A POLYNOMIAL-BASED DIVISION ALGORITHM
Robert Higglund, Per Lowenborg, and Mark Vesterbacka
Department of Electrical Engineering, Linkoping University, SE-581 83 Linkoping, Sweden
roberth@isy.liu.se, peri@isy.liu.se, and markv@isy.liu.se

ABSTRACT

A polynomial-based division algorithm and a corresponding
hardware structure are proposed. The proposed algorithm is
shown to be competitive to other conventional algorithms like the
Newton-Raphson algorithm for up to about 32 bits accuracy. For
example, using Newton-Raphson with less than 12 bits accuracy
of the initial approximation, requires 33% more general multipli-
cations than the proposed algorithm, in order to achieve 24 bits
accuracy.

1. INTRODUCTION

Division is an important operation in digital signal process-
ing. However, it is more costly in terms of computational com-
plexity and latency compared with multiplication and addition.
Besides direct table look-up techniques, which are practical for
low accuracy division, most division algorithms rely on recursion
with relatively complex operations involved in the loop and,
hence, the latency tends to be high [1], [2].

Many recursive division algorithms have been proposed.
Some of them rely on subtractive methods to calculate the quo-
tient, producing a linear convergence of one or a few bits in each
iteration. The cost in terms of area and computational complexity
of such algorithms is low but due to the large number of iterations
required, the latency becomes high. To achieve lower latency,
division algorithms that utilize multiplication can be used. Exam-
ples of such algorithms are the well known Newton-Raphson
algorithm and algorithms using series expansion such as Gold-
schmidt’s algorithm [1]. These methods converge quadratically
towards the quotient when the number of iterations is increased.

In this paper an algorithm for approximating 1/X is proposed.
The the algorithm is executed in two step. In the first step the
operand X is preprocessed to yield the intermediate result Y. In the
second step a polynomial approximation using X and Y is per-
formed yielding an approximation of 1/X. The algorithm produces
a fast linear convergence rate of, typically between, four to ten
bits for each multiplication used in the polynomial interpolation
step, depending on the granularity of the initial step producing ¥.
This convergence rate is faster than that of subtractive methods
but slower than the quadratic convergence rate of, e.g., the New-
ton-Raphson method. However as is illustrated in this paper, the
proposed method is competitive to the methods with quadratic
convergence for accuracy up to 32 bits, depending on the accu-
racy of the initial approximation. For more than 32 bits accuracy,
algorithms with quadratic convergence will perform better.

For lower resolution the proposed algorithm can result in a
lower latency compared with, e.g., the Newton-Raphson algo-
rithm. Another use of the proposed algorithm is to find an initial
approximation to other algorithms with faster convergence when

0-7803-7448-7/02/$17.00 ©2002 IEEE

2—I/M L

Figure 1. The function F(Z) = 1/Z.

higher accuracy is required.

Following this introduction the approximation of 1/X is
derived in Section 2. In Section 3, implementation aspects are dis-
cussed and Section 4 shows some numerical examples.

2. DERIVATION OF THE APPROXIMATION
In order to derive the 1/X approximation, we start by consider-
ing the real valued function F(Z), defined as

F(Z)=%, 1<Z<21M a)

where M > 0 is an integer constant. The function F(Z) is plotted in
Fig. 1. Next consider a polynomial P(Z) of order N that approxi-
mates F(Z) according to
N
P(Z)= Y, p;Z/=F(Z) @
j=0

The polynomial coefficients p; can be chosen in numerous ways.
For example, P(Z) could describe a series expansion of F(Z)
around some specific point belonging to the interval
1<Z<2VM_ P(Z) could also be found by minimizing some
error criteria such as the Chebychev norm error, i.e., solving the
optimization problem

min € = max|P(Z)-F(Z), 1£Z<2l/M

p; &)
The approximation error that is made when substituting F(Z) with
P(Z) will depend on the choice of polynomial coefficients in P(Z),
but it will also in general depend on the length of the interval
1£Z<2VM 'je., on the constant M. For example, choosing N =
1 with pg and p; such that P(1) =1 and PQVMy = 2-1M wji]l
define a linear approximation with a maximum approximation
error Ep,, = (1-2712M)2 occurring at Z = 21/2M),

In the followin%,we assume that the operand X belongs to the
interval 1<X<2"7, where W; is a constant. This can be
achieved by scaling with a power-of-two factor. In a fixed-point
implementation, W, could represent the number of bits used to

III - 571

describe an integer X. In Appendix 1 the following Lemma is
shown:
Lemma 1:Let Z = X - Y(X), where Y(X) is defined as

Y(X)=27UM, iIM< X <2t 1)/M @
i=0,1,..,W;M-1
Further define a polynomial D(X; ¥) according to
DX, ¥) = Y(X)P[X - Y(X)]

N

. . 5

= ZPJ.Y(X)(I“)XJ ®
ji=0

If P(Z) approximates F(Z) such that |P(Z)-F(Z)|<¢e then
D(X,Y) approximates 1/X on 12X< 2%4 with
ID(X, Y)-1/X]<e
O

Using Lemma 1 an approximation of 1/X with an absolute
approximation error less than € is achieved by the polynomial
D(X, Y), defined for 1 X< 2% Further the coefficients of
D(X, Y) are identical to those of P(Z) and are found from the
approximation problem (2). If the function Y(X) can be achieved
with sufficient accuracy, the approximation accuracy of D(X, Y) is
as least as large as the approximation accuracy of P(Z) in (3).

The question now arises how to produce the function Y(X)
in (4). This will be accomplished by the use of an elementary
function Sy(X) defined as

S,(X) = 9~Liog,(0)]

° o , Q)

=27, 2igXx<20*D),i>0
The reason for considering Sy(X) is that it can easily and effi-
ciently be implemented in hardware. In the following it is shown
how Y(X) is selected using So(X). The proof is given in Appendix
1.
Lemma 2: Y(X) can be constructed as

M-1
Y(X)=d z b8y (b,.X) ©)
k=0
with S(X) according to (6),
d=2UM_}| ®)
and
bp=2"M k=01,2,..,M-1 ©)

O

3. PROPOSED IMPLEMENTATION

The proposed implementation of the division algorithm is
shown in Fig. 2 where the constants c;, is equal to db;. Carry-save
arithmetic can be used to achieve low latency in the multiplica-
tions by the constants by, the sum ¥(X) and inside the building
block YP(XY).

With the choice of Sy(X) as in (6), Sp(X) can be efficiently
implemented as shown in Fig. 3. The output from Sy(b;X) is a
W,+1-bit binary number assuming that by is defined as in (9).
So(X) can be realized by the Boolean expressions z;.; = OR(x;, z))
with z3 =0, and Sy, = AND(x;, NOT(z))), where x; are bits of
the input word X, z; are bits of the intermediate word Z, and

Figure 2. Implementation of the division algorithm.

&

&

sWd'j

Figure 3. Implementation of Sy(X)

cl|c,j
So) 51 SW,,J SWd+J
€kj Ckj+1 Ckjpw, Crjirw

Figure 4. Implementation of bit j of the multiplexer realizing

CSo(X)-

Sy, are bits of the output word S;. The least significant bits is
x0, 2g, and sy, ;.

To reduce the amount of hardware, multiple-constant tech-
niques [3] can be used to realize by. Furthermore, since Sy(X) only
attains powers of two, the multiplication of the constants ¢; in
Fig. 2 can be realized as a W +1:1 multiplexer for each output bit
of §4(X) as shown in Fig. 4.

The implementation of YP(XY) can for example be imple-
mented as follows.

1) Use one general multiplier to multiply X and Y.

2) Compute (XY),, i = 2,3,.., N with N-1 general mul-
tipliers.

3) Evaluate P(XY). Only multiplications by constants are
needed.

4) Multiply Y and P(XY) using one general multiplier.

This implementation of the polynomial utilizes N+1 general mul-
tipliers in sequence to generate an Nth order polynomial approxi-
mation of 1/X.

4. NUMERICAL EXAMPLES :
In this section numerical examples are given that illustrate th
properties of the proposed algorithm. Three cases are considered.
In all three cases a polynomial P(Z) is selected that interpolates
F(Z) in such a way that (3) is minimized with equiripple maxi-
mum errors €. Further, the input signal X is assumed to be repre-
sented as a fixed point binary integer of wordlength #;==12. One

IIT - 572

could for some applications expect the number of bits used to rep-
resent the input data to be equal to the number of bits used to rep-
resent the output data. This case is not considered here for
practical reasons due to the vast number of possible input combi-
nations using for example W, = 32. It should be noted that when
non-integer values, X 2 1 are considered the approximation error
is at most € according to Lemma 1. However when X is an integer
the maximum approximation error is usually much smaller than &
since the points of maximum approximation error of D(X,Y) are
non-integers, in general. Also, due to Lemma 1, the approxima-
tion error decreases with |Y(X)| as X increases. The achievable
accuracy using, for example W ; = 32 could therefore be lower
(but still higher than &) than what can be achieved with W; = 12,
but in practice the difference would be small if noticeable at all.
The three cases studied are:

Case I: N=1, M=41.&= 7.08x10™°

po = 1.983236, p; =-0.983236

Case2: N=2, M=40. g = 2.49x10"
Po=2.974154, p, =—2.948458, py = 0.974303

Case3:N=3,M=41.¢=876x10"°
Po = 3.966384, p; = -5.899493, p, = 3.899834,
3 =-0.966724

Figure S shows the accuracy that is achieved for different pol-
ynomial orders N as a function of the number of parallel branches
M. Both the minimum accuracy guaranteed to be achieved as well
as the accuracy for an integer valued X with W, = 12 is shown. It
can be seen that the maximum approximation error for Case 1 is
9.07x10°7° corresponding to 16.46 bits, The corresponding val-
ues for Case 2 and Case 3 are 4.30x10™° corresponding to 24.17
bits and 1.27x107*° corresponding to 32.59 bits, respectively.

With P(Z) of order N the number of general multiplications
needed in D(X,Y), besides the N+1 multiplications for the fixed
coefficients py, py,.., py is N+1. The computational cost and
latency for a multiplication where one input is fixed can be sub-
stantially reduced compared with that of a general multiplication.
Therefore the number of general multiplications needed to pro-
duce the output is used as a relevant measure of implementation
cost. Other measures could be total latency, power consumption
or die area required to achieve a certain accuracy. However, since
such measures are hard to utilize without thoroughly specifying
the hardware on a transistor level, the number of general multipli-
cations is used in this paper. Thus, the number of general multipli-
cation for Case 1, Case 2, and Case 3 are 2, 3 and, 4, respectively.

The Newton-Raphson algorithm starts with an initial approxi-
mation of 1/X corresponding to a certain number of bits. This ini-
tial approximation is usually found from tabulated values. Then
the accuracy is improved by an iterative procedure. For each itera-
tion the execution of 2 general multiplications needs to be per-
formed. To achieve 32 bits of accuracy with Newton-Raphson
would require 2 iterations (4 general multiplications) with 27
addresses. To achieve 24 bits of accuracy one would need 1 itera-
tion and 2!2 addresses or 2 iterations and 25 addresses. 16 bits is
achieved with 1 iteration and 28 addresses. The proposed method
could therefore be advantageous in terms of, e.g. reduced latency,
for 24 bit accuracy since it requires the implementation one less
general multiplication (Case 2).

1r-573

H
[y
1
y

T T

$

w
W
T

(%3
=3
T

4
(=3
T
x
0

Minimum accuracy [bits]
3
-

M x
X x Xy %X
X oy xX, XN XTTx X

15},0 x o PR e T P oO0000O0000000000
.
102° « E
xxo
x” ¢
sk, , , ‘ .]
10 20 30 40 50 60

Number of parallel branches M

Figure 5. Minimum accuracy in bits as a function of the
number of branches M for the three cases. (Lower plot N=1
and upper plot N = 4.) Plots with ‘0’ show the minimum
achievable accuracy, €. Plots with ‘x” shows the achieved
accuracy for an integer valued X with #,;= 12.

T T T T T

‘w8]
2
2 6x 1
£
g‘n X]
32((’ + + 1
<0 o

5 6 9 10

7 8
Number of coefficient bits in bk

Figure 6. Number of coefficient bits required for by for the
three different cases. Case 1 is plotted as ‘0’, Case 2 as ‘x’,
and Case 3 as ‘+’, respectively.

4 . , ;
)
£, |
s 1
e
NE '
gl 1
<0Lf X i &

15 16 17 18 19

Number of coefficient bits in <,

Figure 7. Number of coefficient bits required for c;, for the

three different cases. Case 1 is plotted as ‘0’, Case 2 as ‘x’,
and Case 3 as ‘+, respectively.

ok M]

.éxo « + .

g x

2 + 0+

g‘Sr - + 1

x +

1) x +

o

<0P Q oo b & L
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Number of coefficient bitsin P(Z)

Figure 8. Number of coefficient bits required for the poly-
nomial coefficients p; for the three different cases. Case 1 is
plotted as ‘0’, Case Jas ‘x’, and Case 3 as ‘+’, respectively.

This is provided that the computational cost and latency of com-
puting ¥, requiring 40 parallel branches, is not too high compared
to that of achieving 5 initial bits for the Newton-Raphson algo-
rithm. Considering 16 bits of accuracy, 8 bit initial solution is
required using Newton-Raphson with 2 general multiplications. In
Case 1, 16 bits is achieved with 2 general multiplications and 41
parallel branches.

Figure 6 and 7 show the loss in accuracy as a function of the
number of coefficient bits for the coefficients b; and c;. It can be
seen that between 7 to 9 and 16 to 18 bits are required for b;, and
¢;, respectively, in order to preserve the accuracy. In Fig. 8 the
accuracy loss for using a finite number of bits in the polynomial
coefficients of P(Z2) is plotted. It can be seen that typically a few
more bits than the required accuracy of the output is required.

5. CONCLUSION

A polynomial-based division algorithm and a corresponding
hardware structure are proposed. The algorithm consists of two
steps, a preceding step which preprocess the input and a second
step where a polynomial approximation is performed. Any kind of
interpolation or series expansion can be used. The accuracy
attained is determined by the granularity of the preceding step as
well as the accuracy of the final polynomial approximation.
Numerical examples illustrates the properties of the proposed
algorithm including effects of finite coefficient wordlength. The
proposed method can be competitive to other conventional
method like the Newton-Raphson algoritm for up to about 32 bits
of accuracy. For higher accuracy the proposed algorithm can be
used to create an initial solution to other conventional algorithms.

APPENDIX 1

Proof of Lemma 1: With 1 <Z <2U/M and Y > 0 according
to (4), F(ZIY) = YIZ = 1/X, for 2{/M < X < 2G+U/M where =
0,1,... WM-1. Thatis F(X)=1/Xfor 1 < X< 2%,

Further, since |P[XY(X)]-1/[XY(X)]l <& the inequality
[Y(OPLXY (X)) - 1/X] <&]Y(X)] <& holds.

Proof of Lemma 2: The function Sy(b;X) equals
So(bX) = 27, 2i/b,SX<2t1/b,,i20 (10)

with b, according to (9). The right hand side of (7) can be
expressed as

M-1
RHS = d 2 {2KMp=i 2i-k/M < X < 20+ 1-k/M)y
k=0
M-1-1 k I M-l K
- M
d2‘[22 +3 2 2}
- k=0 k=M-1 an

i+i i+1+_l i=0 1 w 1
2 M<x<2 M,{'" e e
1=0,1,..,M~1

-GitT)ay, |
2 bz

PRGN
1

i 1 i+t i+)
2/, 27, 2, 270,

Figure 9. Creating Y(X) from Sy(X).

The equation (11) can be found by sketching the individual terms
in the summation which are shown, for the case where we have 3
branches, in Fig.9. Note that the normalization constant d,
defined as in (8), is not included.

From Fig. 9 we can compute the function Y(X) in the inter-
val 2//by < X <2i*1/by according to

[dZi 2 b 2i 2i+1
- =<
z o l’o—X< b,
k=0
1
| 1 i+l 2i+1
Y(X) = § d2 +2by | S—<X<T— 2
Xy =14 a2 Zobk Q:bz), 7 <X< 5 (12)
Ay i,)2 2i+1
d2 b0+§2bk,—31—5X< o
k=1

Equation (11) can be rewritten to (12) by using b, from (9). Fur-
ther simplification of (11) yields

2-IM, 2jIM g X < 2G+1V/M
J=0,1,.., WM-1

RHS = (13)

where iM +] has been substituted by ;. The result of (13) is equal
to (4) and thereby the equality in (7) holds.

REFERENCES

[1] Oberman, S.F. and Flynn, M.J.: ‘Division algorithms and implemen-
tations,’ JEEE Trans. on Computers, Vol. 46, No. 8, Aug. 1997, pp.
833-854.

[2] Soderquist, P. and Leeser, M.: ‘Division and square root choosing
the right implementation,” JEEE Micro, Vol. 17, No. 4, July-Aug.
1997, pp. 56-66.

[3] Dempster A.G. and Macleod M.D: ‘Use of minimum-adder multi-
plier blocks in FIR digital filters,’ JEEE Trans. on Circuits and Sys-
tems 11, 42, 1995, pp. 569-577.

IIT - 574

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

