b) 

From eqs. (2.2) the domain o f q  is [0, D " ( D  - 1)] where 
D ~ is a pseudoradix. Since q depends on the pseudoradix, 
the domain may be considered a fixed interval [0, D'  
(D - 1)] relative to a pseudoradix D'.  From inspection 
of  eqs. (2.3), we obtain the following theorem: 

THEOREM 1. I f  a constant B exists in a range between 
D ~ and D n+l, then the m a x i m u m  ratio ]P /D ' ]  in (2.1) is 
equal to ( D  - 1)/(D + 1) and to (D  + l ) / ( D  - 1) when 
D > + 1 and D < - 1, respectively. 

PROOF. We shall discuss two cases: (1) when the radix 
is positive and (2) when the radix is negative. 

CASE 1: D > +1. The ratio is represented byJ~(q) or 
f2(q)  depending upon whether B is measured from D n or 
from D "+'. Since j~ (q) is monotonically increasing and 
j~(q) is monotonically decreasing with respect to q, there 
is an intersection of  both the functions at q = q* so that 
the minimum of  the max imum (hereafter called the 
maximum) of  the ratio is f ,  (q*) =j~(q*) .  We obtain the 
following eq.: 

q * / D  n = (D  - I ) / (D + 1) (2.4a) 

CASE 2" D < --1. When considering the absolute 
values of  the functions [fi(q)[ and I.A(q)l, the correct 
sign must be chosen when removing the absolute value 
operators (i.e., whether n is odd or even). A similar 
computat ion of  that in Case 1 gives the following eq.: 

I q*/Onl = (O  + l ) / ( O  - 1) (2.4b) 

based on the fact that Ifx(q) I = q/(+--D n) and I~(q) I = 
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(-~D "+~ - (++_D" + q)}/(-T-D n÷l) in which a correct sign 
f rom the c o m p o u n d  sign (p lus /minus  ___ and minus /p lu s  
-T-) is chosen as described below. 

Since the quant i ty  o f  an absolute value is positive, 
the upper  sign o f  each c o m p o u n d  sign must  be chosen 
when  n is an even number ,  and the lower sign must  be 
chosen when  n is an odd number .  We  have  thus com- 
pleted a p roo f  o f  T h e o r e m  1. [ ]  

W h e n  I DI = 2, that  is a positive or negat ive b inary  
radix, the power  series (2.1) for the division process is 
convergent  with the ratio 1/3 at most.  W h e n  ID[ is 
greater  than two, the best case ratio increases since it is 
defined as (D  - 1 ) / (D + 1) for D > +1 and (D  + 1)/ 
(D - 1) for D < - 1 .  The  convergence o f  (2.1) thus 
becomes slower as I DI increases. This d isadvantage  
caused by a larger radix can be overcome by using an 
accelerat ion factor. 

2.2 The Largest Ratio P/D with an Acceleration 
Factor 

For  simplicity without  loss of  generality,  we shall 
restrict ourselves to the fact that  .4 and B in a division 
( A / B )  are integers. Consequent ly,  P and q are also 
integers by assuming a radix-point  at the least significant 
digit position. Other  registers hold the exponents  o f  the 
numbers  A and B. 

Let us consider an overrelaxat ion o f  J~(q) with a 
pa rame te r  a. 

g(q ,  a) = { D "+~ - a ( D  ~ + q ) } / D  "÷~ = (2.5) 
- a q / D  "+~ + (D - a ) / D  

where a is an integer in the interval  [1, D]. Note: As 
special cases, g(q, 1) = - j~(q)  and g(q, D)  = - f l ( q ) .  
Using reasons similar to those employed  in proving 
T h e o r e m  1, we obtain  the following corol lary by consid- 
ering the fact f~(q*)  = g(q* ,  a) for a = 1, 2, 3 . . . . .  
D - 1. Hereafter ,  we shall restrict ourselves to discussing 
only the case D > +1 since a discussion of  the case 
D < - 1  is very similar. 

COROLLARY 1. I f  a constant B is in a range between 
D" and D "÷1, then a local m a x i m u m  o f  the ratio in (2.1) 
is 

q * ( a ) / O  ~ = (D - a ) / ( D  + a) (2.6) 

at a = 1, 2 . . . . .  D - 1 where a is regarded as an argument 

o f  q*. 
The  p roo f  is a lmost  the same as that  for Theo rem 1; 

therefore,  we have omit ted it here. Corol lary  1 tells us 
that  the ratio is decreased as the pa rame te r  a increases, 
and that  a m a y  offset a slower convergence caused by a 
larger radix. 

Figure 1 illustrates the intersections Me for a -- 1, 2, 
. . . .  ( D  - 1) b e t w e e n f i ( q )  and a family  of  g(q,  a)  for 
a = 1, 2 . . . . .  D. Each  line o f g ( q ,  a) crosses the abscissa 
when the zero o f  g(q, a) occurs at q = D " ( D  - a) /a .  
Since the domain  q is [0, D n ( D  - 1)], there are D zeros 
in the domain  including B = D "  and B = D "+~. Consider  
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the saw-shaped  zig-zag lines crossing the abscissa which 
are connected to another  line o f  the g(q ,  a) family.  The  
m a x i m u m  of  the ratio, where  Ma = ( D  - a ) / ( D  + a), 

could be reduced significantly to those points indicated 
with M~ for a = 1, 2 . . . . .  (D  - 1). This  is stated in the 
next  theorem. 

THEOREM 2. I r a  constant B & in a range between D n 

and D ~+1, then the m a x i m u m  o f  the ratio in (2.1) is 1/3. 
PROOF. Consider  the si tuation - g ( q ÷ ,  a) = g(q+, 

a - l) where  the quant i ty  o f  q+(a) is de te rmined  as 
follows: 

q+(a)  = (2D - 2a + l)D'~/(2a - 1) (2.7) 

for a = 2, 3 . . . . .  D where a is regarded as an a rgument  
o f  q+. The  value of  q+(a)  is a bounda ry  of  a different 
pa rame te r  appl icable  to the regions of  q. We shall define 
these regions as follows: 

S1: q+(2) = (2D - 3 ) D n / 3  < q ~__ D " ( D  - 1) 
$2: q÷(3) = (2D - 5 ) D ' / 5  < q <-- q÷(2)  = (2D - 3)Dn/3  
Sa: q+(4) = (2D - 7 )Dn/7  < q ~ q+(3) = (2D - 5)Dn/5  

Si: q + ( i  + 1) = (2D - 2 i -  l ) D n / ( 2 i  + 1) < q <__ q+( i )  
= (2D - 2i + l ) D n / ( 2 i -  1) 

So-3:  q ÷ (  D - 2) = 5 D ' / ( 2 D  - 5) < q <- q ÷ (  D - 3) (2.8) 
= 7 O n / ( 2 O  - 7) 

So-2: q + ( D -  1) = 3 D n / ( 2 D  - 3) < q <-- q + ( D -  2) 
= 5 D " / ( 2 D  - 5) 

SD ~: q + ( D )  = D ' / ( 2 D  - 1) < q <-- q + ( D  - 1) = 3 D n / ( 2 D  - 3) 
SD: 0 < q <__ q+( D )  = D " / ( 2 D  - 1) 

We shall call the regions subdivisions o f  q. By sub- 
stituting the eq. (2.7) in - g  (q, a), we obtain  a ratio as 
follows: 

- g ( q + ( a ) ,  a ) =  1 / ( 2 a -  1) (2.9) 

for a = 2, 3 . . . . .  D. F r o m  the definit ion o f  the subdivi-  
sions S,  for a = 1, 2, 3 . . . . .  D and the l inearity of  g(q, 
a) with respect to q, we can conclude the m a x i m u m  of  
the ratio exists at q+(2) where  a = 2. 

M a x  l e / D ' l  = l / ( 2 a -  1 ) =  1/3 (2.10) 
l<a<~D [ ]  

As shown by T h e o r e m  1, the convergence of  (2.1) 
becomes  slower as ]D] increases. This  indicates that  the 
m a x i m u m  of  the ratio is 1/3 when  IDI = 2. The  disad- 
vantage  caused by using a larger radix is offset by 
adopt ing  a p roper  p a r a m e t e r  a, where  q exists in a 
subdivis ion Sa. F r o m  the above  discussion, we obtain  
the following corollary.  

COROLLARY 2. I f  a constant B ( = D  n + q) is in a 

subdivision Sa f o r  a = 2, 3 . . . . .  D, then the local 
m a x i m u m  o f  the ratio is 1/(2a - 1). l f  a constant B is in 
$1, then the local m a x i m u m  is 1/3. 

We have omit ted  the proof.  The  following observa-  
tion can be drawn f rom T h e o r e m  2 and Corol lary  2. As 
the pa rame te r  a increases, the local m a x i m u m  in subdi-  
vision S ,  decreases and  moves  closer to 1/ (2D - 3), the 
limit a t tained in So-1. This  observat ion  provides insight 

C o m m u n i c a t i o n s  Sep tember  1980 
of  Vo lume  23 
the A C M  N u m b e r  9 
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into construct ing a contract ion mapp ing  o f  q; this is 
discussed in the next section. 

2.3  T h e  L a r g e s t  R a t i o  P / D  with  a S u c c e s s i v e  
A c c e l e r a t i o n  F a c t o r  

We shall fur ther  improve  the m a x i m u m  of  the ratio 
by using a greater  pseudoradix  and  another  pa rame te r  a. 
First, we note the following relations f rom Figure 1 
where  q exists in the S~ subdivision. 

Ig (q ,a+_  1 ) l > l g ( q , a ) [  (2.11) 

and 

g(q ,  a - 1) > g(q ,  a) > g(q ,  a + 1) (2.12) 

Next,  we observe the following situation: Al though 
I g(q, a + 1) ] is greater  than  I g(q, a) l, q2 /D"  is less than  
qa/D ~ where the value o f  q2 is compu ted  f rom 
q2 = - g ( q l ,  a + 1)D n. Thus,  the value o f  q2 m a y  belong 
to another  subdivision Sz where i _> a and ql is assumed 
in S, .  The  funct ion - g ( q ,  a + I )D ~ shall be denoted as 
q2 = h(qa, a). The  entire computed  mapp ing  range of  
h(q, a) f rom the qa domain  [0, D " ( D  - 1)] is the interval 
[0, Dn+l]. The  individual  subranges R~ of  h(qa, a) for 
each corresponding domain  S~ for a = 1, 2, 3 . . . . .  
(D  - 1) are compu ted  as follows: 

R~: D"+~/3 < h(q_+(2), 2) <_ q2 <- h(D"(D - 1), 2) = D "+1 
R2:D"+~/5 < h(q_+(3), 3) _< q2 --< h(q+(2), 3) = D ~+~ 
R3:D~+~/7 < h(q_+(4), 4) _< q2 -< h(q+(3), 4) = 3D"+'/5 

Rz: D"+'/(2i + 1) < h(q+(i + 1), i + l) 
<- q2 <-- h(q+(i), i + 1) = 3D~+~/(2i - 1) 

R~_:~: D"+~/(2D - 5) < h(q+_(D - 2), D - 2) 
<-- q2 <- h(q+( D - 3), D - 2) = 3D~+'/(2D - 7) 

Rt~-2: D"+~/(2D - 3) < h(q+_(D 1), D ~-+11) 
<--q2<--h(q+(O- 2 ) , O - T ) =  30" / ( 2 0 - 5 )  

Ro-~: D~+~/(20 - 1) < h(q+_(D), D) <_ q2 
<-- h(q+( O - 1), 0) = 30~+~/(20 - 3) 

(2.13) 

where  q+-(a) for a = 2, 3 . . . . .  D is the inferior limit o f  
q+(a) in Sa. Figure 2 illustrates the subranges Ra and  
the de ta i l ed f l (q )  and g(q ,  a). Note: After  an appl icat ion 
o f  this mapping ,  the power  o f  the present  pseudoradix  is 
incremented  by one as shown in (2.13). 

In order  to app ly  the funct ion h(q,  a) and g(q,  a) 
successively we will use the suffix n. Thus,  h(q,  a) and 
g(q,  a) become hn(q, a) and gn(q, a), respectively. The  
q domain  for n is the interval [0, Dn(D - 1)] and for 
n + 1 the q domain  becomes [0, D"+I(D - 1)]. Similarly, 
for applying S~ recursively we use S ,  ~ with the q domain  
as above.  

The  m a p p i n g  funct ion h,+i(qi, ai) is a piecewise linear 
funct ion that  maps  the interval o f  q, [0, D "+i 
(D  - 1)], into the interval  [0, D"+i+a]. W h e n  the pseu- 
doradices D n+i and D n+i+l  are neglected due to the 
relative definit ion o f  the subdivisions, these intervals (the 
individual  subranges  described in (2.13) and each cor- 
responding subdivision defined in (2.8)) m a y  be consid- 
ered fixed u p p e r / l o w e r  limits relative to a pseudoradix  
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and are called relative ranges and  relative domains  o f  q, 
respectively. An interval  consisting o f  the u p p e r / l o w e r  
limits o f  each subdivision is greater  than  the one of  the 
corresponding range limits except for  a = D - 1. In  
other  words, a m a p p e d  relative range, which becomes  
the next relative domain ,  is nar rower  than  its relative 
domain .  W h e n  a successive appl icat ion o f  h(q, a) is 
taking place, the distance measured  f rom the origin in 
the relative q coordinate  contracts  until  the distance 
reaches the subdivision SD-1 which is an invar iant  inter- 
val. The  gradual ly  shrinking distances are successive 
images of  the q mapping .  Thus  there is a sequence o f  
subdivisions that  are a visiting order  o f  successive images. 
This  is described in the following lemma.  

LEMMA 1. Let  B = D ~ + qo be a constant. I f  a 
successive qi is determined by qi+l = hn+i( qi, ai) where qi 
in S'~+i i f o r  i = O, 1, 2, . . .  ; then parameters  ao, al, az, 
. . . .  and aj in generating a sequence by h(q, a) have a 
relation ao <_ a~ <_ a2 <_ . .  . <_ aj = D - 1 where @ is in 

A repeated appl icat ion o f  the mapp ing  to value q will 
result in the m o v e m e n t  o f  successive images into the 
subdivision So-1. As soon as the last image qj that  
belongs to SD-a is obtained,  the funct ion g(qj ,  D - 1) is 
evaluated,  in order  to find the final ratio qt. The  conclu- 
sion o f  our  discussion is that  the worst case ratio of  the 
m a x i m u m  ] P / D '  I is equal  to 1/ (2D - 3). This  is stated 
in the following theorem.  

THEOREM 3. Let  B = D ~ + qo be a constant in [ D n, 
D"+1]. 

(1) I f  qo is in a subdivision S~,, when an integer ao is 
in [1, D - 1] and the last q1 which is the f i rs t  visit in the 
subdivision So-1 is obtained through a sequence o f  qi by 
successive mapping qi+l = h,+i( qi, ai), then an acceleration 

fac tor  a'  is 
j--1 

a '  = (D - 1) FI (ai + 1) (2.14) 
i ~ 0  

The f i na l  ratio P /  D'  is obtained f r o m  ql = -gn+j(  qj, D - 
1). 

(2) I f  qo is in the subdivision So,  then an acceleration 
f ac to r  a'  is D. The ratio P / D '  is determined by qf =fl (qo) .  

Thus, a numerical inverse o f  a constant B is evaluated 
as fol lows: 

1 /B  = a ' ( l  - qf+  q~ - q~ 
+ q} - . . . } I D  n+j+l (2.15) 

where [qfl <- 1/(2D - 3) is guaranteed. 

PROOF. 
(1) F r o m  L e m m a  l, there is a sequence o f  ai for i 

= 0, l, 2 . . . . .  ( D  - l) and the value of[gn+fiqj ,  D - 1) [ 
for qj in SD-1 is less than  or equal  to 1/ (2D - 3) f rom 
Corol la ry  2. 

(2) F r o m  Corol lary  2, the value of  I~(qo) [ for qo in 
SD is less than  or equal  to I / ( 2 D  - l). 

Hence,  
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I qfl ~ I / (2D  - 3) (2.16) 
[]  

After we obtain a ratio qf from the above method,  
the quanti ty o f  (2.15) must  be evaluated. However,  a 
careful inspection o f  the inside terms in the brace o f  
(2.15) leads us to the following factorial terms: 

1 - q + qZ _ q~ + q4 _ q5 + q6 _ q7 d- qS _ q~ + . . .  

= 1 - q +q2( l  - q) + q4(l - q + q2 _ q3) 

+ qS(l _ q + q2 _ qa + q .  _ . . .  _ q7) 

+ qJ6(1 -- q + q ~ - -  . . . ) . . .  

= (1 - q) ( l  + q2) + q4((  1 _ q ) ( l  + q2)} + qS{( 1 _ q) ( l  + qZ) 

+ q 4 ( 1 - q ) ( l  + q 2 ) }  +q~6  .. 

= (1 - q)(1 + q2)(l  + q4)(l  + q6)(l  + qa6) . . . .  

We consider these terms as other acceleration factors 
and denote them as follows: 

bo = D(1 - qf) (2.17a) 

and 

b k = D ( l + q f )  for k =  1 , 2 , 3  . . . .  (2.17b) 

Thus,  
j - 1  1 

l I B  = (D - 1) YI (ai + 1) 1-I bk 
i=0 k=0 (2.18) 

(1 + qf+' - (qf+l)2 + . . . ) / D . ÷ j + , + 2  

Ignoring the terms that are smaller than q y i n  (2.18), an 
approximate  reciprocal o f  B becomes as follows: 

l 
1/B = a' II  b k / D  n+j+l+2 = a i D  "+j+t+2 (2.19) 

k=0 

Example  
Consider  the evaluat ion 1/189 where B = 189, D = 

10, and the power o f  a pseudoradix is 2 so D '  = D 2. 
Before we compute  the numerical  inverse, a table o f  
subdivision limits is needed for the radix D = 10. These 
limits are listed in Table  I. N o w  we can compute  the 
inverse. 

Since qo = 89, it exists in the fifth subdivision S~ and 
ao equals five. (We believe that a binary search technique 
o f  table lookup is the best way to determine a subdivision 
o f  a value q.) Thus, since qo is not in So-a, we apply 
recursively the mapping  function h(q, a) on qo in order  
to obtain ql. 

ql = h2(qo, ao) = -gz(qo,  ao + 1)D 2 
= - { 1 0 0 0  - 6(100 + 89)}/10 -- 13.4 

N o w  by inspecting Table  I we see that the value ql 
is in the subdivision $9 and al equals nine. Note:  The  
power o f  the present pseudoradix must  be incremented 
by one; in other words, a new pseudoradix D "+1 is used 
in the denomina to r  o f  (2.15), the unit o f  q~ is shifted by 
one digit to the right. Thus, qa becomes 134 based on the 
new radix. This is the first visit to $9 so we do not need 
another  application o f  h(q, a). 

The final qf is evaluated by 

qf = -g3(  ql, 9) = 
- ( 10000 - 9(1000 + 134) } / 10000 = 206/10000. 

508 

Table  1. Subdiv is ion  u p p e r / l o w e r  l imi ts  for D = 10 and  D'  = 100. 

Subdiv i s ion  
n u m b e r  Lower  l imi t  q Uppe r  l imi t  

1 (17) Z 1 0 0 = 5 6 6 . 6 6  . < q < 900. 
2 (15) x 100 = 300.00 < q <_. 566.66... 

3 (13) x 100 = 185.71... < q ___ 300.00 
4 ( l l )  x 1 0 0 =  122.22. .  < q _ 185.71... 
5 (9) X 1 0 0 =  81.81... < q < 122.22. .  
6 (7) x 1 0 0 =  53 .84 . .  < q < 81.81... 
7 (5) X 1 0 0 =  33 .33 . .  < q < 53 .84 . .  

8 (3) X 1 0 0 =  17.64... < q _< 33.33 . 
9 ( l ) x l 0 0 =  5.263... < q < 17.64. .  

10 0.00 __. q _< 5 .263 . .  

The inverse is determined f rom the following computa-  
tion o f  (2.18) by using up to q~, or b0 = 9.794, bl = 
10.0042436, and b2 = 10.00000180081 derived f rom 
(2.17), 

1/189 = 6 /1134  = 6 x 9 / 1 0 2 0 6  
= 54(  1 - 206/10000 + (206/10000) 2 - . . . }  / 104 
= 54x9.794X 10.0042436 

x 10.00000180081 { 1 + (206/10000)  ~ - . . . } / 1 0  7 

5.29100529100295. . .X I 0 -:~. 

F r o m  Theorem 3, as the radix D increases, the worst 
case ratio o f  I P / D ' I  is decreasing. Suppose we use D = 
100 instead o f D  = 10. Then  the worst case ratio decreases 
to 1/'(200 - 3) = 0.005076 f rom 1/(20 - 3) = 0 .0588. . .  
(refer to (2.16)) so that an evaluat ion o f  (2.15) becomes 
simpler due to fewer term accumulations.  A simple 
computa t ion  process is described here. We  start with D 
= 100, q0 = 89, and n = 1. Using a table o f  subdivision 
limits for D = 100, we determine that q0 is in $53 (the 
interval (86.91 . . . .  90.47. . . ] )  and a0 = 53, so ql is ql = 
h1(89, 53) = -g (89 ,  54)100 = 2.06. N o w  the value o f  ql 
is in $98 (the interval (1.522 . . . .  2.564.. .]) ,  and al - 98 
so one more  applicat ion o f  the mapping  is needed. 

q2 = h2(206, 98) = -g2(206,  99)100 = 1.0394. 

The  value qz is finally in $99 (the interval (0.502 . . . .  
1.522.. .  ]) and az = 99; then the final value o f  qf is 
computed  f rom g3(qz, a2) as shown below. 

qf = -g3(10394, 99) = 0.00029006. 

Thus, by using bo = 99.970994 and bl = 
100.0000084138036, we obtain 

1 / 189 = 5 4 x 9 9 x 9 9 (  1 - 0.00029006 + (0.00029006) 2 - . . . )  / 1004 
= 529254x99 .970994x  100.0000084138036 

{ 1 + (0.00029006)'  - . . . }  / 1008 
,~ 5 .291005291005243. . .x  10 -3. 

C o m p a r i n g  these results with the real quotient  
(5.2910052910052910x 10-a), we find that these numeri-  
cal accuracies are correct to 12 digits (when D = 10) and 
14 digits (when D = 100). In  the example, we needed to 
evaluate acceleration constants o f  two a's (one integer 
multiplication; note that (D - 1) multiplication is per- 
formed with a shift to the left and a subtraction) and 
three b's (twice o f  squaring operations) for the case D 
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= 10, and three a 's  (twice o f  integer mult ipl icat ions) and  
two b's (once o f  squaring operat ion)  for the case D = 
100. Also, it was necessary to mul t ip ly  these constants  
by each other  (four mult ipl icat ions) in order  to obta in  
the numer ica l  quotient.  

Consider  a s t ra ightforward appl icat ion o f  the eq. 
(2.17), that  is quadrat ic  convergence,  to this example.  
We  would p robab ly  need to determine nine b accelera- 
t ion constants  starting with b0 -- 10×(1 - 89/100) = 1.1 
in order  to at tain at least the same accuracy or a better  
one. This  implies that  eight squaring operat ions,  eight 
multiplications,  and nine subtract ions must  be computed .  
The  calculat ion of  a numer ica l  inverse using the accel- 
erat ion factor  compares  very well with this. 

W h e n  a divisor consists o f  m a n y  digits, the divisor 
can be split into two or more  separate  digit strings. A 
digit splitting scheme for a division was repor ted by 
Jacobsohn  [9]. Consider  B = B1D m + B2 where B1 and 
B2 are the upper -ha l f  significant digits and  the lower- 
ha l f  significant digits, respectively, and  D m is a pseudo-  
radix that  indicates the digit bounda ry  between B1 and 
B2. Thus,  

1//B = ( l / /B1Om)(1/( l  -1- qb)) 

= D -  1) H (a~ + I) H (bk/D)/D'+j+2 
i=o i.,=o (2.20) 

X{r oC;O'} 
where qb = B 2 / B I D  m, and Co = 1 - qb and Cr = 1 + q2r 
for r = 1, 2, 3 . . . . .  The  inside o f  the first brace is a 
computa t ion  of  1/B1 and the second one is the power  
series o f  1/(1 + @). 

An approx imate  value o f  I/B1 can be compu ted  by 
the division process discussed previously. Since the term 
qb o f  the power  series that  shall be denoted as Per contains 
the factor 1/B1, a t runcat ion error o f  Per is effected with 
the error magni tude  o f  B1 in (2.19). This  effect is dis- 
cussed here. By substituting the quant i ty  1/BI of  (2.18) 
into the terms qb o f  Per, we obtain  the following eq.: 

Pc , -=  { l  - f l ( B i  + e ) } { l  + fi2(B~ + e)  2} 
{1 + f l 4 ( B i  +e)4) (1  + f l S ( B ~  +e)s ) {1  + . . .  

= 1 - f l B i { 1  - flB~ + (fiB;) 2 - (fiBS) a + ( f i B ; )  4 

- (flB~) ~ + ( f iBS) ~; - . . . }  (2 .21)  

- f lE{I - 2fiB; + 3 ( f i B ; )  ~ - 4 ( f iBS)  3 

+ 5(f iBS)  4 -  6( f iBS)  '~ + 7( f lB~)  6 - . . . )  

+ f 1 2 e 2 { l  - . . . }  
- -  . . , ,  

where B~ is an approx imate  value of  I/B1, • is the 
t runcat ion error de termined f rom (2.18) for B~, and 
f l  = B 2 /  Din" 

The  first-order term of  • in (2.21) becomes  - f i e /  
(1 + fiBS) 2. The  higher order  terms o f •  m a y  be neglected 
so that  an est imated error bound  •c due to the t runcat ion 
error • and to a finite te rm accumula t ion  in Per is [•[ + 
[fl ¢ [ --> ec --> [el + [ f l • / ( l  + fiBS) 2 [ f rom (2.20) and (2.21). 
When  a divisor B is split into three separate  (Bi for i = 
I, 2, 3) digits, name ly  B = B1D m' + B2D m~ + B3, we 

5 0 9  

have an eq. similar  to (2.20), but in cont inued fract ion 
form, where  rn~ and  rn2 are bounda ry  digits o f  these 
subdivisors. 

3. Summary and Conclusions 

We have considered a numer ica l  evaluat ion of  1/B 
(or A / B )  as 

1/B = I / D  n ~ (P/Dn)  i 
i = 0  

where B = D n + P and  D is a radix, and we have found 
that  [P/D"]  can be as large as I (D  - I ) / ( D  + 1)[ which 
is greater  than  1/(2D - 3). In order  to accelerate the 
convergence,  we proposed an accelerat ion factor for the 
inverse evaluat ion o f  a constant  by implement ing  a 
power  series expansion as follows: 

1/B = a / a B  = ~ / O  m ~ ( - q l O m )  i ~ oL/D m 
i=o 

with aB = D m + q and m _> n. The  quant i ty  a is an 
accelerat ion factor and  is an approx imat ion  to several 
significant digits. 

The  fact is that  the worst  case convergence o f  the 
power  series is the ratio 1/ (2D - 3) and an approach  to 
determining an accelerat ion factor  has been discussed in 
order  to accomplish such a power  series evaluat ion with 
the smallest  ratio. We  believe, however,  that  the worst 
case ratio is small  enough to apply  this implementa t ion  
in practical  use. 

Utilizing a larger radix D and an accelerat ion con- 
stant, the worst  convergence ratio is reduced consider-  
ably, as shown in T h e o r e m  3 and the example.  Also, an 
approx imat ion  to more  significant digits can be realized. 
But when  a chosen radix is too large, table searching to 
de termine  a subdivision (or an accelerat ion constant)  
becomes  lengthy and t ime-consuming.  Therefore ,  a 
t rade-of f  between both aspects must  be made;  i.e., the 
advantage  of  using a smaller  convergent  rate in a power  
series and the d isadvantage  of  a larger table searching 
t ime to obtain  an appropr ia te  accelerat ion constant.  Also, 
we have  shown that  the repeated use of  the mapp ing  
funct ion h(q, a) leads to the invar iant  interval  SD-~. 
Thus, there is a limit for repeated application.  A contin- 
uous appl icat ion does not guarantee  a successive conver-  
gence unless we adapt  a larger radix that will provide 
more  digits o f  an accelerat ion constant  (i.e., for D = 10, 
D - 1 = 9 we have one digit, and for D = 100, D - 1 
= 99 we have  two digits). 

Actually,  we may  not need to expand  a radix; rather,  
it is more  impor tan t  to obtain one more  digit o f  an 
accelerat ion constant  at each successive appl icat ion h(q, 
a). One more  digit o f  an accelerat ion constant  can be 
obta ined  by using linear interpolat ion of  the contract ion 
m a p p i n g  funct ion except at a bounda ry  of  subdivisions. 
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Additionally, the proposed process can be intuitively 
improved by considering the two separate domains of 
each subdivision based on whether the range of g(q, a) 
is positive or negative as shown in Figure 1. Since the 
quantity qi+l obtained in this process must be positive, 
the value of qi+~ is calculated from h(qi, ai) (= -g(qi, ai 
+ 1)D~), only when q~+l (= -g(qi, al)D n) is negative. 
When q~+~ is, however, positive, the determined q~+l is 
used in the process, instead of  qi+l, due to its positive 
value. Consequently, using value q~+l could result in 
fewer iterations. As soon as a ratio (a value of  qi) is 
attained below the worst case ratio d/(2D - 3) during a 
successive determination of acceleration constants, the 
successive determination may be terminated where d < 
1 is a discount factor. Thus, the last q value could be 
used in a power series evaluation. The discount factor d 
has the following meaning. 

When 1/(2D - 3) is the threshold value of  a termi- 
nation, the last q value can be as large as I / (2D - 3). If 
the successive determination could be continued, we may 
have a smaller q at the end than the terminated value q, 
which is close to the threshold value. A continuation of 
the successive determination may be worthwhile in some 
cases. The discount factor d which provides a lower 
threshold value is a constant, forcing the continuation 
when the current value q does not belong in So-I. 

Finally, we have discussed a divisor splitting into two 
or more subdivisors when the divisor consists of  many 
digits. An error estimation for digit splitting into two 
subdivisors indicates that a truncation error of the first 
subdivisor B~ is dominated in a result obtained from the 
reciprocal evaluation process. But the desired accuracy 
of a reciprocal is obtainable by splitting divisor digits as 
long as a truncation error of  I/B1 is appropriately 
smaller. 
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