
TECHMCAL
NOTE

cam

and Systems

John P. Hayes*
Ed/tor

Hitohisa Asai and C.K. Cheng
are doing research into the

implementation of o division
process that uses an iterative
multiplying operation instead

of repeated subtractions.

*This paper was processed by
John P. Hayes, editor of

Computer Architecture and
Systems before Duncan

Lawrie.

Authors' Present Addresses:
Hitohisa Asai, and C.K. Cbeng

Computer Science Department,
Christopher Newport College, 50

Shoe Lane, Newport News, Va
23606.

Permission to copy without fee
all or part of this material is

granted provided that the copies
are not made or distributed for

direct commercial advantage.
the ACM copyright notice and
the title of the publication and

its date appear, and notice is
given that copying is by

permission of the Association for
Computing Machinery. To copy

otherwise, or to republish,
requires a fee and/or specific

permission. (c) 1983 ACM 0001-
0782 183/0300-0218 75¢.

SPEEDING UP AN
OVERRELAXATION METHOD
OF DIVISION IN RADIX.2 n
MACHINE

HRohisa Asai and C. K. Cheng
Christopher Newport College

ABSTRACT: For normalized
floating point division, digital
computers can take advantage of a
division process that uses an
iterative multiplying operation
instead of repeated sublractions. An
improvement of this division
process by using accelerating
constants in the overrelaxation has
previously been proposed.
Multiplication by a chosen
accelerating constant accelerates
the process of generating accurate
digits of a quotient in division. We
propose a further improvement by
generalizing the accelerating
constants in the overrelaxation
method. Two benefits resulting
from this improvement promise to
yield faster division in digital
computers.

1. INTRODUCTION
It is well known that the division process can be performed
using multiplication instead of subtraction as an iterative op-
eration. This type of division is called the Wilkes--Harvard
(W-H) scheme [6, 9, 13, 15, 20]. Because this type of iterative
division allows the use of very fast multiplier devices, the
W-H scheme may become a prevailing division process in
commercial computer systems [2, 15, 18].

When the reciprocal of a divisor with a certain bit length is
computed with the W-H scheme, a definite number of itera-
tive multiplications must be performed to obtain a specified
accuracy. A table look-up technique [2, 7, 10, 13, 17] is pro-
posed for defining the accelerations to be used in the W-H
scheme division process, although the hardware costs of using
any table look-up technique must be kept in mind.

An accelerating method for the W-H scheme division
method using overrelaxation constants chosen from a table [5]
has previously been proposed. This method guarantees a
small quantity q in the form of divisor B = D'(1 + a/D') with
at most four successive applications of the overrelaxation con-
stants [3, 5], where D' denotes a power of a radix. The meth-
od's usefulness is demonstrated in the computation of the
reciprocal using 32-bit arithmetic [3].

We have attempted a further low-cost improvement of divi-
sion through this method by considering a continuity of the
two ranges of the overrelaxation constants, D and D ~, where
D is a radix. This extended range of the overrelaxation con-
stants in a radix-2" machine is a generalization of the acceler-
ating constants in the method. The generalized process results
in two benefits: (1) a smaller obtainable quantity q that is less
than or equal to 1/(2rod - 3) in the worst case, where m = 1,
2, 2 ~, 2:', D, and (2) a reduction in the use of the overre-
laxation constants to at most three successive applications. In
Sec. 2 we summarize the overrelaxation method. In Sec. 3 we
present the speeding-up generalization.

2. THE ACCELERATION METHOD
A division A/B may be evaluated through the power series
[4, 5]:
A/B = A(1 - P/D)(1 + W/D~

(1 + lm/EP)(1 + Pa/D") . . . / D (2.1)

where D is the radix (I D I > 1), B = D + P and I P/D I < 1.
The power series involves no division operation (1/D" is a
shift). The ratio I P/D I must be small for fast convergence.

Let the divisor B be in the domain [D", D"+l), where D and
D" are the base radix and pseudoradix, respectively. Then
B = D" + q., where q,, = P for P > 0 and qe = D ''+1 - D n + P
for P < 0. When P = 0, A/B is reduced to a shift operation.
The ratio P,/D" to be used in Ecl. (2.1) is represented by a
function of q:

P/D" = f~(q) = q/D" for P > 0 (2.2.a)
p/D.+l = _f.,(q) = _[/~+1

- (D" + q)] / D "+' for P < 0 (2.2.b)

~1~ Coromunications of the ACM March 1983 Volume 26 Number 3

We introduce an overrelaxation parameter a in Eq. (2.2.b) as
follows:

-gCq, a) = - [D aCD" + q) l /D ''+' (2.3)

By imposing -g(q+, a + 1) = g(q+, a) to determine the value of
q÷, which is the boundary of subdivisions S,, for a = 1, 2, 3,
. . . . D - 1, the following results are obtained:

q+(a) = (2D - 2a - 1) D " / (2 a + 1) (2.4)

and

S~: ((2D - 3)D' /3 , D'(D - 1)] (2.5.a)
S~,: ((21) - 2a - 1) O ' / (2 a + 1), (20 - 2a + 1) D ' /

(2a - 1)] for a = 2, 3, 4 D - 1 (2.5.b)
S~ [0, D ' / (2 D - 1)] (2.5.c)

where D ' denotes an appropriate pseudoradix.
By substituting Eq. (2.4) into Eq. (2.3), the local maxima of

g(q, a) in the subdivisions (i.e., the m a x i m u m ratios of P/D')
a r e

- g (q + (a) , a) = l / (2 a + l) a t a = l , 2 , 3 D - 1 (2.6)

Figure I shows the area near the boundary between the
subdivisions S,, and S,,+1.

An iterative contracting map has been introduced by start-
ing with q. and recursively applying q~÷~ = h(q~, a~) = -g(qi , a~
+ 1)D" [5]. The movement of q. through the contracting map-
ping results in the subdivision S,- , , where the smallest ratio
P /D' , that is, a~= g(q*, D - 1) in the domain [D'% D"÷~+'), is
obtained with i denoting the number of iterations. The q*
denotes the very last q value in the recursive mapp ing we
can find this smallest ratio from Eq. (2.6) wi th a = D - 2.

a ~J~'~ ~ - j Pa rame te r (m a ÷ j . t / m

/ - ~ - . . . ' \ \ ~ . "t~-----~---.~

" - - ~ ~ " \ \ - . I ~ ""b/l:2a+/b ".,. " - ~ "- \ j . . ~4.t ~-,, - . .
\ ~ , + ~ ... "~ - - -#a+~ ~ i ~ ~.~

"-~ t/(~a+3) - z,4)

" , N . - \
(sa~;~y~'~,3 "~ "~ ~.~ "q. ~ . ~ ~ \

. .¢, ,o. ,) , " , " 4 , . "

' , \ i \ 1 - l \ \

I] 2S-subdivis ion

e 4- I) ~ 2
I S-subcl ivisio n

m = / I /
• Sa ~ I • Sa

subd iv i s i on

FIGURE 1. Is-Subdivisions and an Enlarged Boundary of Sulxivisim~

3. GENERALIZED PROCESS OF THE METHOD
A generalized parameter (ma + j) / m is proposed for the over-
relaxation where m = 1, 2, 22, 23 D and j is an integer
m > j ~ O. When m = 1 a n d j = 0, or m = l a n d j = 1, the
parameter (ma + j) / m becomes a or a + 1, respectively. This
generalization thus includes the method discussed in Sec. 2.
Moreover, the multiplication m a and the division 1 / m of the
new parameter can be accomplished only by digit shift opera-
tions. Therefore, the use of the generalized parameter in the
overrelaxation does not increase the number of multiplica-
tions in computing the reciprocal of divisor B.

Let us consider a boundary of subdivisions defined by Eqs.
(2.5). By taking the average of parameters a and a + 1 (i.e., (2a
+ 1)/2), we find that the function g(q, (2a + 1)/2) intersects
the abscissa at the point marked by M~.I, shown in Figure 1.
Furthermore, the intersecting point found fxom -g(q*, a + 1)
= g(q*, a) is the boundary be tween subdivisions So and So.1.
The number of subdivision intervals increases f ~ m D to
2D - 1 when we adopt the averaged parameter. A new
narrower interval like this is called a sub-subdivision. The
lower /uppe r boundaries of a sub-subdivision are

qi*,(a, j, m) = (2m(O - a) - 2 j - 1) O " / (2 m a + 2 j + 1) (3.1)

and

q~(a, j, m) = (2m(D - a) - 2 j + 1) D " / (2 m a + 2j - 1) (3.2)

from the conditions -g(q~., (ma + j + 1)/m) = g(q~, (ma + j) /
m) and -g(q~, (ma + j) /m) = g(q~, (ma + j - 1)/m), respec-
tively, where m = 2 ~ a n d m - 1 ~ j ~ 0 for a = 1, 2, 3
D - 1 where I = 1. There is, however, an exception in that
the upper boundary of $1 is D'(D - 1). The leftmost sub-
subdivision (a = D and j = 0) is bounded by [0, D ' /
(2roD - 1)]. We shall abbreviate sub-subdivision as s-subdivi-
sion (1 = 1) and sub-sub-subdivision as 2s-subdivision (1 = 2),
. . . . and a 2Lsubdivided sub- . . . sub-subdivision as Is-subdivi-
sion. Thus, the domain [0, D'(D - 1)] of q is divided into the
following Is-subdivisions:

S, : ((2m(O - 1) - 1) D " / (2 m + 1), D"(D - 1)]
S(,..+i)/.,: ((2m(D - a) - 2 j - 1) D " / (2 m a + 2 j + 1),

(2m(D - a) - 2 j + 1) O " / (2 m a + 2 j - 1)]
f o r a = 1 , 2 , 3 D - l a n d
j = 0 , 1 , 2 m - 1

S , : [0, D " / (2 m D - 1)]
(3.3)

with the parameter (ma + j) / m = (2~a + j) / 2 s. The boundary
q~a , j, m) is depicted in Figure 1 with points marked by
M'.,',,2i÷l, where m = 1 and j = 0 for a subdivision; m = 2 and
j = 0, 1 for an s-subdivision; and m = 4 and j = O, 1, 2, 3 for a
2s-subdivision.

Next, consider the mapped value of q computed from
g(q, (ma + j) / m) . By substituting (3.2) into g(q, (ma + j) / m) ,
we obtain the value of q as follows:

q = -g (q~(a , j, m), (ma + j) / m) = 1 / (2 m a + 2j - 1) (3.4)

As (3.4) shows, the value of q decreases as the value of m
increases. The worst case of qf for a fixed value of m is
obtainable as

Iq~l = l l / (2 m D - 3)J -- 11/(2 '+ 'D - 3)l (3.5)

by setting a = D - 1 and j = m - 1 in (3.4).

The recursive application of %+, = h(q~, (ma~ + j~)/m) =
-g(qi, (mai + jj + 1) /m)D" by starting with the initial value qo
in S~,,,~÷~/,, assures the movement of successive mapping

March1983 Volume26 Number3 Communications of the ACM 217

images of q,, into the Is-subdivision S~,,~>_~)/., (when a = D - 1
and j = m - 1) or S~ As soon as the last contracting image q*
is reached in S[,,~)-w,, or S~ the smallest quanti ty ql is evalu-
ated from q j = -g(q*, (mD - 1)/m) or q~ = q*, depending on
whether it has been reached in S,,~)-,/m or S., respectively.

We have been discussing the first benefit of the generalized
method. The second benefit is described below. Consider the
difference between two values of q computed from g(q, (2ma
4- 2j 4- 1)/2m) and g(q, (ma 4- j) /m). The difference is (D" 4-
q) /2mD "+~, which can be seen in Figure I as 1/(4a 4- 3) and
is indicated by a brace when m = 2 and j = 1 are used. From
this, we may introduce a modified mapping function hm(q, a)
where the suffix m denotes the modification:

hm(q, (ma + j) /m) = -g(q, (ma + j) /m)O ~

if this is positive, or

h,,(q, (ma 4- j) /m) = -g(q, (2ma 4- 2j 4- 1)/2m)D"
= -g(q, (ma 4- j) /m)D ~ 4- (D ° 4- q) /2mD

if -g(q, (ma + j) /m) results in a negative number .

The mappings by h,,,(q, (ma 4- j) /m) for the cases m = 2
and j = 1, and m = 2 and j = 0 are indicated in Figure I by
the shaded triangles. The largest mapped values for each case
occur at the points of M'.,'.~ and M~.~ on the abscissa. Since h~(q,
(ma 4- j) /m) is a piecewise linear mapping, it is sufficient to
consider only the largest possible mapped value of q that
happens to be the upper boundary of each Is-subdivision ob-
tained through Eq. (3.2).

Next, we demonstrate that the n u m b e r of recursive appli-
cations for the worst case is three. By taking the worst initial
q. = qS(a, j, m), the q~ value is as follows:

ql = hm(q,,, (mao 4- jo)/m) = D"/ (2mao 4- 2jo - 1) (3.6)

where q. belongs in S(,,~+~)/m initially. It is obvious that if ao =
1 and j. = O, q~ is greater than the upper boundary (3D"/(2mD
- 3) obtained by substituting a = D - 1 and j = m - 1 in
(3.3)) of the Is-subdivision S[,,~)=w,,. So another contraction
mapping of h,,(q~, (ma~ 4- jO/m) is required to obtain a smaller
value.

First, we must determine the corresponding al and jl for
the value q~ from the following inequalities obtained from the
Is-subdivision boundaries in Eq. (3.3):

(2m(D - aO - 2j, - 1)D"/(2ma~ 4- 2j~ 4- 1)
< D"/(2ma8 4- 2]o - 1)
~< (2m(D - a~) - 2j~ 4- 1)D"/(2mal 4- 2jl - 1).

After a simple computation, we obtain

ma, 4- j~ -- L ((2mO 4- 1)(2mao
+ 2jo - 1) + 1) /(4mao + 4jo) J (3.7)

where LBJ denotes an integer in the range B - 1 < LRJ ~< R,
and B is a real number .

Next, by using the value q~ and by determining al and j~
from the inequalities, B - 1 < L R J ~< R, the interval bound
of q2 is determined as follows:

q2 = h.,(q~, (ma~ + j~)/m) ~<
(ma,) + jo)D"/(2mao + 2jo - 1)mD (3.8)

and

q2 > - (m ~) 4- j ,))D"/(mD(2mao 4- 2jo - 1)). (3.9)

The existence of the interval bound in ,%,,-~)/m or S. is proved
in the Appendix.

After the second contraction mapping of hm(ql, al), the

value q2 exists in S~m~-W,,, or So (see the Appendix). Then, the
final value qj is computed as follows:

IqJl = I-g(q2, (mD - 1) /m) l < 11~(2roD - 3)1 (3.10)

Here is an example of the generalized process. Let A = 1 be
a dividend and B = 54, a divisor in decimal notation. By
taking the base radix D = 8 = 108 and n = 1, the value of P is
found to be 56. as follows: B = D" + P = 54~o = 66.. All
computation in the example is carried out in octal with
m = 2 by using the s-subdivision shown in Table I as com-
puted from (3.3).

Step 1. Since B = 10 + 56, q,) = 56. From Table I and the
value qo/D" = 56/10 = 5.6, we find a() = I and jo = 0 in the
s-subdivision. Set i = 0 and c~ = 1.

Step 2. Since q. is not in Su)-~)/2 nor in SD, go to the next
step.

Step 3. Compute

q~ = - { D "+'*~ - ((4a,)+ 2j , + 1)/4)(D "÷~ + qo)}/D
= -{100 - (5/4)(10 4- 56)] /10 = 34 /100 = 0.34.

Since q. (=56) is less than the root, 7.0, of the s-subdivision as
shown in Table I (q~ = -g(qo, (ma() + jo)/m) < 0), the quanti ty
(D ''÷~ 4- q~)/2mD is added to q~, namely, the acceleration con-
stant (2ma~ 4- 2j~ 4- 1)/2m is used in the q~+~ and a (=a(2mao 4-
2j,) + 1)/2m = 1 x (5/4) = 5/4) computations. Increase the
counter i by one, i = i 4- 1 = 0 4- 1 = 1.

Step 4. Now the value q~/D" becomes q l / D ~ = 0.34/10 =
0.034. By searching the table, we find that q~ is in the s-
subdivision with a~ = D - 1 and h = 1. Since ql is now in
~,,,~)-w,,- go to step 5.

Step 5. Compute the final value of aj:

q; -- - {D "+'+' - ((2a~ 4-/~)/2)
.(D "+' + q,)}/D "+'+'

= - (1 0 0 0 - (1 7 / 2) (1 0 0 4- 3.4))/1000
= - 5 6 / 1 0 "

and

a = a(2a~ + j~)/2 = (5/4)(17/2) = 113/10.

Step 6. Compute the power series:

a = a / (1 + qj)D "+~÷~ = a(1 - q;)(1 + ql 2)
• (1 + qff)(1 + q~) . . . / D "÷'÷~

= (113/10)(1 + 56/104)(1 + 562/10 a)
• (1 + 564/10"~)(1 + 568/1032) . . - / 1 0 3

= 1136572(1 + 562/108)(1 + 564/10 TM)
• (I + 568/10 '~2) . . - / 1 0 8

= 113664113422150(1 + 564/10 TM)
• (1 + 5 6 " / 1 0 '~2) . - - / 1 0 TM

= 0.011366411366411365336206
• . . (1 + 568/1032) . . - .

Comparing the real quotient, 1/66" = 0.0113664, with the
approximate reciprocal, we find the results accurate up to 9
or 17 digits w h e n the terms of the power series are evaluated
up to a~ or ~4, respectively.

If a parallel process provides the remainder of A,/B where A
> B, then the process is useful in integer division. The parallel
process involves successive applications of Homer 's scheme
on the polynomial form (. . . (AmP + A,,-OP + . . . + A0P +
A., where Ai for i = 0, 1, 2 m are digits of A = (. . . (Am/)'
+ A,,,-0D' + --- + AOD' + A~, and P = D ' - B [4], and the

21B Communications of the ACM March 1983 Volume 26 Number 3

RESF.AflCH C ~

Table I. S-Subdivision Intervals with D" = D = 10s and m = 2.

S-subdivision Lower Upper Root of
Number boundary boundary g(q,(ma+j)/m) = 0

a j in octal in octal in S-subdivision

1 0 5.31463 . . . 7.00000...
1 1 3.44444... 5.31463...
2 0 2.43434... 3.44444...
2 1 1.72135.:. 2.43434.,.
3 0 1.35423... 1.72135.,.
3 1 1.10421 . . . 1.35423...
4 0 0.703607 .. 1.10421...
4 1 0.536241 .. 0.703607.
5 0 0.414141 . . 0.536241.
5 1 0.310232 .. 0.414141.
6 0 0.217270 .. 0.310232.
6 1 0.136641 .. 0.217270.
7 0 0.0647562. 0.136641.
7 1 0.0204102. 0.0647562
8 0 0.00000... 0.0204102

7.00000...
4.25252...
3.00000...
2.14614.
1.52525.
1.22222.
1.00000.
0.616161
0.463146
0.350350
0.262525
0.166116
0.111111

Not Applicable
Not Ap~icable

applications continue on the evaluated result of Homer 's
scheme again and again unti l the very last result becomes less
than D'. Suppose A = 10000, in the example where P = 1 2 8

and D ' = D 2 = 100,. A computation is shown below. The first
and second applications of Homer 's scheme result in

(1 × P + 00)P + 00 = (1 × 12) × 12 -- 144 and 1 × 12 + 44 = 56.

Then the last result 56 is less than 100 and is less than B =
66. So the remainder is 56~ = 46m. When the last value is
greater than B, the difference between the last value and the
divisor {or a multiple of the divisor) becomes the remainder if
P is less than B. If P is greater than B, a smaller P may be
chosen by taking the difference between P and B.

4. CONCLUSION
The parameter of the overrelaxation in our method is general-
ized for a radix-2" machine. Two benefits in expediting the
computation from the generalization have been described:
(1) the value of qs computed from g(q, a) decreases from 1/(2D
- 3) to 1/(2mD - 3) for the worst case, and a rate of decrease
is apparent as the value of m increases, and (2) the n u m b e r of
iterative computations of q~÷~ -- -g(q+, ai) is reduced from four
to three for the worst case, where the suffix i denotes the ith
iteration.

The first benefit is faster convergence of the power series.
The second benefit is a shortcut in the division process by
eliminating a pair of the very last evaluations, q++l = h(qj, a+)
and a+÷~ -- a+(a+ + 1), which require the longest digit manipula-
tions where a+ is a crude approximation of the quotient.

There is, however, a cost to be paid for the generalization
which comprises (1) a preparation of the generalized parame-
ter form, (ma + j) / m (=a + j/m); (2) the test whether the
value of q+÷+ computed from q~+~ -- -g(q~, (ma~ + ji)/m) is
positive or negative; and (3) two additions of the quanti ty (D ~÷~
+ q+)/2m to the value q~+~ and of the quanti ty 1 / 2 m to the
value (ma+ + j~)/m whenever q+÷+ is negative.

The cost of i tem (1) is a bit-shift operation and an OR (or
AND) operation, which is negligible. The cost of items (2) and
(3), for which a sign bit check (of the term of q~ - q~ where qr
= (mD - (ma + j))D"/(ma + j) is the root of g(q, (ma + j) /m)
= 0 in an Is-subdivision), two 1-bit shifts, and one OR (or
AND) operation are required, is also negligible. In other

words, the estimated cost is far less than the cost of comput-
ing the third iteration of qi.+ = h(qi, a~) and a++l = a~(a~ + 1),
namely, C + S(m) + 2S(1) + 2L(2D) << 2M(2D, tD), where
C, S(k), L(k), and M(k, 1) denote a comparison, k-bit shift, k-bit
OR (or AND) operation, and k-by-1 bits multiplication, respec-
tively, and t represents the digit length of dividend/divisor.
Thus, the saving of multiplication steps could be maximized ff
these bit operations are implemented in the same machine
cycle. Finally, although the generalized process is most suita-
ble for normalized floating point division, we have shown that
the process may be used for fast integer division when multi-
plying hardware computes the remainder in parallel.

A P P E N D I X

We consider two inequalities in order to obtain the interval
bound of q.~.

(1) When the inequality LR/~< R is used, the upper bound
of the interval range is

q2 = hm(q~, (ma~ + j+)/m)
<~ (moo + jo)D"/(2moo + 2jo - 1)mD (3.8)

Since the last term of (3.8) is positive, there is no need to
have the difference term, (D" + q~)/2mD, in hm(q, a). Then we
compare the upper bound of q2 with the upper bound of
S l m l) _ l l / m .

3D"/(2mD - 3) - (moo + jo)D"/(2moo + 2jo - 1)mD
-- ((4mao + jo) - 3)mD + 3(mao + jo))O"/

(2mD - 3)(2moo + 2jo - 1)mD (A.1)

Equation (A.1) results in a positive number , so q2 must belong
in S~,,,~-;)/,,, since 4(mo~ + jo) - 3 > 0, 2mD - 3 > 0, and (2moo
+ 2jo - 1) > 0 by taking the smallest values of oo = 1, jo -- 0,
m = 1, and D = 2, and no further mapping is needed.

(2) When the inequality R - 1 < L B J is used, the lower
bound of the interval range is found as follows:

q2 > - (m ~ , + jo)D"/(mD(2mao + 2jo - 1)) (3.9)

Equation (3.9) results in a negative value w h e n the smallest
values of oo, j~,, m, and D are taken, Therefore, this negative
value is replaced by (D" + q~)/2mD = (moo + jo)Dn/mD(2mao
+ 2j,, - 1), which is the largest value in hm(qo, (moo + jo)/m),
namely, M~n,,2i for m = 2, 4, and j - 1, 2, respectively, as
shown in Figure 1. It is sufficient to compare the largest value
with the upper bound of S~,,,~-~)/,,,:

3D"/(2mD - 3) - (moo + j ,)D"/mO(2moo + 2jo - 1)
= mD(4(moo + jo) - 3) + 3(moo + jo). (A.2)

Equation (A.2) is positive when the smallest values of oo, jo, m,
and D are taken. Thus, from these two cases we find the value
q2 is in S~,.l~-n/,,, or S,.

1. Aho, A.V., Hopcrofl, J.E., and Ullman, I,D, The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, Reading, Mass., 1974.

2. Anderson, S.F., et al. The IBM system/360 model 91: Floating-point execution
unit. IBMI. Res. Dev. 11, 1 (Jan. 1967), 34-53.

3. Asai, H. A complexity measure of a division proosss--a comparison analysis
of AMONIC. To appear.

4. AsaL H. A recursive radix conversion formula and its application to multipli-
cation and division.]. Comput. Math. Appl. 2, 3/4 (1976), 255-265.

5. Asai, H, An overrelaxation for a numerical inverse of a oanstant. Commun.
ACM 23, 9 (Sept. 1980), 503-510. U.S. patent # 4 3 6 4 1 1 5 .

6. Chen, T.C. Automatic computation of exponentials, logarithms, ratios and
square roots. IBM]. Res, Dev. 15, 7 0uly 1971), 380-388.

7. Ferrari, D. A division method using a parallel multiplier. IBEE Trans. EC-16, 2
(1967), 224-226.

March1983 Volume26 Number3 Communications of the ACM 219

TECHNICAL CORRESPONDENCE

8. Gilman, R.E. A mathematical procedure for machine division. Commun.
ACM 2, 4 (April 1959), 10-12.

9. Goldschmidi, R.Z. Applications of division by convergence. M.S. thesis, MIT,
Cambridge, Mass., lune 1964.

10. Klir, 1. A note on Svoboda's algorithm for division. Inf. Process. Machine
(Prague, Czechoslovakia), 9 (1963), 35-39.

11. Knuth, D.E. The Art of Computer Programming, vol. 2. Addison-Wesley,
Reading. Mass., 1969.

12. Knuth, D.E. The Arl of Computer Programming, vol. 3. Addison-Wesley,
Reading, Mass., 1973.

13. Krishnamurthy, E.V. On optimal itemtive scheme for high-speed division.
IEEE Trans. Comput. C-19, 3 (1970), 227-231.

14. Riehards, R.K. Arithmetic Operations in Digita/Computers. Van Nostrand,
London, 1955.

15. Russell, R.M. The CRAY-1 computer system. Commun. ACM 21, 1 0an. 1978),
63-72.

16. Savage, I.E. The Complexity of Computing. Wiley, New York, 1976.
17. Svoboda, A. An algorithm for division. Inf. Process. Machine ffS"ague, Czecho-

slovakia), 9 (1963), 25-34.

l& TDM. ADP 6XXX. Large Information System Div., Honeywell Inc., Phoenix,
Ariz.. 1978.

19. Wallace, C.S. A suggestion for a fast-multiplier. IEEE Trans. EC-13, 1 (1964),
14-17.

20. Wilkes, M.V., Wheeler, D.J., and Gill, S. The Preparation of Programs for an
FJectronic Digita/Computer. Addison-Wesley, Cambridge, Mass., 1951.

CR Categories and Subject Descriptors: B.2.1 [Arithnmlic and Logic
Strudures]: Design Style--ca/cu/ator;, G.1.2 [Numerical Analysis]: Approxima-
tion-rational approximation; 1.1.2 [Al~braic Manipulation]: A l g n r i ~ g e -
bmic algorithms

General Terms: Algorithms, Design
Additional Key Words and Phrases: Wilkes-Harvard scheme, power series,

overrelaxation, convergence, itemtive multiplication, truncation error, conver-
gence division

Received 10/80; revised 10/81; acoepted 5/82

Technical Correspondence
IMPROVING PROGRAM READABILITY AS A
MODIFICATION AID

The article "Improving Computer Program Readability to
Aid Modification" by Elshoff and Marcotty [1] represents
an excellent discussion of techniques for enhancing the
program modification process by improving source code
readability. In addition, some of the transformations pre-
sented (e.g., in Sections 5.1, 5.2, 5.12) significantly improve
the abilities of realtime computer programs to satisfy
stringent execution speed (timing) and/or limited main
and auxiliary memory (sizing) requirements. When read
from the perspective of critical timing and sizing con-
strained realtime programs (e.g., air and space craft navi-
gation, CAD/CAM tools, electrical power distribution
control) several comments can be appended.

1. Critical timing and sizing constrained software is
quite often coded in high order languages which are im-
plemented by special purpose compilers. Even though the
source language is familiar (e.g., often Fortran; sometimes
Jovial, Pascal, CMS-2; and some day Adam), the compilers
are specifically constructed to produce object code only
for special-purpose target processors (e.g., IBM 4PI CC-1,
CC-2, AP-101; MIL-STD 1750; AN/UYK-7, -20). Since
these compilers are generally "one shot" tools, with a few
exceptions, only minimal attempts at object code optimi-
zations are included. Consequently, a significant burden
for tight object code is passed upstream to the source
language programmer.

The transformations described in Section 5.1 (Move
Single Entry Labeled Blocks) and 5.12 (Localize Refer-
ences) are particularly useful in this situation. Transfor-
mation 5.1 reduces both time and space by eliminating
unnecessary code. Transformation 5.12 allows those eas-
ily implemented compiler local optimizations to function
more effectively.

2. Transformation 5.2 (Duplicate Labeled Blocks) repre-

sents a double-edged sword. As indicated by the authors,
replication of short (less than ten-statement) code blocks
improves readability over branching to a multiple-refer-
enced label. Ignoring those situations where use of a pro-
cedure becomes desirable, two major difficulties can oc-
cur when code blocks are repeated:

(a) Sizing problems can be aggravated. This is par-
ticularly the case when a short source code block
causes long object code blocks to be generated. Miti-
gating this somewhat is loss of (a presumably) long
range branch to the multiple-referenced label. (Long
range branches are frequently indirect and slow on
special purpose realtime processors).

(b) Installation of changes in all repeated short code
blocks can fail. As with a procedure, one of the ad-
vantages of a multiple-referenced label is that the
required code only exists in one place; thus correc-
tions to that code need only be applied in one place.
Replication of the code block requires that all
changes must be applied precisely to each block. In
pressure situations (which occur all too frequently in
the realtime software world), it is easy to overlook
one or more of the replicated code blocks requiring
alteration.

Fortunately, two easy solutions to the latter are
feasible. One is to number each replicated code block
via comments (e.g., 1 of 7, 2 of 7, 3 of 7, etc.) This
allows programmers to "check list" changes to each
code block replica. The other is to code the short
code block as a macro in those languages which al-
low it (e.g., [2]). This allows the code block to be
written once, yet exist inline at as many locations as
needed.

3. The statement in Section 7 that even though load
module size of the example program increased 52 percent
(8,800 to 13,400 bytes), general experience shows execu-
tion speed improvements of five to ten percent, seem in-

22Q Coramunicr3tions of the ACM March 1983 Volume 26 Number 3

