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where y and x are given n-precision positive integers in radix
,B and

if qj is positive
if qj is negative.

(2)

Thus,

log (1 + y/x) = E qjI log (1 + ac3i),
j=o

Economic Pseudodivision Processes for Obtaining
Square Root, Logarithm, and Arctan

B. P. SARKAR AND E. V. KRISHNAMURTHY

Abstract-Modified Meggitt methods (pseudodivision methods) are

suggested for evaluating logarithm, arctan, and square root. The modi-
fications described here consist in restricting the magnitude of the pseudo-
partial remainsler such that the pseudoquotient assumes a form close to
the minimal representation in the radix of choice. These methods will
become useful for large-scale integrated system design.

Index Terms-Arctan, function evaluation logarithm, pseudodivision,
square root.

I. INTRODUCTION
Meggitt [1] (see also Ralston and Wilf [2]) has described

certain digit-by-digit methods for the evaluation of elemen-
tary functions like logarithm, arctan, and square root. These
processes resemble repeated subtraction division (hence
pseudodivision) and the accuracy of the process depends on

the number of significant digits obtained for the pseudoquo-
tient. In this note we shall consider a modification of these
methods that makes these operations faster, requiring a

smaller number of operations per quotient digit. This modifi-
cation is based on restricting the magnitude of the pseudo-
partial remainder in the pseudodivision process which conse-

quently results in the pseudoquotient's assuming a form close
to the minimal representation in the given radix of choice.
Incidentally, these modifications will be of interest for soft-
ware or hardware realizations in conventional as well as

signed-digit computer systems [3].
Since Meggitt has described the methods in great detail,

we shall describe only the salient features of the modified
method and indicate the departures from Meggitt's method,
where required.

II. EVALUATION OF LOG (1 +Y/X)
The modified method consists ofchoosing the signed digits

qj such that

all the logarithms being to the base ,3.
The calculation now consists of two parts; in the first part

the digits qj are obtained, while in the second part the prod-
duct in (3) is formed using stored values of log (1 +a/-3).

Calculation of qj: We suppose that the quantity

y - x{j (1 + oZ-k)Iki - 1}

has been calculated where qo, ql, , qj-l are chosen such
that a particular condition, called the magnitude condition,
to be described later, is satisfied. For calculating qj successive
calculations of

(4)Y+a =-y-X{[II(+tB) ]lo )-}

for a=O, 1, 2, , qj are made with sign of

(i)
a = sign of yo

(Note that we use parentheses for j when j is used as an

index for the recursion cycle and no parentheses when j is
used as an exponent.)

Define now

X_a = X ll(1 + a# k) } (1 + xi)

k=O
(6)

The successive y's and x's can be obtained from the recur-

rence relations shown separately in the following for positive
and negative quotient digits.

Recurrence Relationsfor Positive yA'i: Start with

(0) (0)
yo =/y, Xo = x

and define
(j) (j) -i (5)

Ya+ 1 Ya - Xa

(5) (5) -j (5)
Xa+l - Xa + # Xa X

(7a)

(7b)
y + x = x fi (1 + a3-j)l0iI

5=0

(1)
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Then iterate until sign (y,'j) p4- sign (yr-i) whence qj is defined
by the magnitude condition

(7c)
a + I if ya + a+l (or ya >! xa A )

i= a otherwise.

In either case, the next cycle (j+ 1) starts with

(j+1) (5)
Yo = Yqj (7d)

(3)
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and
(j+1) (5)

XO = Xqj . (7e)
Defining Z(j) = 1jY(a, we can write the recurrence relations
in (7) as follows. Start with

(0) (0)
Zo = y, xo = x

and define

(5) (5) (5)
Za+i= Za Xa * * -

(5) (5) -j (5)
Xa+I= Xa + , Xa *.8

(8a)

(8b)

Iterations continue until sign (Z,'-)$ sign (Z.'1) and the
magnitude condition (7c) becomes

(80)
{a otrifwi+ Za.+ > O (or Za > 2 a )

qj
otherwise.

The next cycle (j+1) starts with

Z(5+1) (Z)Z0 ,8qj...
and

(j+1) (5)
XO = xq0 * . -1

(8d)

(8e)

more detail as is done in the following analysis. We shall
give a separate analysis for each of the four possible cases
that may arise. We shall study the magnitude of qj+s.

Case 1: Suppose the previous ppr Z is positive and
satisfies the magnitude condition (8c), i.e.,

Zqj 2Xqj

We have then

U(+1) =() (j)
13q1i< XZ

Also since

+l) (j+l) -j )Xa
Xa = Xo 11 +1 J- (lOa)

we get using (8a), (8b), and (8e)

Z=(1)=(5+1) _(+1)0ill + 0-(Y+l)Ia_1]. (lOb)

Obviously qj+l is maximum when Zau+l) changes sign and
equating the right-hand side of (lOb) to zero, we get

|ogB (1 + 2d3j 1))|

amax (qj+±)max | log

2

(1 + 3(+l) (11)

Recurrence Relations for Negative y(/': Following the
notations used in (8a)-(8e), we can write the recurrences in
this case as follows:

(j) (5) (5)
Z 1i = Z-a + X-a .

(5) (5) -5 (5)
Xa-1 = X - 0 X . *

(9a)

(9b)
Iterations continue until sign (Z,,)5!sign (Z(°-1). q3 is de-
fined at this stage by the magnitude condition

-a-1 if Z_n-1+Z-n <0 (or Z-n < -- (X_)
-a otherwise.

The next cycle (j+ 1) begins with

(j+l) _ ()
Zo = Zq

and

(j+1) (J)
XO = Xqj.

Note that since x and y are assumed positive to start with,
ZJ) can be positive for j=0 onwards and can be negative
starting withj= 1.

It may also be noted from the recurrence relations (8) and
(9) that the magnitude condition determining the quotient
digit qj is different from that used by Meggitt [11, i.e.,
Z'j.>O>Z('?+. We have to consider the effect of dictating
the magnitude of pseudopartial remainder (ppr) on the
magnitude of the pseudoquotient digit, It is seen from (8b)
and (9b) that the increment on x'J) is negligible for largej and
also that the magnitude of quotient digit for large j cannot
exceed f/2. For small j, however, we have to investigate in

Here [1 depotes the higher integral part of the factor inside.
Case 2: We assume that the previous ppr Z'n is positive,

not satisfying the magnitude condition (8c); and hence we
iterated one more step, ZQ(°'1 thereby turning negative. Then,

° > Zq+l > - lxq, 2x,l

Thus
(5)

0> z(>>) 1 Xqj+l

and using (9d) and (9e),
(+1)

(5±1) XOW > Zo>(9)

We also get using (9)
(j+1) (j+1) -(j+1) Ia

X-a Xo 1-, A

(j+1) Z (j+1) + () (5[1-{+1) a]-.}z, z0 ±0 ~ [-{
Using the same argument as in Case 1,

ogo (I - 2o3(l + f-j))
a1m8x _ log, (1 -

(12a)

(12b)

(13)

Case 3: Let the previous ppr Z." be negative, satisfying
the magnitude condition (9c) so that

(j+l) d (j+1)
Z°0 > - 2 x
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The expressions for x'i+l) and Z(3+±) are the same as in (12a)
and (12b) and we obtain

amax < - fi) (14)
logo, (1 - (-+)

Case 4: Let the previous ppr Z-"' be negative not satis-
fying the magnitude condition (9c) and hence we iterated one
more step, Z()3 +l) thereby turning positive. As a conse-
quence we have

(j<z) 1 -q+
o < Z2-(qj+l) 2 (X )

Thus

(i+1)

o <Z(o< )
2 1 -

Using the expressions (lOa) and (lOb) for x,+l) and Z(i+l)
we get

logo(I + 23i(1 -()) /

amaxna log (1 + I'-(j1))

Setting

x + iy = rei tan-1, )

and equating imaginary parts

tan-, (-) = Lao' qjI tan-' 6-j.
x j=o

(19)

The calculation of tan-' (V) then consists of two parts as in
the case of logarithm, the first part being the calculation of
qj and the second part the calculation of actual tan-' (>)
using (4) and the stored values of tan-' (3-.

Defining x,' andy" by the relation

(j) () 1 s-k Oqkl -j Jai
Xa+i+ya (x + iy) H (1 + ai) (1 + ai )

k=0

and also, as in the case of logarithm Z(`±l)=-BZ('I x(i+l)
-x,s', and Za")=(iy(), the following recurrence relations
are obtained for positive and negative ppr.

Recurrence Relations for Positive Z(i': Start with

(0) (0)ZO =y and x =x

and define
j) (i) Uj)

Za+l1 Za Xa

U) +3-2Za(j)

(20a)

(20b)
For j=0, i.e., at the start, the magnitude of qo is deter-

mined by the initial restrictions on x and y. For example, if
l/0<y/x<,3, then qo<s where 28+1>13+1. For radix 10,
qo <3 under such a restriction. As regards the magnitude of
other digits, (12)-(15) give upper limits. For radix 10, these
equations yield a qj=6; however, functional tabulation of
the expression inside 11 gives a value very close to 5, indi-
cating that IqjI <5. Trial programs run on an IBM 1401
support this view.

Calculation of Logarithmfrom the qj: The second part of
the calculation consists in finding log (I +y/x) using (3).
Hence it is required to store the values of log (1+ar3) for
both a= + 1 and a =-1, unlike Meggittfs scheme where we
store values only for a= + 1.

III. EVALUATION OF TAN-'(X)

The modified method consists in finding signed integers
qj such that

(16)

where y and x are given n-precision positive integers in radix
( and R is real. Further,

The magnitude condition determining qj is the same as in
(8c).

Recurrence Relationsfor Negative Z"): Define

(i) () (U)
Z-a-1 = Z-a + X-a

(j) (j) -2j(Z)
X-a-1 = X-a - 3 jZ-a.

(21a)

(21b)

The magnitude condition determining -qj is the same as in
(9c).
To determine the magnitude of the quotient digits, we note

that in the positive case both x'>' and Z<)' are positive,
while in the negative case x' is positive but ZO7 is nega-
tive. The magnitude condition then ensures that qI < 2
where [ ] denotes the integral part. Further, since

0< tan-' ( <)-.

it is obvious that qo< 2.

IV. EVALUATION OF SQUARE ROOT

To obtain the square root of (y/x), the signed integers qj'
are found so that

if qj < 0

if qj > 0.
(17)

Then,

log (x + iy) = logR -E qj log (1 + iaO-j). (18)
j=0

y = x : a qj -j
j=0

and thus

V(y/x) = E a qj - .
j=o

(22)

(23)
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(x + iy) 11 (I + iaO-j) qi = R
j=o
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a =
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Note thata=+ 1 ifqj>O and a= -1, ifqj<0.
Calculation of the qj is again a pseudodivision process.

Having obtained qo, ql, , qj_,, to obtain qj successive
calculation of

Ya y - [ aE qk + a ] 2
-k=0

is done for a=0, +1, +2, **, or a=0, -1, -2, ,
until the magnitude condition described earlier is satisfied.
Defining

x =2x[ a qkk + I a ax-' + x:3' (24a)
k=a

and

(24b)

the following recurrence relations are obtained for positive
and negative partial remainders.

Recurrence Relationsfor Positive Z i):

As regards the magnitude of the quotient digits, for large
j, qjI < -. For smallj we can carry out an analysis similar to
the case of logarithm. In this case, however, the limits ob-
tained in the case of logarithm may be exceeded by a small
number. The details can be worked out as in the case of log.
Only the broad outline is given below for the four cases as
under logarithm.

Case 1: The previous ppr Z4) is positive and satisfies the
magnitude conditon (8c). Then, using the fact

(o+1) (j) < (j)zo #/Zqj < 2Xq.
together with the following equation obtained from (26a)
and (26b).

(j+l) (j+l) (j+l) -(j+l)Za =Zo -ax0 -a(a-1)x/ (31)

we can determine maximum value of a from the Diophantine
system

(5) (j) (j)
Za+i1=Za - Xa

Xa+ 1 = Xa + 2x: * * *

We also get

U) U) U~~~() -3Za = Zo -axo -a(a-1)x/3
(a) (5) -jXa = XO + 2ax/3..

(25a) ( - (5+') +a___ a =Oxa) ± [3 1 a+ a 1
02L - 3 /3 ]xo(j+'

(25b) Case 2: The previous ppr Z'J) is positive, not satisfying
the magnitude condition (8c) and hence we iterated one more

(26a) step, Za'j'1 thereby turning negative. Then for determining
maximum a we use the inequality

(26b)

when the magnitude condition is satisfied for the jth cycle;
we set for the (1+ I)th cycle

U(S+l) U()
zo= 3Zq (27a)

and

x0 = 4[¾ - x ] ... (27b)

Recurrence Relationsfor Negative Zo(): The recursions for
negative Z0(j) take the following form:

Z-a = Z-a + X_a.

(U) () -3
X-a = X-a -2,x/ ..-.

(1+1) /3 (U)
O > zO > --[ q2 +l-2x/']

together with the following equation obtained from (28a)
and (28b):

U(+l) U(+l) U(+l) --(a--1Z-a=Zo +~axo -a(a -1)xO/3--l (32)

The Diophantine system to determine maximum a is

(a- x (O E/- a2 ---- X: = °
2 2 1~~3 18

(28a) Case 3: The previous ppr Z'4q, is negative, satisfying the
(oa) magnitude condition (9c). Then the condition

(28b)
Z° >.-+ [x0 + x,8]

(29a) together with (32) give the Diophantine system

) ) *
---a =xo 2ax/3 -- (29b)

when the magnitude condition is satisfied for the jth cycle;
we set for (j+ 1) cycle

Z(j = /3Z-qj ... (30a)

and

(j+1) (6) /3-1 -j
Xo -X-qj - X * A . (30b)

(a- 1)x'1+ ) [/ 1 a2 a-]x/_j = O.

from which we can determine maximum value of a.

Case 4: The previous ppr Z°j,, is negative, not satisfying
(9c) and hence we iterated one more step, Z5j)%_1 thereby
turning positive. Then from the condition

_ 1

Also,

1592

U) i (j)
Za = 0 Ya ...

U) U) U)
Z-a=Zo + axo - a(a I)x,3

U+l) 0 -

(Y+l)
zo < XO
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and (31), one can determine the maximum value of a by
solving the Diophantine system

/13 \u~(+s) [ -i a2 a
(-a xo + [--+- + B]xo = O.
2 ~~~~2

V. IMPLEMENTING THE CHECK

An easy way of implementing the check as to whether the
magnitude condition is satisfied at any particular stage is
discussed below.

Case 1-Positive Zoi): Compute Za+i from Za and store
Za. If sign of Za+±= sign of Za, compute xa+l and replace
Za by Za+i. Otherwise, check whether Za+i+Za>0. If so,
compute Xa+1, and qj=a+ 1. Otherwise, set qj= a and erase
Za+i.

Case 2-Negative Z(j-: Compute Z-1 from Z-a and
store Za. If sign ofZ-1= sign ofZ, compute x _1 and
store Z-1 in place of Za and continue. Otherwise, check
whetherZa-+Z, < 0. If so, compute x-a_i and qj=-a- 1.
Otherwise, set qj=- a and eraseZ_1.

CONCLUDING REMARKS

It can be shown by a simple calculation that the above
algorithms require on the average 3.5 operations per quotient
digit, while Meggitt's scheme requires 5.5 operations per
quotient digit. It is to be noted that in the present algorithm
the quotient digits are made to assume a form close to the
minimal representation in the radix of choice. This, in par-
ticular, is very much like the class of division methods sug-
gested by Robertson [4]. For an alternative minimal square
rooting algorithm, suitable for binary radix, in which the
number of nonzero digits is minimal, reference is made to
Metze [5].
Note Added in Proof: Since the communication of this

paper in 1967, the authors have come across an excellent
article by Linhardt and Miller [6] that describes how digit-
by-digit computation can speed up function computation by
more than three times. Other interesting papers in this area
are by Levy et al. [7] and Beelitz et al. [8], which are con-
cerned with the system utilization of large-scale integration.
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Multicategory Classification of Patterns
Represented by High-Order Vectors of

Multilevel Measurements
HERBERT A. GLUCKSMAN, MEMBER, IEEE

Abstract-A method is introduced for deciding the class of a pattern
described by a vector of measured features. Memory requirements and
the time required for classifying a pattern are not excessive, even when
there are many classes and many multilevel feature measurements. Two
initial steps use univariate distributions of the measurements to select, for
a pattern in question, a small subset of neighboring classes. If the pat-
tern is one used in deriving the distributions, its true class is certain to be
in the selected subset. The final step distinguishes among the members,
if there are more than one, of the subset by using discriminants derivable
by classic methods. The technique is tested experimentally on a set of
about 26 000 alphabetic characters of nine type fonts. The characters
range widely in quality. One third are taken as training patterns from
which histograms for the first two steps and discriminants for the third
step are derived. The rest are used to test the method. The features used
are the characteristic loci.

Index Terms-Characteristic loci, histograms, pattern classification,
training sample, vector of features.

INTRODUCTION

A pattern is here considered to be completely represented
by a vector of d components, each of which is a measure-
ment upon the pattern:

X = (x1, X2, .. ,I d).

Thus a pattern becomes a point in d-dimensional Euclidean
space.
Even for the simplest case of a binary vector (xi= 1 or 0),

multivariate analysis would require 2d registers merely to
store the probability distribution for one class. For practical
values of d, this can be excessive. Approximations [1]-[3]
have been given for the binary case, but the general case
is certainly of importance. A linear separation algorithm
[4], [5] will handle the general problem under realistic as-
sumptions without requiring excessive storage [6], but much
time is consumed in forming the scalar product of a pattern's
vector with the weight vector of each class.
When there are many classes, most of them will be ex-

tremely unlikely for a pattern in question. If a quick test
can be found to eliminate the unlikely classes, time can be
saved. The technique to be described eliminates most classes
in two initial steps, leaving only a few classes for detailed
examination. The initial steps are based on stored univariate
distributions of the individual vector components xi derived
from a set of representative training patterns. Since the ini-
tial steps can never eliminate the true class of a training pat-
tern, only an unusual pattern can be misclassified because
of these steps.

DESCRIPTION OF THE METHOD

The First Step

The first step in classifying a pattern is implemented by
histograms or frequency distributions of the individual fea-
tures xi that make up a pattern's vector. To form the histo-
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