
A Portable Fortran Program To Find
the Euclidean Norm of a Vector

JAMES L. BLUE
Bell Laboratories

A successful portable version of a Fortran subprogram to find the Euclidean norm of an n-vec-
tor, I] x II = (~-~.~-1 x,2) 11~, is described. Overflow and underflow are avoided. A program
implementing the algorithm is included.

Key Words and Phrases: error bounds, Euclidean norm, machine constants, overflow, port-
ability, underflow
CR Categories: 5.11, 5.14

1. INTRODUCTION

A set of For t ran subprograms for performing the basic operations of linear algebra
[4, 5, 6] should include a subprogram to find the Euclidean norm of an n-vector ,
[[x II -- (~,~-1 x~2) 1/2. Such a subprogram should be accurate and efficient, and
should avoid all overflows and underflows.

The problem appears much easier than it is. Prel iminary versions of the sub-
program, by several authors, failed a t least two of these requirements.

This paper describes a successful version which is also portable. All machine-
dependent constants are combinations of the basic machine constants defined by
Fox et al. [3]; therefore the programs are portable. A program incorporating the
algori thm is included.

To avoid overflow, large x, mus t be scaled down. Let R be the largest positive
floating-point number representable on the computer being used. Then for any
x~ such tha t I x~l > R ~/~, x~ 2 will overflow, al though II x I / m a y not overflow.

A simple way of avoiding overflow is the following. Let

x m = = m a x I x , I.
i R l , n

Form

a = (xJxm.)

Then [I x I] = xma~ a 1/~. This procedure requires two passes over the da ta vector,
which is unnecessarily slow, especially for long vectors on paged machines. (Tested

General permission to make fair use in teaching or research of all or part of this material is
granted to individual readers and to nonprofit librames acting for them provided that ACM's
copyright notice is given and that reference is made to the publication, to its date of issue,
and to the fact that reprinting privileges were granted by permission of the Association for
Computing Machinery. To otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or systematic or multiple re-
production.
Author's address: Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
© 1978 ACM 0098-3500/78/0300-0015 $00.75

AOM Transactions on Mathematical Software, Vol 4, No 1, March 1978, Pages 15-23

16 • James L. Blue

on the Honeywell 6000 in single precision, this procedure took 50 percent longer
than the procedure to be discussed.) Furthermore, i t does not avoid underflow.
More complicated two-pass procedures can avoid underflow.

Let r be the smallest positive foat ing-point number representable on the machine
being used. Then for any x, such tha t I x, [< r 1/2, x, 2 will underflow, although I1 x I[
does not underflow. If underflow is replaced by zero, then]1 x [1 m a y be computed
incorrectly, since the underflowing components may contribute to II x [[. Even if
the underflowing components are so small as not to contribute to I] x l[, i t is de-
sirable to avoid underflow. Thus small numbers mus t be scaled up in forming the
partial sum of squares.

For medium-sized numbers, no scaling is necessary. For efficiency, it is desirable
to avoid all unnecessary scaling and to make only one pass over the data.

2. AN ALGORITHM FOR CALCULATING THE EUCLIDEAN NORM OF AN n-VECTOR

All overflows and underflows may be avoided by employing the following algo-
r i thm. The algorithm requires constants b, B, s, and S, which are derived in Sec-
t ion 3; B and S are large positive numbers, and b and s are small positive numbers.
N is the largest value of n for which the algorithm can be guaranteed, and e is a
measure of machine precision; N and e are defined in Section 3. Three accumulators
for partial sums of squares will be used. Only one pass over the x-vector is made.

if n = 0, set I1 x 1[= 0 and return.
if n < 0, set an error flag and stop.
if n > N, set an error flag and stop.
aaml ---- 0 ; amed -~ 0 ; ab lg ~ 0
for i - 1 through n

i f I I I > B, , - +
else if x, I < b, a,mi~--a,ml+ (x~ls) ~
else amed ~-" araed -~ Xt 2

if abig i s nonzero
• . 1/2 lI abig) R /X , II x II > R and overflow w'ould occur. Set][x [] --- R, set an error flag, and return.
if amea i s nonzero

Ymm -~ min(a lm/~d, ~ . 1 / 2 1 ~t*big!
ym,, , = max(alm/~d, ~ 1 / 2 ~ ~"¢*bxg/

else set II x II = ~ablg~ 1/2 and return
else if a,m~ is nonzero

if amed i s l l o n z e r o

Ym,. = min(a~:d, o'~.~,,'~1/~'
Ymax = max(alm/e2d, sa,m1112)

else set [[x H = ot*,mln~l/2 and return
else set l[x [[= a~e2a and return.
if ym,~ < eU~Y set Jl x I} = Y
else set i] x l[= ymax(1 + (Ym,n /Ym.x) t) u~

3. COMPUTER MODEL

To convert the algorithm of Section 2 into a portable For t ran program, we must
define b, B, s, S, N, and e in terms of machine-dependent parameters which are
readily available. This requires some assumptions about the computer being used.

ACI~ Transact ions on Mathemat ica l Software, Vol. 4, No. 1, March 1978.

A Portable Fortran Program To Find the Euclidean Norm • 17

In addition, analysis of the correctness of the algorithm requires assumptions
about the properties of the arithmetic done by the computer.

Various assumptions could be made, and b, B, s, and S could be defined in terms
of N, e, r, R, and ~ (the floating-point base). Then a proof of correctness would
require several relations to hold among N, E, r, R, and f~. Other than these relations,
only minimal information about the computer would be required.

A more satisfactory solution is obtained by starting from a detailed model of a
computer. A useful model is that of Fox et al. [3].

Floating-Point Number Representation

The floating-point representation is defined by four integers: ~, t, em,,, and em,~.
Zero and all numbers of the form

..[._~e(Tnl ~--i + . . . + Tnt ~- - t) , I <~ ?T/I <

0 ~ m, < ~, i = 2 , 3 , . . . , t ,

emm ~ e ~ emax

are exactly representable. These numbers are called model numbers; they are a
subset of the machine numbers. On some machines not all the machine numbers are
model numbers. In particular, numbers that are kept in working registers may
have extra bits in the mantissa.

The smallest and largest magnitude model numbers are easily found:

r ~ ~ era~n-l,

l~ = ~ % ° ~ (1 - , e - ') .

A useful measure of machine precision is the largest relative spacing between model
numbers, e = fll-t. The largest n for which the algorithm can be proven depends
on the arithmetical properties of the computer and on the relative values of era,,
e and t. Under the assumptions of the theorem in Section 4, the largest safe n,
is N = ~t-~ _ 1. (This may be larger than the largest integer representable on the
computer.)

Floating-Point Arithmetic

The success of the algorithm could be assured if Wilkinson's assumptions [8] about
floating-point arithmetic were made. Let fl(expression) be the value obtained
when expression is evaluated in floating-point arithmetic on the computer in ques-
tion. Let op denote any of the operations ~ , --, X, or --. Then the usual assump-
tion is that

(1 -- V)(uopv) ~ fl(uopv) <_ (1 -~ ~)(uopv)

where v = e or e/2; its value depends on the rounding properties of the computer
and whether arithmetic is done using guard bits [8]. A similar assumption is needed
about the square-root routine.

The standard floating-point error analysis could be used in deriving the proof of
correctness and the error analysis of the algorithm. If the computer model of the

ACM Transactions on Mathematical Software, Vol 4, No. 1, March 1978

18 • James L. Blue

previous section is used, alternative assumptions about the floating-point arith-
metic [2] become attractive and simplify the proofs.

Suppose u and v are any machine numbers. Let

W ~ u o p v ,

(o ffi fl(u:op v).

A reasonable model of the accuracy of floating-point arithmetic is the following
[2], which is slightly weaker than perfect rounding:

(P1) If w is a model number, 5 = w.

(F2) Otherwise, if w~ and w2 are the two model numbers that bracket w, w~ _<
~_<w2.

No assumptions are made about the result if] w] < r or] w] > R. Properly de-
signed arithmetic units obey these two assumptions, but guard bits are required.
Since the maximum relative spacing between model numbers is e, arithmetic units
obeying (F1) and (F2) obey

(F3) (1 - ~) (u o p v) < f l (u o p v) < (l - i - e) (u o p v) ,

which is the usual Wilkinson assumption for truncated arithmetic, with n = e.
An accuracy assumption is also required for the square-root routine; we assume

(1 - ~) ~¢/u < f l (~ /u) < (1 -t- e) ~¢/u, which is easy to achieve on most machines.
Three simple lemmas will be stated without proof. They follow from (F1) and

(F2), but not from (F3) alone. In the following, k is an integer, and u is any model
number.

LEMMA A. A ~nodel number can be scaled by a power of the base without any error.
I f r ~_] ufl ~ I <-- R, then f l(u~ k) = u~ k. I f r <_ I u /~ ~ I <- R, then fl(u/~8 k) = u/fl ~.

LEMM.~ B. I f u >_. ~ and r <_ ~ <_ R, then f l (~) >__ ~ . I f u <_ ~k and r <__ ~2~
<_ R, then f l (u 2) < ~2~.

L E M M A C . I f u i ~_ ~k, i -- 1 , 2 , . . . , n , and i f n ~ N and n~ ~ < R, then

u,]
4. PROOF OF CORRECTNESS

We choose b, B, s, and S as follows. Denote [u] as the smallest integer greater than
or equal to u, and [u] as the largest integer less than or equal to u.

B f f i ~ L(*max-t't'l)/2]

S ~ ~ t(em~n-l)]21

S ~ ~[(emax+t--l)/2l

If emin is odd, b = s; if e~ is even, b = ~s. If e~= q- t is odd, S = ~t-~B; if em~=
÷ t is even, S = ~B. (Examples are given in Table I.)

ACM Tran~etions on Mathematical Software, Vol. 4, No. I, March 1978.

A Portable Fortran Program To Find the Euclidean Norm '. 19

Table I
(SP = single precision; DP = double precision)

Honeywell IBM CDC
6000/7000 360/370 6000/7000

SP DP SP DP SP DP

fl 2 2 16 16 2 2
t 27 63 6 14 48 96
e~,~ --127 --127 --64 --64 - -974 --927
e ~ 127 127 63 63 1070 1070
log~b -64 -64 -128 -128 -487 -464
log~B 50 32 116 100 511 487
log~s -64 -64 -132 -132 -488 --464
log~S 77 95 136 152 559 583
log~ - 26 - 62 - 20 - 52 - 47 - 95
log~(N+l) 26 35 20 31 47 48

The proof of correctness requires three relations to hold:

emin _< 1 - 2t

1 4- t ~ emax

t_~ 2, iff~_< 4, t ~_ 3

i f~ = 2, t~_ 5.

(t)
(2)

(3)

For the computers ~ listed in [3], all the above hold. In fact, these relations should
hold for any computer suitable for scientific work.

THEOREM. Suppose the algorithm of Section 2 is implemented on the model com-
puter of Section 3, for which (F1) and (F2) hold. Let b, B, s, and S be as given above,
and let relations (1), (2), and (3) hold. Let x be an n-vector with n <_ N, with each
component x~, a model number. Then no overflow or underflow will be produced when
the algorithm operates on x. I f fl(]l x I1) > R, an error messagewill ba produced; other-
wise

II x I1(1 -- e)~+"/~ < f l (l l x II) < I1 • ll(1 + 4 ~+'%

The proof is based on a series of lemmas. The first two are necessary to establish
correctness, even if roundoff, underflow, and overflow are neglected. The next
five lemmas establish the absence of overflow and underflow. The final lemma
bounds the error in any one of the three accumulators. The proofs of the lemmas
require Lemmas A, B, and C and relations (1), (2), and (3), and will be omitted.
The details may be found in [1].

LEMMA 1. The three ranges are disjoint; b < 1 < B.
LEMMA 2. I f ab~ is nonzero, the contribution of a,,~t to II x I{ is negligible.

These are the Burroughs 6700 series, the CDC 6000/7000 series, the Honeywell 600/6000
series, the IBM 360/370 series, the PDP-10 and PDP-11 series, the SEL systems 85/86, the
Univac 1100 series, and the Xerox Sigma 5/7/9 series.

ACM Transactmns on Mathematical Software, Vol. 4, No. 1, March 1978.

20 • James L. Blue

LEMMA 3. There
LEMM/~ 4. There
LEMM.~ 5. There
LEMMA 6. There
LEMMX 7. There
LEMMA 8. Let u

is no overflow or underflow in calculating ab~g.
is no underflow or overflow in calculating amid.
is no overflow or underflow in calculating a,,,~.

I / 2 is no underflow in computing e y , ~ or (y m , ~ / y , ~) 2.
2 1/2

is no overflow in calculating y~,~(1 + (y , , , , / y , , ~)) .
= (ul, u 2 , . . . , urn) be a vector of model numbers. Suppose r

m 2 f l (u , 2) < R for i = 1, 2, . . . , m. I f f l (~'~,=1 u,) does not overflow, then

(1 -- e)m~-'~ u, 2 g f l (u, 2) g (1 + e)m~-~'~ u, 2.
* ~ I i = 1 z s l

PROOF OF THEOREM. The proof of the theorem now follows upon applying Lemma
8 to each of the three accumulators, with u, = x , / s for astor, u~ = x, for a~¢d, and
u, = x , / S for ab~g. Standard floating-point error analysis of the algorithm, with
the use of Lemma A, then gives relative error bounds of (1 -t- e) 1+~/2 if only one
accumulator contributes and (1 + e)5+n/2 if tWO adjacent accumulators contribute.
If abl~ and a~m~ are both nonzero, a~ml is ignored, which according to Lemma 2
could contribute another rounding error. Thus the relative error bound is either
(1 -1- e) 2+~/2 or (1 -{- e) 6+'/2, depending on whether amid is zero or nonzero.

5. IMPLEMENTATION

A portable implementation of the algorithm, x2norm, wri t ten in R A T F O R [7],
is given in the Appendix; the ou tpu t of the R A T F O R preprocessor is portable
For t ran. The initialization of the needed machine-dependent constants is done
by subprogram x2init; the remainder of the norm program is machine independent .
A first-time switch is used so tha t x2init is not called every t ime x2norm is called.
To make a version of x2norm for any specific machine, remove the call to x2init,
calculate the needed constants according to the prescription in Section 4, and
replace the data s tatements in x2norm. Floating-point constants should be done
in binary, octal, or hexadecimal, (whichever is appropriate) to ensure tha t b, B, s,
and S are exactly powers of ~.

In this implementation a portable For t ran error-handling facility [3] is used.
Execution stops after either of the fatal errors n < 0 or n > N; the user may elect
to continue after the nonfatal error II x II > R.

For a portable implementation of the initialization routine, portable For t ran
machine constant programs [3] are used.

APPENDIX. PROGRAM LISTING

real function x2norm(n, x)

Calculate 2-norm of x vector.
Avoid all overflows and underflows

integer n,nmax,j
real x (n), ax, abig, amed, asml, bl, b2,slm,s2m, relerr,overfl, rblg

This portable version of x2norm uses nmax as a first-time switch and
calls x2init to calculate needed machine-dependent constants.
x2init normally is executed only once, to save overhead.

ACM Transac t tons on Mathemat i ca l Sof tware , Vol 4, No 1, March 1978

A Portable Fortran Program To Find the Euclidean Norm • 21

This is a non-s tandard , bu t safe, usage. If x2mit
were executed more t han once, as migh t happen if overlays
were used, addi t ional overhead would be incurred, bu t no
errors would occur.

For any specific machine, the da ta s t a t emen t s can be revised
and the call to x2imt removed

da ta b l , b2 , s lm , s2m, overfl, rbig, r e l e r r /7*0 0/
da ta nmax/O/

if (n m a x < =0)
call x2mit (nmax, b l , b2, s lm, s2m, overfi, rbig, relerr)

if (n = =0)
{x2norm=0 0; return}

if (n<0)
call se te r r (' x2norm - n .It. 0 ' ,18,1 ,2)

if (n> nmax)
call se te r r (' x2norm -- n too large ' ,21 ,2 ,2)

asml =0.0
amed =0.0
ab ig=0 .0
do j = l , n

{ax=abs(x(j))
if (ax>b2) abig=abig+ (ax*s2m)**2

else if (ax<bl) asm]=asml@ (ax*slm)**2
else amed = amed+ ax**2

}
if (abig>O.O)

[a b i g = s q r t (abig)
if (ab ig> overfl)

{ x2norm -- rbig
call s e t e r r (' x2norm - overflow' ,18,3,1)
r e tu rn

}
if (amed>O.O)

[abig = abig/s2m
amed = sqr t (amed)

}
else

{x2norm = ab ig /s2m; return}
}

else if (asml>O O)
{if (amed>O.O)

{ abig = sqr t (amed)
amed = s q r t (a sml) / s lm

}
else

{ x2norm = sqr t (a sml) / s lm ; r e tu rn }
}

else
{x2norm=sqr t (amed) ; return}

asml = amin l (ab ig , amed)
abig = amaxl (ubig, umed)
if (a sml< =ab~g*relerr)

fatal error

fatal error

non-fa ta l error

the s t anda rd p a t h

ACM Transactions on Mathematmal Soft, are, Vol. 4, No 1, March 1978

2 2 • James L. Blue

x2norm = abig
else

x2norm = abig*sqrt (1.0-t- (asml/abig)* *2)
return
end

subroutine x2init (nmax, bl , b2, shn,s2m, overfl, rbig, relerr)

integer ilmaeh, nmax, iout, nbig, ibeta, it , iemin, iemax, iexp
real rlmaeh,bexp, abig, b l ,b2,s lm,s2m,eps , re lerr , overfl,rbig

This program calculates the machine-dependent constants
bl , b2, slm, s2m, relerr overfl, nmax
from the "basic" machine-dependent numbers
nbig, ibeta, it, iemin, iemax, rbig.

The following define the basic machine-dependent constants.
For portabil i ty, the PORT subprograms "ilmaeh" and "rlmach"
are used For any specific computer, each of the assignment
statements can be replaced

iout =ilmaeh(4) # standard output file for error messages
nbig =ilmach(9) # largest integer
ibeta =ilmach(10) # base for floating-point numbers
i t = i lmach(l l) # number of base-beta digits in mantissa
iemin--ilmach(12) # minimum exponent
iemax=ilmach(13) # maximum exponent
rbig =rlmaeh(2) # largest floating-point number

Check the basic machine-dependent constants.
if (i emin> l -2* i t [1-t-it>iemax I (i t= =2 & 1beta<5) I

(i t< =4 & ibe t a<=3) l i t<2)
{ write (iout, 1)
1 format(' x2norm - the algorithm cannot be guaranteed',

' on this computer')

mxp = - ((1- iemin)/2)
bl =bexp(ibeta, iexp) # lower boundary of midrange
iexp = (iemaxT 1 - it)/2
b2 =bexp(ibeta,iexp) # upper boundary of midrange

iexp = (2- iemin) /2
slm =bexp(ibeta,iexp) # scaling factor for lower range
iexp = - ((iemax+it) /2)
s2m --bexp(ibeta,iexp) # scaling factor for upper range

overfl=rbig*s2m # overfow boundary for abig
eps =bexp(ibeta, 1 - i t)
relerr=sqrt(eps) # tolerance for neglecting asml
abig = 1 .0 /eps- 1.0
if (float(nbig)>abig) nmax=abig # largest safe n
else nmax =nbig

return
end
real function bexp(ibeta,iexp)

bexp=ibeta**iexp by binary expansion of iexp,
exact if ibeta is the machine base

ACM Transactions on Mathematleal Software, ¥ol 4, No 1, March 1978

A Portable Fortran Program To Find the Euclidean Norm , 23

integer ibeta, iexp, n
real tbeta

tbeta = float(ibeta)
bexp = 1.0
n = iexp
if (n<0)

{n = - n
tbeta = 1.0/tbeta

}
repeat

lif (mod(n,2)~=0)bexp = bexp*tbeta
n = n/2
if (n= =0) return
tbeta = tbeta*tbeta

return
end

ACKNOWLEDGMENT

A.D. Hall originally suggested the idea of three accumulators. W.S. Brown, A.D.
Hall, N.L. Schryer, and D.D. Warner provided useful criticisms of various drafts
of the manusc r ip t .

REFERENCES
1. BLUE, J.L. A portable Fortran program to find the Euclidean norm of a vector Comptng.

Sci Tech. Rep. 45, Bell Laboratorms, Murray Hill, N J , July 1976
2. BROWN, W.S. A realistic model of floating point computation In Malhemat~cal Software

I I I , J.R. Rice, Ed., Academic Press, New York, 1977.
3. Fox, P.A., HALL, A D., AND SCHRYER, N L. The PORT mathematical subroutine library.

Comptng. Sci. Tech. Rep. 47, Bell Laboratorms, Murray Hill, N J., Sept. 1976.
4. HANSON, R.J., KROGU, F T., .~ND LAWSON, C.L. A proposal for standard hnear algebra

subprograms. Tech. Memo. 33-660, Jet Propulsion Lab , Pasadena, Calif., Nov. 1973.
5. LAWSON, C L Standardization of Fortran callable subprograms for basic linear algebra

Proc. Math. Software II, May 1974, p. 261.
6. LAWSON, C.L., HANSON, R.J., KINCAID, D., AND KROGH, F.T Basic linear algebra sub-

programs for Fortran usage. May 1976 (unpublished).
7. KERNIGHAN, B W. RATFOR--a preprocessor for a rational Fortran Soflware--Pract~ce

and Experience 5 (Oct. 1975), 395-406
8 WILKINSON, J.H. Roundzng Errors ~n Algebraze Processes. Prentice-Hall, Englewood Cbfls,

N . J , 1963.

Received July 1976, revised February 1977

ACM Transaction~ on Mathematical Software, Vol 4, No. 1, March 1978

