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1. INTRODUCTION 

A set of For t ran  subprograms for performing the basic operations of linear algebra 
[4, 5, 6] should include a subprogram to find the  Euclidean norm of an n-vector ,  
[[ x II -- (~,~-1 x~2) 1/2. Such a subprogram should be accurate and efficient, and 
should avoid all overflows and underflows. 

The  problem appears  much  easier than  it  is. Prel iminary versions of the sub- 
program, by  several authors,  failed a t  least two of these requirements.  

This paper  describes a successful version which is also portable.  All machine- 
dependent  constants are combinations of the basic machine constants  defined by 
Fox et al. [3]; therefore the programs are portable.  A program incorporating the 
algori thm is included. 

To avoid overflow, large x, mus t  be scaled down. Let  R be the largest  positive 
floating-point number  representable on the computer  being used. Then for any  
x~ such tha t  I x~l > R ~/~, x~ 2 will overflow, al though II x I / m a y  not  overflow. 

A simple way of avoiding overflow is the following. Let  

x m =  = m a x  I x ,  I. 
i R l , n  

Form 

a = (xJxm. ) 

Then  [I x I] = xma~ a 1/~. This procedure requires two passes over the da ta  vector,  
which is unnecessarily slow, especially for long vectors  on paged machines. (Tested 
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16 • James L. Blue 

on the Honeywell 6000 in single precision, this procedure took 50 percent  longer 
than the procedure to be discussed.) Furthermore,  i t  does not  avoid underflow. 
More complicated two-pass procedures can avoid underflow. 

Let  r be the smallest positive foat ing-point  number representable on the machine 
being used. Then  for any x, such tha t  I x, [ < r 1/2, x, 2 will underflow, although I1 x I[ 
does not  underflow. If  underflow is replaced by zero, then ]1 x [1 m a y  be computed 
incorrectly, since the underflowing components may  contribute to II x [[. Even  if 
the underflowing components are so small as not  to contribute to I] x l[, i t  is de- 
sirable to  avoid underflow. Thus small numbers mus t  be scaled up in forming the 
partial  sum of squares. 

For  medium-sized numbers, no scaling is necessary. For  efficiency, it  is desirable 
to avoid all unnecessary scaling and to make only one pass over the data.  

2. AN ALGORITHM FOR CALCULATING THE EUCLIDEAN NORM OF AN n-VECTOR 

All overflows and underflows may  be avoided by  employing the following algo- 
r i thm. The algorithm requires constants b, B, s, and S, which are derived in Sec- 
t ion 3; B and S are large positive numbers, and b and s are small positive numbers. 
N is the largest value of n for which the algorithm can be guaranteed,  and e is a 
measure of machine precision; N and e are defined in Section 3. Three  accumulators 
for partial sums of squares will be used. Only one pass over the x-vector is made. 

if n = 0, set I1 x 1[ = 0 and return. 
if n < 0, set an error flag and stop. 
if n > N, set an error flag and stop. 
aaml ---- 0 ;  amed  -~ 0 ;  ab lg  ~ 0 
for i - 1 through n 

i f  I I I > B, , -  + 
else if x, I < b, a,mi~--a,ml+ (x~ls)  ~ 
else amed  ~-" araed -~  Xt 2 

if abig i s  nonzero 
• . 1/2 lI abig ) R /X ,  II x II > R and overflow w'ould occur. Set ][ x [] --- R, set an error flag, and return. 
if amea i s  nonzero 

Ymm -~ min(a lm/~d,  ~ . 1 / 2 1  ~t*big!  
ym,, ,  = max(alm/~d, ~ 1 / 2 ~  ~"¢*bxg/ 

else set II x II = ~ablg~ 1/2 and return 
else if a,m~ is nonzero 

if amed i s  l l o n z e r o  

Ym,. = min(a~:d, o'~.~,,'~1/~' 
Ymax = max(alm/e2d, sa,m1112) 

else set [[ x H = ot*,mln~l/2 and return 
else set l[ x [[ = a~e2a and return. 
if ym,~ < eU~Y . . . .  set Jl x I} = Y . . . .  
else set i] x l[ = ymax(1 + (Ym,n /Ym.x) t )  u~ 

3. COMPUTER MODEL 

To convert  the algorithm of Section 2 into a portable For t ran  program, we must  
define b, B, s, S, N, and e in terms of machine-dependent parameters which are 
readily available. This requires some assumptions about  the computer being used. 

ACI~ Transact ions  on Mathemat ica l  Software,  Vol. 4, No. 1, March 1978. 



A Portable Fortran Program To Find the Euclidean Norm • 17 

In addition, analysis of the correctness of the algorithm requires assumptions 
about the properties of the arithmetic done by the computer. 

Various assumptions could be made, and b, B, s, and S could be defined in terms 
of N, e, r, R, and ~ (the floating-point base). Then a proof of correctness would 
require several relations to hold among N, E, r, R, and f~. Other than these relations, 
only minimal information about the computer would be required. 

A more satisfactory solution is obtained by starting from a detailed model of a 
computer. A useful model is that of Fox et al. [3]. 

Floating-Point Number Representation 

The floating-point representation is defined by four integers: ~, t, em,,, and em,~. 
Zero and all numbers of the form 

..[._~e(Tnl ~--i + . . .  + Tnt ~- - t ) ,  I <~ ?T/I < 

0 ~ m, < ~, i = 2 , 3 , . . . , t ,  

emm ~ e ~ emax 

are exactly representable. These numbers are called model numbers; they are a 
subset of the machine numbers. On some machines not all the machine numbers are 
model numbers. In particular, numbers that are kept in working registers may 
have extra bits in the mantissa. 

The smallest and largest magnitude model numbers are easily found: 

r ~ ~ era~n-l, 

l~  = ~ % ° ~ ( 1  - , e - ' ) .  

A useful measure of machine precision is the largest relative spacing between model 
numbers, e = fll-t. The largest n for which the algorithm can be proven depends 
on the arithmetical properties of the computer and on the relative values of era,, 
e . . . .  and t. Under the assumptions of the theorem in Section 4, the largest safe n, 
is N = ~t-~ _ 1. (This may be larger than the largest integer representable on the 
computer.) 

Floating-Point Arithmetic 

The success of the algorithm could be assured if Wilkinson's assumptions [8] about 
floating-point arithmetic were made. Let fl(expression) be the value obtained 
when expression is evaluated in floating-point arithmetic on the computer in ques- 
tion. Let op denote any of the operations ~ ,  --, X, or --. Then the usual assump- 
tion is that 

(1 -- V)(uopv) ~ fl(uopv) <_ (1 -~ ~)(uopv) 

where v = e or e/2; its value depends on the rounding properties of the computer 
and whether arithmetic is done using guard bits [8]. A similar assumption is needed 
about the square-root routine. 

The standard floating-point error analysis could be used in deriving the proof of 
correctness and the error analysis of the algorithm. If the computer model of the 
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previous section is used, alternative assumptions about the floating-point arith- 
metic [2] become attractive and simplify the proofs. 

Suppose u and v are any machine numbers. Let 

W ~ u o p v ,  

(o ffi fl(u:op v). 

A reasonable model of the accuracy of floating-point arithmetic is the following 
[2], which is slightly weaker than perfect rounding: 

(P1) If w is a model number, 5 = w. 

(F2) Otherwise, if w~ and w2 are the two model numbers that bracket w, w~ _< 
~_<w2. 

No assumptions are made about the result if ] w ] < r or ] w ] > R. Properly de- 
signed arithmetic units obey these two assumptions, but guard bits are required. 
Since the maximum relative spacing between model numbers is e, arithmetic units 
obeying (F1) and (F2) obey 

(F3) (1 - ~ ) ( u o p v )  < f l ( u o p v )  < ( l - i -  e ) ( u o p v ) ,  

which is the usual Wilkinson assumption for truncated arithmetic, with n = e. 
An accuracy assumption is also required for the square-root routine; we assume 

(1 - ~) ~¢/u < f l (~ /u )  < (1 -t- e) ~¢/u, which is easy to achieve on most machines. 
Three simple lemmas will be stated without proof. They follow from (F1) and 

(F2), but not from (F3) alone. In the following, k is an integer, and u is any model 
number. 

LEMMA A. A ~nodel number can be scaled by a power of the base without any error. 
I f  r ~_ ] ufl ~ I <-- R, then f l(u~ k) = u~ k. I f  r <_ I u /~ ~ I <- R, then fl(u/~8 k) = u/fl ~. 

LEMM.~ B. I f  u >_. ~ and r <_ ~ <_ R, then f l ( ~ )  >__ ~ .  I f  u <_ ~k and r <__ ~2~ 
<_ R, then f l (u  2) < ~2~. 

L E M M A  C .  I f  u i  ~_ ~k, i -- 1 ,  2 ,  . . . , n ,  and i f  n ~ N and n~ ~ < R, then 

u,] 
4. PROOF OF CORRECTNESS 

We choose b, B,  s, and S as follows. Denote [u] as the smallest integer greater than 
or equal to u, and [u] as the largest integer less than or equal to u. 

B f f i  ~ L(*max-t't'l)/2] 

S ~ ~ t(em~n-l)]21 

S ~ ~[(emax+t--l)/2l 

If emin is odd, b = s; if e~ is even, b = ~s. If e~= q- t is odd, S = ~t-~B; if em~= 
÷ t is even, S = ~B. (Examples are given in Table I.) 
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Table I 
(SP = single precision; DP = double precision) 

Honeywell IBM CDC 
6000/7000 360/370 6000/7000 

SP DP SP DP SP DP 

fl 2 2 16 16 2 2 
t 27 63 6 14 48 96 
e~,~ --127 --127 --64 --64 - -974  --927 
e ~  127 127 63 63 1070 1070 
log~b -64 -64 -128 -128 -487 -464 
log~B 50 32 116 100 511 487 
log~s -64 -64 -132 -132 -488 --464 
log~S 77 95 136 152 559 583 
log~ - 26 - 62 - 20 - 52 - 47 - 95 
log~(N+l) 26 35 20 31 47 48 

The proof of correctness requires three relations to hold: 

emin _< 1 - 2t 

1 4- t ~ emax 

t_~ 2, iff~_< 4, t ~_ 3 

i f~  = 2, t~_ 5. 

(t) 
(2) 

(3) 

For the computers ~ listed in [3], all the above hold. In  fact, these relations should 
hold for any computer suitable for scientific work. 

THEOREM. Suppose the algorithm of Section 2 is implemented on the model com- 
puter of Section 3, for which (F1) and (F2) hold. Let b, B, s, and S be as given above, 
and let relations (1), (2), and (3) hold. Let x be an n-vector with n <_ N,  with each 
component x~, a model number. Then no overflow or underflow will be produced when 
the algorithm operates on x. I f  fl(]l x I1) > R, an error messagewill ba produced; other- 
wise 

II x I1(1 --  e)~+"/~ < f l ( l l  x II) < I1 • ll( 1 + 4 ~+'% 

The proof is based on a series of lemmas. The first two are necessary to establish 
correctness, even if roundoff, underflow, and overflow are neglected. The next 
five lemmas establish the absence of overflow and underflow. The final lemma 
bounds the error in any one of the three accumulators. The proofs of the lemmas 
require Lemmas A, B, and C and relations (1), (2), and (3), and will be omitted. 
The details may be found in [1]. 

LEMMA 1. The three ranges are disjoint; b < 1 < B. 
LEMMA 2. I f  ab~ is nonzero, the contribution of a,,~t to II x I{ is negligible. 

These are the Burroughs 6700 series, the CDC 6000/7000 series, the Honeywell 600/6000 
series, the IBM 360/370 series, the PDP-10 and PDP-11 series, the SEL systems 85/86, the 
Univac 1100 series, and the Xerox Sigma 5/7/9 series. 
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LEMMA 3. There 
LEMM/~ 4. There 
LEMM.~ 5. There 
LEMMA 6. There 
LEMMX 7. There 
LEMMA 8. Let u 

is no overflow or underflow in  calculating ab~g. 
is no underflow or overflow in calculating amid. 
is no overflow or underflow in  calculating a,,,~. 

I / 2  is no underflow in  computing e y , ~  or ( y m , ~ / y , ~ )  2. 
2 1/2 

is no overflow in  calculating y~,~(1 + ( y , , , , / y , , ~ )  ) . 
= (ul, u 2 , . . .  , urn) be a vector of model numbers. Suppose r 

m 2 f l (u ,  2) < R for i = 1, 2, . . . , m.  I f  f l (  ~'~,=1 u,  ) does not overflow, then 

(1 -- e)m~-'~ u,  2 g f l (  u,  2) g (1 + e)m~-~'~ u, 2. 
* ~ I  i = 1  z s l  

PROOF OF THEOREM. The proof of the theorem now follows upon applying Lemma 
8 to each of the three accumulators, with u, = x , / s  for astor, u~ = x, for a~¢d, and 
u,  = x , / S  for ab~g. Standard floating-point error analysis of the algorithm, with 
the use of Lemma A, then gives relative error bounds of (1 -t- e) 1+~/2 if only one 
accumulator contributes and (1 + e)5+n/2 if tWO adjacent accumulators contribute.  
If  abl~ and a~m~ are both  nonzero, a~ml is ignored, which according to Lemma 2 
could contribute another rounding error. Thus the relative error bound is either 
(1 -1- e) 2+~/2 or (1 -{- e) 6+'/2, depending on whether amid is zero or nonzero. 

5. IMPLEMENTATION 

A portable implementation of the algorithm, x2norm, wri t ten in R A T F O R  [7], 
is given in the Appendix; the ou tpu t  of the R A T F O R  preprocessor is portable 
For t ran.  The initialization of the needed machine-dependent constants is done 
by  subprogram x2init; the remainder of the norm program is machine independent .  
A first-time switch is used so tha t  x2init is not  called every t ime x2norm is called. 
To make a version of x2norm for any specific machine, remove the call to x2init, 
calculate the needed constants according to the prescription in Section 4, and 
replace the data  s tatements in x2norm. Floating-point constants should be done 
in binary, octal, or hexadecimal, (whichever is appropriate)  to ensure tha t  b, B, s, 
and S are exactly powers of ~. 

In  this implementation a portable For t ran  error-handling facility [3] is used. 
Execution stops after  either of the fatal errors n < 0 or n > N;  the user may  elect 
to continue after the nonfatal  error II x II > R. 

For  a portable implementation of the initialization routine, portable For t ran  
machine constant programs [3] are used. 

APPENDIX. PROGRAM LISTING 

real function x2norm(n, x) 

# Calculate 2-norm of x vector. 
# Avoid all overflows and underflows 

integer n,nmax,j 
real x (n), ax, abig, amed, asml, bl, b2,slm,s2m, relerr,overfl, rblg 

# This portable version of x2norm uses nmax as a first-time switch and 
# calls x2init to calculate needed machine-dependent constants. 
# x2init normally is executed only once, to save overhead. 
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# This  is a non-s tandard ,  bu t  safe, usage. If  x2mit  
# were executed more t han  once, as migh t  happen  if overlays 
# were used, addi t ional  overhead would be incurred,  bu t  no 
# errors  would occur. 

# For  any  specific machine,  the da ta  s t a t emen t s  can be revised 
# and the  call to x2imt removed 

da ta  b l ,  b2 , s lm ,  s2m, overfl, rbig,  r e l e r r /7*0  0/  
da ta  nmax/O/  

if ( n m a x <  =0)  
call x2mit  (nmax, b l ,  b2, s lm,  s2m, overfi, rbig, relerr) 

if ( n =  =0)  
{x2norm=0 0; return} 

if ( n<0)  
call se te r r ( '  x2norm - n .It. 0 ' ,18,1 ,2)  

if ( n>  nmax) 
call se te r r ( '  x2norm -- n too large ' ,21 ,2 ,2)  

asml =0.0 
amed =0.0 
ab ig=0 .0  
do j = l , n  

{ax=abs(x(j)) 
if (ax>b2) abig=abig+ (ax*s2m)**2 

else if (ax<bl) asm]=asml@ (ax*slm)**2 
else amed = amed+ ax**2 

} 
if (abig>O.O) 

[ a b i g = s q r t  (abig) 
if ( ab ig>  overfl) 

{ x2norm -- rbig 
call s e t e r r ( '  x2norm - overflow' ,18,3,1)  
r e tu rn  

} 
if (amed>O.O) 

[ abig = abig/s2m 
amed = sqr t  (amed) 

} 
else 

{x2norm = ab ig /s2m;  return} 
} 

else if (asml>O O) 
{if (amed>O.O) 

{ abig = sqr t  (amed) 
amed = s q r t  ( a sml ) / s lm 

} 
else 

{ x2norm = sqr t  ( a sml ) / s lm ; r e tu rn  } 
} 

else 
{x2norm=sqr t (amed)  ; return} 

asml = amin l (ab ig ,  amed) 
abig = amaxl  (ubig, umed) 
if ( a sml<  =ab~g*relerr) 

# fatal  error  

# fatal  error  

# non-fa ta l  error  

# the s t anda rd  p a t h  
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x2norm = abig 
else 

x2norm = abig*sqrt (1.0-t- (asml/abig)* *2) 
return 
end 

subroutine x2init (nmax, bl ,  b2, shn,s2m, overfl, rbig, relerr) 

integer ilmaeh, nmax, iout, nbig, ibeta, it ,  iemin, iemax, iexp 
real rlmaeh,bexp, abig, b l ,b2,s lm,s2m,eps , re lerr ,  overfl,rbig 

# This program calculates the machine-dependent constants 
# bl ,  b2, slm, s2m, relerr overfl, nmax 
# from the "basic"  machine-dependent numbers 
# nbig, ibeta, it, iemin, iemax, rbig. 

# The following define the basic machine-dependent constants. 
# For portabil i ty,  the PORT subprograms "ilmaeh" and "rlmach" 
# are used For any specific computer, each of the assignment 
# statements can be replaced 

iout =ilmaeh(4) # standard output file for error messages 
nbig =ilmach(9) # largest integer 
ibeta =ilmach(10) # base for floating-point numbers 
i t  = i lmach( l l )  # number of base-beta digits in mantissa 
iemin--ilmach(12) # minimum exponent 
iemax=ilmach(13) # maximum exponent 
rbig =rlmaeh(2) # largest floating-point number 

# Check the basic machine-dependent constants. 
if ( i emin> l -2* i t  [ 1-t-it>iemax I ( i t= =2 & 1beta<5) I 

( i t<  =4 & ibe t a<=3)  l i t<2 )  
{ write (iout, 1) 
1 format( '  x2norm - the algorithm cannot be guaranteed',  

' on this computer') 

mxp = -  ( (1- iemin)/2)  
bl  =bexp(ibeta,  iexp) # lower boundary of midrange 
iexp = (iemaxT 1 -  it)/2 
b2 =bexp(ibeta,iexp) # upper boundary of midrange 

iexp = (2- iemin) /2  
slm =bexp(ibeta,iexp) # scaling factor for lower range 
iexp = - (( iemax+it) /2) 
s2m --bexp(ibeta,iexp) # scaling factor for upper range 

overfl=rbig*s2m # overfow boundary for abig 
eps =bexp(ibeta,  1 - i t )  
relerr=sqrt(eps) # tolerance for neglecting asml 
abig = 1 .0 /eps-  1.0 
if (float(nbig)>abig) nmax=abig # largest safe n 
else nmax =nbig 

return 
end 
real function bexp(ibeta,iexp) 

# bexp=ibeta**iexp by binary expansion of iexp, 
# exact if ibeta is the machine base 
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integer ibeta, iexp, n 
real tbeta 

tbeta = float(ibeta) 
bexp = 1.0 
n = iexp 
if (n<0) 

{n = - n  
tbeta = 1.0/tbeta 

} 
repeat 

lif (mod(n,2)~=0)bexp = bexp*tbeta 
n = n/2 
if (n= =0) return 
tbeta = tbeta*tbeta 

return 
end 

ACKNOWLEDGMENT 

A.D. Hall originally suggested the idea of three accumulators. W.S. Brown, A.D. 
Hall, N.L. Schryer, and D.D. Warner provided useful criticisms of various drafts 
of the  manusc r ip t .  

REFERENCES 
1. BLUE, J.L. A portable Fortran program to find the Euclidean norm of a vector Comptng. 

Sci Tech. Rep. 45, Bell Laboratorms, Murray Hill, N J ,  July 1976 
2. BROWN, W.S. A realistic model of floating point computation In Malhemat~cal Software 

I I I ,  J.R. Rice, Ed., Academic Press, New York, 1977. 
3. Fox, P.A., HALL, A D., AND SCHRYER, N L. The PORT mathematical subroutine library. 

Comptng. Sci. Tech. Rep. 47, Bell Laboratorms, Murray Hill, N J., Sept. 1976. 
4. HANSON, R.J., KROGU, F T., .~ND LAWSON, C.L. A proposal for standard hnear algebra 

subprograms. Tech. Memo. 33-660, Jet Propulsion Lab , Pasadena, Calif., Nov. 1973. 
5. LAWSON, C L Standardization of Fortran callable subprograms for basic linear algebra 

Proc. Math. Software II, May 1974, p. 261. 
6. LAWSON, C.L., HANSON, R.J., KINCAID, D., AND KROGH, F.T Basic linear algebra sub- 

programs for Fortran usage. May 1976 (unpublished). 
7. KERNIGHAN, B W. RATFOR--a preprocessor for a rational Fortran Soflware--Pract~ce 

and Experience 5 (Oct. 1975), 395-406 
8 WILKINSON, J.H. Roundzng Errors ~n Algebraze Processes. Prentice-Hall, Englewood Cbfls, 

N . J ,  1963. 

Received July 1976, revised February 1977 

ACM Transaction~ on Mathematical Software, Vol 4, No. 1, March 1978 


