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Application of Continued Fractions for Fast
Evaluation of Certain Functions
on a Digital Computer

AMNON BRACHA-BARAK

Abstract-The purpose of this paper is to develop a method for
evaluation of certain elementary functions on a digital computer by the
use of continued fractions. The time required for this evaluation is
drastically reduced by using “short” operations like shift and add,
instead of multiplications. Functional consistency is the most impoz-
tant factor that allows the expansion of a function into a continued
fraction. Several cases are discussed; in particular the solution of the
quadratic equation is discussed in more detail to demonstrate the
convergence of the method.

Index Terms—Bilinear transformation, binary arithmetic, continued
fractions, quadratic equation, Riccati equation, selection rules.

I. INTRODUCTION

HE idea of using continued fraction representations for
generating a solution to a limited class of quadratics was
first introduced by Robertson [3].
Consider the finite continued fraction with k partial
numerators p; and k partial denominators ¢; = 1, 2, -, k,
whose value is 4, /By, ie.,

4, p
_B—I;_ 4, *p,
4, *p;
q;+

1.1

+ 1
q
A standard way of writing (1.1) is

Ak _P1 P2 P3 P
By q,taqtqst—+tqy

A, and B, are determined from the recursions:

A, =qA, | +tpA, ,
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Bi = qui—l + plB‘._2 i=2,3,"k, (1.2)
with initial values:
Ao =0 A =p;
(1.3)
Bo =1 Bl =dq.

It is clear that 4, and B, can be separately and simultaneously
determined in two binary arithmetic units in k¥ — 1 addition
times if the p; and gq; are chosen to be simple in the binary
sense.

The digit set for p; and g; for the purposes of this paper is

i1 } . Since an arithmetic unit of a digital computer is used,
all the approximations in this paper are up to a finite number
of binary digits. We will therefore define binary values as all
the values that a given binary arithmetic unit can assume. It
will be proved in Section II that the continued fraction 4, /By
assumes in the limit all the binary values over the interval [(\/2
— 1)/2, V/2]. This range includes [5, 1], the range of
normalized floating point binary fractions. This property
indicates that a suitable continued fraction representation
exists, such that conversion to conventional binary can be
achieved by repetitive use of two binary adders in parallel,
followed by a division to determine the quotient 4, /B;.

The main reason for selecting p;, g; E{%, 1},i= 1,2,,is
that the four multiplicative operations required for each
iteration in (1.2) are reduced to “shift” and “add” operations.
These operations will be called “short™ operations throughout
this paper, mainly because the time required to perform these
operations is shorter than the time required to perform “long”
operations, e.g., multiplication, division.

The purpose of this paper is to develop algorithms for fast
evaluation of certain elementary functions by using “short”
operations in several registers simultaneously. In order to be
able to do so we make use of functional consistency which will
be defined in Section II.

Determination of selection rules for p and ¢ in each
iteration is an important step for the development of the
algorithm. Selection rules were extensively studied by Trivedi
[5], where a complete set of such rules were developed for the
quadratic equation. The set of selection rules that is used in
this paper is described in Section III.

In Section IV, we generalize our results to a higher degree
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polynomial, and in Section V, we show two more cases where
our analysis is applicable.

II. PRELIMINARIES

In this section we develop some concepts of continued
fractions that will be used throughout this paper.

The general continued fraction will be regarded as a
sequence of bilinear transformations of the form:

Py

f,=—""—7T——"", k=1,2,-, 2.1
k qk +fk+1
where f} (x) is a function of x.
p
1 =& 72 __f.’_"___ (2.2
q, tqy+ -+ qn +fn+l
A +f A
_n_ "n¥l' " n-1 n=1,2,, (2.3)

Bn +fn+an—1 ’

where the functions 4, and B, satisfy the recursion (1.2) with
the initial values given by (1.3).

Let fi (x) = F(x, 1) be defined over the interval [m, M].We
will expand fj (x) into a continued fraction such as (2.1) and
require that the choice of p; and q; be made such that f; (x)
= F(x,2) is also defined over [m, M]. Since fo(x) is a
continued fraction we can use the same rules of selection for
p2andq,.

We now define the term functional consistency.

Definition: For a substitution of the form

Py

—— k=1,2,~
Qe ¥ 41 ®)

f,G)=

where f; (x) = F(k, x) is a function of k and x, p; and g, are
constants; if f;(x) and f; ,,(x) are defined over the same
interval, then we have functional consistency.

We now give a general proof of convergence for continued
fractions with positive elements. Functional consistency will
be required in order to assure that only one set of selection
rules for p and g are used.

Theorem I: Let

fe=Aol B P
G ta,tta, %)

be the continued fraction expansion of f;(x) with positive
elements, p and g. Assume that functional consistency exists
for all fi(x),i=1, 2, . Let 4, /B, be the nth approximation
to f; (x).

Then for every € > 0, there exists N, such that for all >
N,
A

- ’n
8,= B
n

n

<e.

4_
B

Proof: We will study relations between §,,,,8,, _, and
83n+1> 82,1, because of the well-known property that in
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continued fractions with positive elements, the convergents of
even order generate a monotonically increasing sequence,
which has a limit, and the odd convergents generate a
monotonically decreasing sequence with a limit. The value of
the continued fraction is greater than that of any of its even
convergents and less than that of any of its odd convergents

(11, [2].

Define
8 )
— _2n — _2n*l =
Tzn_a ’ T2n+1_5 » n=1,2,,
2n-2 2n-1

then if we prove that for all n, T,, < 1, it will follow that the
limit of convergents of even order and the limit of convergents
of odd order are equal to the value of the continued fraction.
We note that the values in the numerator and denumerator of
T have equal signs; therefore the absolute value sign can be
omitted.

We have [2,ch. 1]:

A/B—A, /B,
T =
n AB—A, ,/B, ,
+2
_ (_l)n p1p2 pnpn+1/BB"
-v'p,p, ~p,_,4,,,4, *P,.,)/BB,_,
— pn ) pn+l . Bn—2
qn+l ) qn +pn+l Bn
Since Ppyr = fn+l = pn/fn T 4p 41 T 1 and Bn =

4,8, _, +p,B,_,,we conclude that:

_ —— f
T = pn qnfn - pn "
" n—1 qn Bn—l
p, +q 1+ —
" " Bn-2 pn Bn—-2

All the quantities and 7, are positive, T,, < 1, and the
result follows. Q.E.D.

The assumption in Theorem 1 is that an algorithm for
finding p and q in each step exists. In the remaining part of
this section we will show one such algorithm.

First, we find extreme values, m and M, for a continued
fraction of the form (1.1).

Theorem 2: Let the k approximant to f; (x) be

Ae_p P 129
By 4y + gy ++ g

and let p;, qie{i, l},i= 1,2,
Then we have in the limit:

M = max f, (x) = max lim 4,/B, =2
k— oo
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m=min f, (x) =minlim 4, /B, = (/2—1)/2.
Kk—> o

Proof: For the maximum value M we have,

maxp,

min p,

ming, + maxgq, +M

We substitute now the maximum and minimum values for p
and g and solve for M. The result is M? = 2, and since the first
and second convergents [1, theorem 154] are positive, it
follows that M = /2.

Similarly we have for m:

min p, maxp,

max ¢, + ming, +m )

m is positive and can be found by solving the quadratic
equation

4m? +4m—1=0.

The result is m = (\/5 — 1)/2. Note that in general, if all p and
q are positive, so are m and M. Q.E.D.

We will use now the analysis of Theorem 1 to study the rate
of convergence, by finding an upper bound to T, :

q
1-—>Ff
p, "
maxTn=max
1+ n n—1
n Bn—2

q _
min =" £, =4 minf, = Y2~ = 0.1035;
n
q B _ B, _
min (—" -Ll><§+,min3" L
pn n-—-2 n—-2

Bn—l =q + pn—l pn—2 fl

Bn—2 n-l qn—z + qn—a Tt ql
Therefore,

. Bn—l 1 \/2_'—'1 \/5

mnp— STt o=

Finally we have,
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1“\/5—1

4
maxTn< V2
1+

3—/2
_3=Vv2 =~0.2929.
4+\/§

Therefore, for n sufficiently large, the absolute error §,, is
reduced by a factor which is less than or equal to 0.2929 for
each pair of additional iterations.

We will prove now that all values, y, y € [m, M], can be
approximated by a continued fraction of the form (1.1). In
particular we show a method, also primitive, for selecting p
and ¢q in each step.

Algorithm 1: Let y be a given real constant, y € [m, M].
Then there exists a continued fraction x, of the form (1.1)
with p,q € {%, 1} , such that in the limit x = y.

We first note that in practice we approximate y with only a
finite number of steps and by Theorem 1, if such x exists, than
with a sufficient number of steps and given €, |y — x| <e.
Also note that y is a real constant that can be represented by a
binary computer.

In order to find x we define continued fractions x;, of
lengthi,i=1,2, .

L Py
a, + q, +~+ q;+0’

i

where 6 € {mM}

We start with i = 1, and a given y in the interval [m, M].
Define x; = p; /(g1 + 6), and substitute all possible values for
(®, g, 0) in the following order: (}, 1,m); (5, 1,M); (3, %, m);
G, 5. M);(1,1,m); (1, 1, M); (1, 5, m) and (1, 5, M). These
values when substituted in x; define four subintervals over [m,
M]. Simple analysis shows that the subintervals cover the
entire interval [m, M], with some regions of overlap between
each consecutive subintervals. The result is that y is included
in at least one such subinterval, and therefore we select the
corresponding p and q as p; and q, . We increase i by one and
study x, = p1/q, + pa2/q, + 0, where now p; and g, are
fixed and we substitute all values for p,, ¢,, and 6. Again
there will be at least one subinterval which will contain y and
we can select p, and ¢, . Our process can be carried now for
increasing values of 7 until a given precision is reached.

Algorithm 1 is inefficient because there are several multipli-

cation and division operations in each step. In the next section

we develop a more efficient set of selection rules for p and g.

III. SOLUTION OF @x? +bx—c=0

We now show how to solve a quadratic equation with two
distinct roots of opposite signs and in particular, a square root
problem.

Let

a1x12 +b1x1 -1 =0 (31)
be a given quadratic equation, @; and ¢; are positive and b;
is a nonnegative constant.

The substitution we use is of the form
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< (32)
X, =—7— .
ogitxg,
where
ppa, €441} i=1,2,~
For the kth step we have
2
p 14
a, ——k—2 +b, ——# —¢, =0 k=12,
@ +%4y) e T Xgr1

or
X T QA b Ix L F o —ap]
—b.pq,=0.
The recursion that follows is
M=
Aoy sy = 26,4, —bypy (3.3)
A, = —cqu2 +@p, +bap, k=1,2,-

where A is a nonzero constant that can be used for
normalization.
The resulting quadratic equation is

24+b,..x

K41 c =0.

K+ G4)

Yes1% k41 k+1
This method of approximating the solution of (3.1) can be
used if we develop a technique for selecting p, and g, , k =1,
2, -, from the coefficients of the kth quadratic equation, i.e.,
a;, by,and ¢ .
Using the results of Section II it can be seen that functional
consistency of the procedure can be achieved in each step if

m<x <M k=12 3.5

By imposing condition (3.5) we need only one set of
selection rules for p;, and q;, k = 1, 2, - for the range [m,
M].

We develop now a set of selection rules for p; and g, k =
1,2, -, for the quadratic equation.

We write below a version of (3.1).
Let

C1

= bl +a1x1 (36)

X1

where it is assumed that ¢; >0,b; 20,4, >0, and m <x; <
M.
We will find p; and g, such that

D1
T oq tx;

X1 3.7

where m <x, <Mandp,, ¢ E{%, 1} .
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Clearly, we have four possibilities, and for each pair of p,
and q; we get a different x, .

We take now the inverse approach. We assume that
condition (3.5) exists for x,, and find the range of x, for
each pair of p; and gq,. We start with a pair p; = 1and q; =
3. From (3.7) we have for x, =+/2 (lower bound for x;)

1 222 -1
X1 > = @v2-1) =0.522, (3.8)
}+2
and forx, = /2 — 1)/2 (upper bound for x;)
1
xX; < =42 =1414. 39
L+ V21

2

The result is that for x; in the range defined by (3.8)3.9),
we can choose p; = 1 and q; = %. Since x; is the unknown we
use (3.6) in order to find the allowable range for p; = 1 and
q1 =1%. :

We have

1414 > =0.522. (3.10)

bl +a1x1

Since (3.10) is possible for any x; in the range (3.8)43.9), we
conclude that for the range

0.522b; +0.522%a, <c, <V2by +2a;  (3.11)
we choose p; =1 and g; =%.
Similarly we write below the ranges for each of the

remaining possibilities.
For

W2—1by + V2 —1)%a; <e¢; <2(0/2 - Dby
+4W2 - 1?ay,

2
W2-1 b, + (2‘/75“1) @ <o <‘/5 b, +%

7 2 i,

choosep; = 1,9, =1; (3.12)

choose p; =%, q1 =1%; (3.13)

_1\2
ﬁz‘_lbl + (‘/52 1) a <ep <2 -1by

+ (/2 —1)%a,, choosep; =%, 41 =1. (3.14)

The result is that the entire range [m, M] is divided into
four sections, (3.11){3.14), and for each section we can
choose a pair of p; and ¢, such that condition (3.5) for x, be
satisfied.

Clearly, if we have to do two multiplications for each
selection range in order to find p; and q;, our procedure is
inefficient. In the analysis that follows we make use of an
important feature of the ranges defined in (3.11)<3.14); this is
the existence of overlapping between any two consecutive
ranges.
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This means that in the overlap regions we have a freedom of
selecting the pairs p, and q; between the two sets of such
constants. We will use this freedom in order to simplify our
selection algorithm by defining a line of selection inside the
overlap region such that the coefficients of », and a, will be
simple in the binary sense.

Before we define the selection lines, we note that rate of
convergence of the method was found to be strongly
dependent on these lines. The first set of selection lines can be
the upper lines in each range, for

¢y —0.414b, <0.1713a,
¢, —0.707b, <0.5q44
c1 —0.828b; <0.6864,

thenp; =%, 1 = 1;
thenp; =4, 4, =1%;
thenp; =1,q;, =1;
otherwise p; = 1,4, =4 . (3.15)

Experimentally, this set of rules gave the best rate of
convergence. Although written for (3.1), we see that it is valid
for (3.4) for the general subscript k.

To simplify the constants that appear in (3.15) we use
simple binary constants with at most two nonzero binary
digits.

We have, for (3.4) withk =1, 2, -,

- =1 g =1
¢, —0.375b, <0.15625a, thenp, =4%,q, = 1;

— = =1.
¢, —0.625b, <0.5a, thenp, =4, q, =4;

C 0.75bk <0.625q, thenpk =1l,q, =1

otherwise p, =1,q, =% . (3.16)

These selection rules involve only short operations.

The algorithm described in this section involves the
following steps, for the k iterations, starting with k = 1.

Step 1: Equation (3.4) is given, then use selection rules
(3.16) to find p; and q,..

Step 2: Use the results of Step 1 and iterate on (1.2).

Step 3: Use the recursion (3.3) and find (3.4) fork + 1.

Step 4: Check if A, /B, reached the required precision.
This check can be done only once if the number of iterations
required to achieve certain precision is known. The analysis
above for the rate of convergence gives the necessary
information ‘to find such numbers. If the required precision is
not reached proceed to Step 1 fork + 1.

Theorem 1 of the last section assures convergence to the
solution. Table I is a numerical example.

IV. SOLUTION OF A HIGHER DEGREE POLYNOMIAL

We now show how one solution of the cubic equation can
be found by the method of Section III.
Let

a1x13 ‘|‘b1.7€1‘2 + C1X1 —dl =0

“.1)

be a given cubic equation. We use the substitution (3.2) and
we get for the kth step:
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or
3 - 2 2 _
dx.,..~+ (3quk ckpk)karl +(3d,q, 2ckpqu
_ 2 _ 3 2 2 3y
bl ) Xpsy —@py” + byp a0 q, " —d,q,7)=0.

The recursion relations between the coefficients of the kth
cubic equation and the (k + 1)st cubic equation are, therefore,

Gy =4,

b =3d,q, —c,p

k+1 ¥k  “kPk 42)
_ 2 _ _ 2
Crrr = 3quk 2ckpqu bkpk

_ 3 2 2 _ 3 =
Ay =qP” *hpla topa,” —dq,” k=12,
The resulting cubic equation is

3+b,..x,_ 2+4¢

k+1%k+1 dpyy =0

Qe r1Xg+1 k+1%k+1 ~ G

For the selection rules we use an analysis similar to that of
Section III. First observe that the bounds given in (3.8)43.9)
for the case p =1 and ¢ = % are valid. Therefore, we can write
an expression, similar to (3.10) for the cubic equation:

dk
N>

2
a,x;” +b x +tec

>0.522. 4.3)

The result is that for
0.522¢; +0.522%b; + 0.522%a; <d; </2¢; + 2b; + 2N/2a,,

we choose p; = 1 and g, =%.
For the remaining cases we have

W2 -Der + W2 - 1°by + /2 - 1)%ay <d,
<20W2 = ey + 42 — 1)%b, +8(W/2 - 1)°a,
choose p; = 1,q, =1;

_ _ 2 _ 3
s (s ()"

<§c +

1 4

2
%bl-l-%al

-

choose py =%,q, = 4%;



306 IEEE TRANSACTIONS ON COMPUTERS, MARCH 1974
TABLE I
Solution of (x-0.4)(x+C.5) =C

k 2 oy x Py % Ay By A/B Error

1 0.1022000 01 0,.,100320) 00 J.200002D 20 J.5 0.5 0.5000000 00 3.533023D 2) 0.1003320000023222330 01 -0,.,600003D0 0)
2 0.200000D0 00 J.1500007 20 0.225000) 00 1.3 1.3 0.502200D0 23 3J.1532323d 21 J.3333333333333333) 00 0.666667D-01
3 0.2252000 00 0.3000007 00 2.125000D0 00 0.5 1.0 0.750000N0 00 0J.175000D 01 0.42857142857142860D 00 -0.285714D-01
% 0.1250000 00 J3.100020) 00 2.8125002-01 0.5 0.5 02.625000" 00 2.162502) J1 13.3845153846153846) 0J) 0.1538460-01
5 0.R125000-01 0.3125009-01 0.3593757-01 0.5 0.5 0.587500D 2) 0J.158752D 0Ol J.4074074074074274D 00 -0.740741D-02
6 0.359375D0-01 0.2031253-01 0.1314057-01 2.5 0.5 0.556250) 02 J3.155%25) Ol 2.3362264150943335) J) 3.377358D0-02
7 0.1914060-01 D0.B984373-02 0.9277347-02 3.5 0.5 0.671875D 00 0.167188D 0Ol J.4018631588785046D 00 -0,1869160-02
8 03.327734D-22 0.4785160-02 0.4711917-02 0.5 0.5 0.6640630 00 J.1554235) 31 0.3990510328638497) 20 0.,938967D0-03
3 2.471191D0-02 0,2219334D-02 3.233765D-02 0.5 0.5 0.567959D 00 DJ.166797) OI 0.420453336407494140 00 -0.468384D-03
12 0.233755D-02 D.1177983-02 0.1173400-02 3.5 0.5 0.565015D 22 J.15552320 01 2.3337655334114888) 00 0.2344670-03
11 0.1173400-02 J.584412D-03 0.5855562-03 3.5 0.5 0.665992) 00 D.1665330 01 J2.4001171645152853n 232 -0.117165D-03
12 0.585555D-03 03.2933503-03 J.293064)-03 2.5 0.5 0.666504D0 00 0.1556523 01 J.3999414305273952) 20 0.585995D-0¢4
13 0.292064ND-03 0.146389D-03 J.146461Nn=-03 0.5 0.5 0.566748D 00 2,156675) 01 0.40002329544455849 00 -0.292954D-04
14 0.1%45451N-03 2,7325500-2% 3.732481)-34 2.5 0.5 0,.6665260 33 J3.155563) J1. 2,3399853512048534) D) 0.1454%88D-04
15 0.732481D-04 0.3661510-04 0J.366194D-04 3,5 0.5 0.666587D 00 JI.1656630 31 0.,4000073241233441) 00 -0.732413D0-05
15 0.366195ND-0%4 J.183120D0-34 0J.1831097-04 3.5 0.5 0.66665697 00 2.165%55D0 Il 3.33999533785827310 239 3.366213D0-05
17 0.1831090-04 D2.9154903-05 J.91551872-05 0.5 0.5 0.565572D 0) J.165567) 31 0,4300018310490936) 20 -0.1831050-05
18 0.915518D0-05 0.457773D0-05 J.457765D-05 0.5 0.5 0.666664N 03 2.155555D0 J1 2.39993908%4712533) 00 0.915529D0-06
19 2.457766N-05 0.22888097-05 0.2788R812-05 3.5 0.5 0,556558D 00 0J.1665577 31 0.4002204577533226) 20 -0.457763D-06
20 0.228B881D-05 0.1144422-05 0.114441D-05 3.5 0.5 0,.6665566D 23 J2.156667) Il 0.3999997711182757) 30 0.2288820-06
21 J.1164441N0-05 0.5722332-06 0.5722047-06 0.5 0.5 0,666557TD 00 0J.165557D Ol 0.%4022221144408961) 20 -0.1144410-06
22 0.572204D-06 0.2B61332-06 J.286102N-05 2.5 0.5 0.666557D 03 J.15%567D J1 0.39999994277353550 00 0.572205D-07
23 D0.286102D0-05 0.1430517-06 J.143051)-06 0.5 0.5 0.565557D 22 JD.155557D 31 3.%3D02200286102281) 00 -0.286102D-07
24 0.1430510-06 0.7152562-07 0J.715256D0-07 0.5 0.5 0.666657D 00 2.155567) 0Ol 2.339993999856348849) 0) 0.1430510-07
25 0.715256D-07 0.3575283-07 J.357628)-07 0.5 0.5 0.665557D 20 2.1655467) 01 2.40002000715255732 00 -0.7152560-08
26 0.3575280D-07 0.1788142-37 0J.178814N-07 3.5 0.5 0.6655570 32 J.1565677 I1 2.3999999964237213) 09 0.3576280-08
27 0.1728140-07 2.894070N-08 3.8940702-09 3.5 0.5 0.666667D 00 0.1555679 J1 D,4%40022000178813939 50 -0.178814D-08
28 0.8940700D-08 0.%470350-28 02.447035D-08 0.5 0.5 0.666557D 00 2.1565670 01 0.3999999931059303) 02 0.8940730-09
29 0.%47035D-08 0.223517D0-08 02.2235173-08 J.5 0.5 0.666657D 00 J3.15655570 01 0,40000000044703%48) 30 -0.4470352-09
30 0.223517D-08 J.111759D0-08 0J.111759D-28 0.5 0.5 0.665557D 20 DJ.166667) 01 0.399999999776%825) I3 0.223517D0-09
31 0.111753D-08 0.5587343-09 0.5587943-09 3.5 0.5 0,5655570 22 2.15%567) 01 0.42002003011175873 J0 -0.111759D-09
22 0.558794D-09 0.279397D0-09 0.279397D-09 0.5 0.5 0.5666557D 02 J.166667D 01 0.39999999994412067 00 0.558794D-10
33 0.279337D0-09 J.139698D-09 0.139698)-09 J3.5 0.5 0.6666670 00 2.1655567D 01 2,4200200000279397) J2 -0.279397D0-10
364 0.1396983-09 0.698492D-10 J3.6984927-10 JI.5 3.5 0.665557D 30 02.166667) 0l 2.33993999999853302) 99 0.139538D-10
35 0.598492D-10 2.3492463-10 0.349245D0-10 0.5 0.5 0.666657D 00 J.165567D J1 0.40002000000638%49) 020 -0.698491)3-11
35 0.3492463-10 0.174523D-10 0.1746239-10 0.5 0.5 0.6665577 00 2.1555572 01 2.33999%93339355375) 00 0.349246D-11
37 0.174623D~10 0.873114)-11 02.8731150~11 2.5 0.5 0.665557D 2D DJ.16665672 31 0.4000000020017452D 20 -0.1745239-11
38 0,873116D-11 0.4365590-11 0.4365573-11 J.5 3.5 02.666557D 03 J.1555%57D J1 J43993399939391269) 00 0.A731210-12
33 0.43£557D-11 0.218277N0-11 0.2182790-11 3.5 0.5 0.665657D 02 J.166667D I1 0.420220002022%355D 230 -0.436554D-12
40 0.2182790-11 3.139141D0-11 0.12913323-11 3.5 3.5 0.6666570 00 2.155567) J1 3.3999999999997817) 20 9.2182840-12
41 0.109139D0-11 0.545683)-12 0.5457042-12 0.5 0.5 0.56556570 32 J.165657D 21 0.400000000022102319 00 -0.109135D0-12
42 8.5457064D-12 0.2728623-12 0.2728420-12 0.5 0.5 0.5665577 23 2.156567D J1 J.39999999999994%%) 20 0.5456750-13
43 0.272842N0-12 2.136411D-12 0.1364310-12 0.5 0.5 0.666557D 02 2.166657D 31 0.40000000002002732 00 -0.272837D-13
64 D.135431D-12 J2.682257D2-13 0.6820530-13 3.5 0.5 0.6665570 30 2.1565587D DIl 2.3999399939339854) J0 0.136419D0-13
45 0.6820530-13 0.36403926N0-13 02.3%41129D-13 0.5 0.5 0.6566657D 90 0.1666567D 01l 0.400000020022205%8) 20 -0.6813330-14
46 0.3611290-13 0.1706573-13 0.,1704620-13 2.5 0.5 0.666567D 30 DJ.155567D 21 2.39999999993339560 0D 0.341394D-14
47 0.,170462D-13 0.851287D-14 0.853333D-14 0.5 0.5 0.666657D 00 3.1656679 J1 0.4000000000320321 7Y 00 -0.170697D0-14
43 D.853333D-16 0.4275902-14 J.425644D-14 3.5 0.5 0.666557D 33 J.1656667D 01 0.399999993993333919 00 0.860423D-15
49  0.425644D-16¢ 0.211739)-14 0.2138452-14 3.5 0.5 0.666567D 30 2.156557D 21 0.4203000000000004) 00 -0.4302110-15
50 0.2138450-14 03,1079460-14% 02.105493N-14 0.5 0.5 0.665557D 2) 2.15656577 31 2.3999999999933998D 00 0.208167D-15

V2-1)\2 Vv2Z-1)\3
AT ) AT T s

<SW2-Da +W/2-1°b, + W2 - )%,
choose p, = 4 q,=1.

We are ready now to write a set of selection rules similar to
(3.15), i.e., the upper line in each range will be our selection
line:

d, —0.41401 —0.1713b, <0.071a, thenpl =%,q1 =1;
dy —0.707¢; —0.5h;  <0.35352; thenp, =3%,q, =%;
d; —0.828¢c; —0.686b; <0.5683z; thenp; =1,q, = 1;

otherwise p; =1,q; =% . 4.4

We note that as in (3.16) the constants which appear in
(4.4) can be simplified.

For the proof of convergence and the rate of convergence
we can use the analysis of Section I, and therefore we developed
a method to approximate one positive solution of a cubic
equation.

The procedure can be generalized now to
polynomials. The necessary steps are as follows.

higher degree

Step 1: To write the recursion for the coefficients of the
polynomial.

Step 2: To develop the selection rules by using an
argument similar to (3.10) and (4.3).

Step 3: To simplify the coefficients in the selection rules.

The result is an algorithm which always converges to one
positive solution. Table II is a numerical example.

V. RiccATI EQUATION

The main purpose of this section is to find the family of
functions for which bilinear transformations of the form (2.1)
can be used with functional consistency.

Consider the Riccati equation

fi'+tafit+bifi+te =0

where fi (x) is a function of the variable x, and a;, b, , and ¢;
are functions of x or constants. The property of this equation
as noted by Wynn [7] is that if the dependent variable f; is
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TABLE II
Solution of (x-0.6)(x+0.5)(x+0.9) =0
k o by . 4 Py %Y A B, Ak/Bk Error
1 0.1203D0 01 J.80002 0J -0.3903D 00 2J.27000 00 9.5 0.5 0.50007 32 2.52337 23 J.10200000333232322320 21 -0.43000 00
2 0.?2700) 00 0.6230N0 02 0.19752 00 J.14250 00 0.5 1.2 0.%0007 33 0.132330 21 3.52220020090233039 22 0.1200D 00
1 0,1425" 00 0.3288D 00 0.8200D-01 2.1400D 00 0.5 0.5 0.50000 00 0.75002 00 0.55566655656555650 3D -0.6667D-01
4 0,14007 00 0.1700D0 J0 -0.1713)-21 2.51410-01 2.5 0.5 0.50002 23 0.8752) 33 2J.5714285714285714D 00 0.2857)-01
5 J2.5141D-01 0.85720-01 0,4648D-02 J2.30189-01 0.5 0.5 0.52000 33 2J.8125D0 23 0.51538451538461540 00 -2.1538)-01
6 04301%0-01 0.4?94)-01 -0,11182-32 J.13950-31 0.5 0.5 0.5723D 0323 2.3433) 23 J.59259259259253250 ) 0.74079-02
7 0.1395D-01 0.2148D-01 0.2853N0-03 0J.72560D-02 0.5 0.5 0.50002 00 0.B2310" 3J) ).6J037735843056504D 22 -0.3774¢D-02
8 0.7256D-22 2.12742-01 -0.7957)-24 J.35577-02 0.5 0.5 0.50200 00 0.8353) 3) 0J.59813084112143530 ) 0.18690-02
9 2.35570-02 0.53710-02 0.1773D-04 J.1795D-02 0.5 0.5 0.50000 03 0.8320) 33 2,50093896713615020 00 -0.33920-03
10 2.1796N-02 0.26863-02 -0.4421D-05 0.83370-33 0.5 0.5 0.5023D 23 3,.,8343D0 23 J3.59395315153252585D 0J 0.46847-03
11 0.8937D9-03 0.1343D-02 0.1107D-05 0.%4480D0-03 0.5 0.5 0.50007 00 0.83300 20 0.5032344%45653%5111D0 J) -0.23450-03
12 0.44807-03 0.67140-23 -0.27650-0% 0.2237D-03 0.5 0.5 0.59000 00 0.3335D 20 0.5998828353837141D 00 0.11720-03
13 0.22372-03 0.33570-03 0.69152-07 0.11190-03 0.5 3.5 0.50000 00 0.83330D 33 0.52035859347252473 00 -0.5860N-04
14 0.1119D-03 0.1678D-03 -0.1728D-37 0.5594D-04 0.5 0.5 0.50000 00 0.8334) 30 0.59397070455544159 J) 0.29303D-04
15 0.5594D-04 0.8392D-04 0,4321)-08 0,2798D-04 0.5 0.5 0.50000 33 2.8233D 20 0.6000146437951365D I -0.14657-04
16 0.2798D-06 J,4196D-04 -0.1082ND-08 2.1399D-04 0.5 0.5 0.5203D 00 0.83330 23 0.53333267587036559n JJ 0.7324N-05
17 0.1399N-04 0.22980-04 0.2701D-09 J.6994D-05 0.5 0.5 0.5000D 23 0.8333D )0 0.5000036621317253D 2D -0.36620-05
18 0.6994D-05 0.10432-0& -0.,675209-10 0.34972-05 0.5 0.5 0.50000 33 0.9333D 22 0J.5393381589539004ND 030 0.18317-05
19 0.3697D-05 12.52453-3% 0.15830-10 3.1748D-05 0.5 0.5 0.50000 00 0.8332) 20 0.5020009155287407N J0 -0.91550-05
20 J3.1748D-05 02.2623D-05 -0.4223D0-11 0.87420-06 0.5 0.5 0.50000 00 0.3333D) 30 J.5999995422365774D 00 0.45782-06
21 D.B742D-06 0.1311D-05 0.1955D-11 0.4371D-06 0.5 0.5 0.5000D 22 J.8333) 23 2J.60000022888192320 3D -0.22893-06
22 0.4371D-06 0.6557D-06 -0.2637D-12 0.2186D-06 0.5 0.5 0.50007 00 0.83339 )0 J.593999885559103380 20 0.1144D-06
23 0.21867-06 02.32783-06 0.65922-13 0.1093D-06 0.5 2.5 0.5000D0 30 0.8333) 00 0.6000000572224544D J0 -0.57220-07
24 D.1293D-06 0.15390-06 -0.1647D-13 0.5464D0-07 0.5 0.5 0.5000D 00 0.8333D 33 J.59999997138977130 20 0.2861ND-07
25 0.5%642-07 0.81962-07 0.4104D-14 0.27320-07 0.5 0.5 0,50007 20 0.8333) 33 0.60023001433511510 0) -0.14310-07
26 02.2732D0-07 0,4098)-07 -0.101327-14 0.1365D-07 0.5 0.5 0.50000 230 2.3333D0 00 0.5999339928474427D 00 0.71530-08
27 2.13667-07 0.2049)-27 2.2402D-15 0,68302-08 0.5 0.5 0.50000 00 0.83332 33 03.50031322235762787D J0 -0.3576D-08
28 0.58300-08 0.10247-07 -0.4698D-16 03.3415D-08 0.5 0.5 0.50000 20 0.8333) 30 0.59999993321185070 00 0.1788D0-08
29 2.,3415D0-08 0.51227-08 -0.13142-17 0.1707D0-08 0.5 0.5 0.50000 23 92.3333) 33 93.53020332089405970 030 -0.89417-09
30 J2.1707ND-08 0.2561D-08 0.1339D-16 0.8537D0-09 0.5 0.5 0.5000D7 00 0.3333D 2) 0.59999933355295510 20 0.44702-09
31 0.85370-09 0.12817-08 -0.1641N-16 0,42692-09 0.5 0.5 0.50000 03 2.33331> 233 J.5000000002235174D 00 -0.22352-09
32 J.42590-09 0.6403D-03 0.1716D-16 0.2134D-09 0.5 0.5 0.5000D0 32 2.3333) 32 0.5999999993882413N 20 0.11180-09
33 0.21347-09 0.32012-09 -0.1735D-16 0.10670-09 0.5 0.5 0.50000 20 0.83332 02 0J.50000020005587340 2 -0.5588D-10
34 0,10672-09 0.15010-09 0.1740D-16 23,.5336D-10 0.5 0.5 0.50000 00 0.9333D 30 0.59999939997205030 00 0.2794D-10
35 0.53360-10 0.8304D-10 -0.17410-16 0.266RD-10 0.5 0.5 0.50000 23 0.8333n 3) 02.50000000001335980 00 -3.13970-10
36 J.26687-10 0.40022-10 0.17410-16 0.1334D-10 0.5 0.5 0.50000 00 0.8333) 20 J.5999999399330151D 00 0.5385D-11
37 9.1334D-10 0.2001D-10 -0.1741D-16 2.6570D0-11 0.5 0.5 0.50000 00 3.83330 23 03.5000000203034324D 02 -0.3492)0-11
38 J.667097-11 0.10007-1) 0.1741D0-16 0.333%0-11 0.5 0.5 0.50000 00 ©0.333397 00 J.5933339339%82538D 00 0.17460-11
39 0.33350D-11 0.5302D-11 -0.1741D-16 J.1657D-11 0.5 0.5 ©0.50000 00 0.8333D 20 0.6000000002208731D0 20 -0.8731D-12
42 0.1667D-11 0.25010-11 0.17412-16 0.83373-12 0.5 0.5 0.5000D0 23 3.3333D 22 J.59393999999955340 20 0.4366ND-12
41 0.83370-12 0.1251D-11 -0.1741PD-16 D.4169D-12 0.5 0.5 0.50000 00 0.83339 00 0.6000000002222183D 20 -0.2183D0-12
42 D0.6169)-12 0.62532-12 92.17412-16 0,2084D-12 2.5 0.5 0.50000 32 0.3333D 00 2.59999999999983080 20 0.,1091)-12
@3 D.22864D-12 3.31260-12 -D0.1741D-16 0.10422-12 0.5 0.5 0.50000 20 02.8333D 23 0.50022220020325450 00 -0.5457)-13
44 0,1042D0-12 0.1563)-12 0.1741N0-16 0.52100-13 0.5 0.5 0.50000 00 3.83337 33 0.5999999993393727n 3 0.27280-13
45 0.52102-13 0.7814D-13 -0.1741N-16 0.2606D-13 0.5 0.5 0.50000 00 0.B83339 20 9.5000000003230135D0 230 -0.13640-13
4% 0.25260-13 03.3910D-13 0.17419-16 0.1302D-13 0.5 0.5 0.50007 00 0.83333D 20 2.5993999393333332D J) 0.68140D-14
47 0.13020-13 0.1952D0-13 -2.1741D-16 0.6519D0-14 0.5 0.5 0.50000 00 0.8333)> 23 0.50000003032232340 J0 -J.3414N-14
4R 0.6519D-14 0.9787)-14 O0.17412-16 02.3251D-14 0.5 0.5 0.50000 23 3.3333D0 22 J.59999999993999830 00 0.1707D0-14
43 3.3251D-14 0.4868D-14 -0,176¢1D-16 J.1634d-14 0.5 0.5 0.50007 00 0.833390 2D 2.5023200202390008D 20 -2.9%040-15
50 0.15364D-14 0.2460)-14 0.17410D-16 0.8084D-15 0.5 0.5 0.5000D0 20 3.9333D 00 03.5999999993999395D 0)J 0.4302D-15
replaced by the bilinear transformation (2.1), then the - kyk+1, pk2 P
functions f;, k = 1, 2, - also satisfy the Riccati equation — 5 +a ; +b, 7.y +¢, =0.
@+ res) @ T V) k' k+l

£ taf,?+bf +c =0 .1)
We develop below the recursion for the coefficients of the
(k + 1)st equation by means of the coefficients of the kth
equation.

Let (5.1) be designated as the kth Riccati equation, and
assume that this is satisfied by y, =7, .

From (2.1) we have
Py
y,=——2—  p.a. €11}
oty ke Tk {
then since
r_ _-17kJ,k'+l

yk -
@ T Vhir)’

we have

If we multiply by —(g, +¥44)?/P; to normalize the
coefficient of y, ., *, we get

c 2c,q
N 3 2 _ kK
a1 T Ve b, + Vi1
k
2
¢ q
_ _kTk ) _
@ Pyt byt P =0
7
and y, ,, will satisfy the (k + 1)th Riccati equation if

“k

a,, K =——
k+1
Py
2,4, (5.2)
b, .=—b —
k+1 k pk
2
c.q

Cra1 = " HPr —hia, k=1,2,-.
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We note that all the operations involved in (5.2) require only
“short” operations, since both p, and g, are simple binary
constants.
Theorem 3: If { Vi } satisfies the Riccati equation, then A
=b,2 —4a,c, isindependent of k [4].
Proof: We use the recursion (5.2) and get

4b,c, q 4c,%q.?
2 _ _ 2 kK ktk k *k .
bysr” Ty Gy =0 + 46
k
2,2
B 4b,c.q, 3 4c, *q, b

P, 02k Kk
k QED.

In the analysis that follows we find continued fraction
expansions of certain functions by the use of the general
solution of the Riccati equation. Let

y+at+by+c=0 (5.3)

be a Riccati equation, with a, b, and c constants.

In order to find the solution of (5.3) we integrate by parts:

dy _

— =—dx 54
a? +by+c S

and the solutions are

J‘ dy 1 2tb =B )
ay’ +by+c  (B® —4ac)  2ay + b+ /(b7 —dac)
b+ 2ay

V(6> —4ac)

when b% —4ac > 0;

= = arctanh
(®* — 4ac)

= b_-:227y— , when b? —4ac = 0;
-2 arctan _ZE.LI’Z ,
V(4ac —b?) V(4ac — b?)

~when % — 4ac <0. (5.9
The preceding solutions can be used now for the continued
fraction expansion of the inverse functions which appear
explicitly in the solution.
We start with the case

y=tanx.’ (5.6)

The Riccati equation for (5.6) is
»(0)=0.

We note that —A =+/4ac —b? = 2.

Now we use a bilinear transformation of the form (2.1).
The result is a differential equation of the type (5.1) with the
recursion (5.2). By Theorem 3 it follows that the solution for
each equation k is of the type (5.5) with —A >0, and therefore
we get for the kth step:

¥ =yt +1,
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Zakyk +bk

-—xk—dk = arctan 3

where d;_is a constant of integration.
The solution is therefore

by

1
_—— +
Vi %, a, tan (x, +d,)

k=1,2,-.
Except for the first part of the solution which is a linear
transformation, we see the consistency of the method, because
if a set of selection rules are developed for tan x it can be
used for each step and therefore evaluation of this function
will be possible.

Another important function which can be included is e*.
We have

y=y, A=1.
The kth step solution is
20y, +b, —1

or
bt

Vi = k=1,2,~
g 24, a(e™*k —1)

Again we note that if a set of selection rules can be
developed for e* then it is possible to carry the process for
each step and therefore to find the continued fraction
expansion for the exponential function.

For the case where A = 0 we have several possibilities.

1) b=a=0,y"+ ¢ =0 with the solution y = —cx +d.
b 0

2) b=c=0,y + ay? = with the solution
_ 1
Yk ax+b -

3) a#0,b#0,c+#0, and b* — dac = 0.

Case 3) is particularly interesting because there exists two
constants S and T such that

ay?+by+c=Sy+T)>

and by Theorem 3, this relation is true in each step of the
iteration. The resulting Riccati equation has the form:

Y ¥ DIV, y, T )P =0 k=1,2,~

where
Sk2=ak;
25, T, =b,;
Tk2 =¢ 3

and V(x) is a function of x or a constant.
The recursion relations for S, and T that follow from (5.2)
are
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Sier = TVP,
and
Tisr = Py + T4 )N,

Since \/E is not a desired feature, p, = 1 can be assumed in
each step.

It is anticipated that the solution of many functions can be
expanded as a continued fraction, provided that an adequate
set of selection rules for p, and g, can be found.
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Data Manipulating Functions in Parallel
Processors and Their Implementations

TSE-YUN FENG

Abstract—This paper shows that there exists a class of functions
called data manipulating functions (DMF’s), in sequential as well as
parallel processors. The circuits used to achieve these functions can be
considered to form an independent functional block, called a data
manipulator. A basic organization applicable to both sequential and
parallel processors is then suggested. The main deviation of a parallel
processor organization from the conventional Von Neumann
organization is seen to be in the bit-slice (bis) manipulating functions. A
comprehensive set of bis manipulating functions from the categories of
permuting, replicating, spacing and masking is given. Implementation of
the last category, the masking functions, is usually through a mask
register by defining its content (mask pattern). It is found that for
many operations the required mask patterns are periodic and/or
monotonic. The upper bounds of generating these patterns are found.
The techniques and designs of two data manipulators for the first three
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categories of DMF’s (permuting, replicating, spacing) are given. Periodic
and monotonic mask patterns are also used to help in implementing
some of these functions. In addition, it is shown that the data
manipulator designs presented in this paper are extremely flexible to
suit the requirements of various parallel processors.

Index Terms—Cell communications, data manipulating functions,
data manipulator, logic design, parallel processing, parallel processor
organization, processing characteristics.

INTRODUCTION

T is well known that as the switching speeds of computer

devices approach a limit, any further improvement in
computer throughput has to be in increasing the number of
bits which can be processed simultaneously. Thus, given the
same cycle time the slowest method of processing is by
bit-serial (one bit at a time). The processing speed is increased
by an order of magnitude or more when a number of bits,
called a word, can be processed simultaneously. This



