
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-22, NO. 2, FEBRUARY 1973

An Augmented Iterative Array ror

High-Speed Binary Division

MAURUS CAPPA AND V. CARL HAMACHER

Abstract-An augmented iterative array for binary division
(IAD), is described. It uses carry-save reduction and carry-look-
ahead principles to achieve high speed. Logic cost and speed com-
parisons with two other design techniques are presented. An 8-bit
prototype model that operates in under 500 ns has been built from
commercially available high-speed MSI TTL integrated circuits to
verify the feasibility of the IAD scheme.

Index Terms-Division network, iterative array, nonrestoring
division.

I. INTRODUCTION

LARGE general-purpose digital computers require
high-speed arithmetic units. There are numerous
special-purpose digital processors, such as fast

Fourier transform machines, that also have this require-
ment. High-speed addition [1] and multiplication [2]-
[4] have been reasonably thoroughly studied. The itera-
tive logic cell has been stressed as an important design
factor from a fabrication and diagnostic standpoint.
The purpose of this paper is to present the design of

a new high-speed iteratively structured binary division
array named IAD (iterative array divider). The logic
cost and speed of this design is compared to a basic
division array similar to those proposed in [5], [6], and
to another recent high-speed scheme [7]. The construc-
tion of an 8-bit prototype divider using standard high-
speed MSI TTL integrated circuits is briefly described
in a final section.

II. BASIC DIVISION ARRAY
An iterative array which implements the conventional

nonrestoring division algorithm is presented here. It is
essentially the same as arrays proposed by others [5],
[6] and is included here as the starting point from which
two design changes lead to the much faster IAD pre-
sented in Section III.

In binary division, successively right-shifted versions
of the divisor are subtracted from or added to the
dividend and resulting partial remainders. The sign of
the partial remainder determines the quotient bit and
further, in nonrestoring division, determines whether to
add or subtract the shifted divisor in the next cycle. The

Manuscript received May 8, 1972; revised August 28, 1972. This
work was supported in part by the scholarship program and Granit
A-5192 of the National Research Council of Canada.

M. Cappa is with Collins Radio Company, Toronto, Ont., Can-
ada.

V. C. Hamacher is with the Departments of Electrical Engineer-
ing and Computer Science, University of Toronto, Toronto, Ont.,
Canada.

basic step of the nonrestoring algorithm can be con-
cisely stated with the help of the following notation:

dividend: A = A O . A 1A 1... AN

divisor: D = DO. D1D2. . DN
(partial) remainder: R = RO. R1R2. . RN

quotient: Q = QO. Q1Q2 ... QN.

The binary point is assumed to lie between the 0 and
1 subscripted components of each vector. The operands
are assumed to be positive, normalized fractions, so that
Ao=Do=0 and A1=Di=1. Since 1.<A, D<1, the quo-
tient is positive and lies in the range 2 < Q < 2. The (par-
tial) remainder R is a signed fraction, and RQ is the sign
bit with R being represented in 2's complement form.
An N+1-bit quotient can then be generated from an

N-bit divisor and dividend by the following (nonrestor-
ing) binary division algorithm.
DO FOR i= 0 to N.

Step 1:1 Generate new partial remainder: if Q1-l= 1,
R*-R-D; if Qi-l=O, R÷-R+D.

Step 2: Quotient bit: set Qi=Ro.
Step 3:2 Shift partial remainder: R -2(R).

A two-dimensional array of iteratively structured
logic can implement the nonrestoring algorithm di-
rectly. Basically, the array consists of rows of carry-
propagate adders with one controlled input per bit. See
Fig. 1(a) and (b) for an example with a 4-bit divisor and
an 8-bit dividend. Each logic cell consists of a full adder
and an EXCLUSIVE-OR gate. The EXCLUSIVE-OR gate con-
trols the divisor input to the full adder. The control sig-
nal S determines whether an add or subtract is to be
performed. Subtraction is performed in 2's complement
form by forming the l's complement of the divisor and
forcing a carry into the low-order bit position. The
operation of the array is mostly self-explanatory. The
4-bit divisor and double-length 8-bit dividend are intro-
duced at the top and right edges of the array. Since
Ao=Do=O and Ai=D1=1, the upper left three cells
could have been eliminated provided that all input-out-
put connections are sent directly through the original
locations of the cells. A 5-bit quotient is developed at the
left of the array. Note that each quotient bit is passed on
to the next row as the control signal S and that this

1For i=0, R=A =dividend and formally Qi =1.
2 If a douible-length dividend is provided, its right half is brought

into RN a bit at a time by the applicatioin of Step 3.

172

CAPPA AND HAMACHER: ARRAY FOR BINARY DIVISION

(a)

(b)
Fig. 1. Basic division array. (a) Typical cell. (b) Example:

8-bit dividend, 4-bit divisor.

signal is the low-order carry into the rightmost cell. The
reason that the carry out signal from the left cell of each
row is equal to the quotient bit for that position is a

consequence of the use of 2's complement number repre-

sentation and the nonrestoring algorithm.
This is a reasonable operational interpretation of the

use of the array in a floating-point arithmetic unit where
the input operands are normalized fractions. However,
the array can also be interpreted as performing integer
division in which a double-length dividend (in this case

8 bits) is introduced at the top and right diagonal of the
array. Bit positions A8, D4, and Q4 in Fig. 1(b) then have
the binary weighting of unity, and the divisor should be
larger than the left half of the dividend.

III. HIGH-SPEED DIVISION ARRAY (IAD)
The technique used in the IAD [8] is best understood

as two rather major modifications of the implementa-
tion of the nonrestoring division algorithm described in
Section II. The basic idea of the design is to eliminate
the carry ripple time, which is proportional to N, along
each row of the array. First, the partial remainder R is
not actually developed in each row of the array, but is
represented by two binary vectors S and C which, if
added, would produce the correct partial remainder at
that row level. Second, a single carry-lookahead subnet-
work is used to determine from the S and C vectors what
the carry into the sign bit would be, facilitating the de-
termination of the sign of the resulting partial re-

mainder, the quotient bit for that row level, and the con-

trol (add or subtract divisor) to the next row. The two
vectors S and C are the result of a 3-to-2 carry-save re-

duction on the previous row's S and C vectors and the
proper version of the shifted divisor (add or subtract).

Subtraction of the divisor is again implemented using
2's complement addition as in the basic array. The
carry-save reduction operation is achieved in only one
cell delay, independent of the length of the operands.
The speed of the lookahead network, divisor true or
complement selection, and the single-cell delay for
carry-save reduction are the basic factors determining
the delay per bit of the quotient Q being developed.
The notation introduced in Section II can be used to

describe the IAD technique. Vectors S and C are the
sum and carry vectors, respectively, resulting from a
3-to-2 carry-save addition reduction. The IAD algo-
rithm is then as follows.
DO FOR i =O to N.

Step 1:3 Generate the two-vector partial remainder:
if Qil=1, S', C'<-S+C-D; if Qi-l=0, S', C'<-S+C
+D.

Step 2: Lookahead: CL = G1+P1G2+P1P2G3+
+P1 ... PPN2GvGT where Gj= S'jC'j (generate func-
tion) and Pj = Sj'+ C'j (propagate function).

Step 3: Partial remainder sign: Ro=So(DC'0o(DCL
and quotient bit: Qi = Ro.

Step 4:4 Shift partial remainder: S, C-2(S', C').

The general Step 1, formulated above, can be illus-
trated by the following operation:

SO .S1S2 ...SN 1AN+i
CO . C1C20 Qi-1

+ Do. D1D2 ... DN-1DN
SO' *S1'S2' .**SN-1SN

Co' Cl'C2'. . . CN-I 0

CL determines lookahead bit

Q= Ro. (1)

This nonrestoring algorithm which uses lookahead
and carry-save addition reduction to speed up the
division process can be implemented best in an aug-
mented array using three types of logic cells and a minor
amount of additional logic. The logic cells are illustrated
in Fig. 2(a) and the array schematic for the same size
operands as in Fig. 1 is shown in Fig. 2(b). The CLA cell
incorporates logic to determine the carry into the sign
position of the partial remainder. This logic is depen-
dent on the word length N, and for long word lengths
(N. 10), two levels of lookahead must be used in order
to minimize fan-in. A maximum fan-in of .8 has been
assumed for the analysis of performance in Section IV.

Since the form of the lookahead network CLA varies
as a function of wordlength N, it is not strictly techni-
cally correct to call IAD an iterative array in the ac-

3For i=O: S=A =dividend, Q-1=1 =CN, and C=O . * 1.
I After the shift, the low-order bits of a double-length dividend

can be introduced into the vacated Sv position, one bit at a time, and
CN can be set to Qi to accomplish the 2's complementing function
on D.

173

IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1973

Dt SCt

,Ce,<C \-
IV P S'C' Di

24

° 22 t

Id
0

'T 6

< 4-

az 2-

(a)

tn

0

+

0U

/
BASIC
ARRAY

IAD

BREAKPOINT

4 8 16 32
OPERAND LENGTH (bits)

(a)

(b)
Fig. 2. IAD system. (a) The typical cells. (b) Example:

8-bit dividend, 4-bit divisor.

cepted sense of that term which usually means a single
fixed-cell design repeated in a regular pattern to ac-
commodate any operand length. That is why we have
added the modifier "augmented" at the beginning. The
left-edge sign cells S and the EXCLUSIVE-OR gates are
another departure from strict uiniformity.

It should be noted at this point that simply adding
lookahead alone to the basic array of Section II does
not achieve the same results as the IAD. Much more
lookahead circuitry would be needed to generate all
partial remainder bits quickly in each row to achieve
the same speed as in the IAD. It is the combination of
carry-save reduction and sign-bit lookahead that
achieves the high speed at reasonable cost.
The S cells are in the sign position of the partial

remainder and compute the binary sum of Do, So, CO
from operation (1), in the FULL ADDER. This sum is then
added (in the EXCLUSIVE-OR gate) to the carry output
Co' from the 3-to-2 reduction in the adjacent A cell.
Finally, the result is added to the carry-lookahead bit
CL in the EXCLUSIVE-OR gate at the output of the CLA
cell, the answer being Ro, which is Qi for the ith row.
The quotient bit Qi is actually derived from the inverter
output in the S cell of the next row.
The A cells which constitute the main body of the

array perform the 3-to-2 carry-save reduction called
for in Step 1 of the IAD algorithm and illustrated in (1).
The functions P (propagate) and G (generate) are also
computed in the A cell.

IV. IAD PERFORMANCE
It is important to note that the IAD presented in

Section III results in division times that essentially
increase only linearly with word length. The trend is

OPERAND LENGTH (bits)

(b)
Fig. 3. Comparison of IAD and basic array. (a) Speed of IAD

versus basic array. (b) Cost of IAD versus basic array.

actually proportional to N log N where the log N term
results from the lookahead function, with the maximum
gate fan-in determining the base of the logarithm. The
division time in the basic design of Section II increases
proportional to N2 due to the carry propagation along
each row.
The two designs will be compared with respect to

speed and cost for word lengths from 4 bits to 32 bits.
From 10 bits up, two levels of lookahead are needed in
the CLA cells of the IAD to maintain the worst case
fan-in at 8 inputs. Speed is evaluated in terms of the
number of gate delays (each gate having an assigned
delay of one unit) and cost in terms of gates plus inputs.
All synthesis is evaluated in terms of AND, OR, and NOT
gate implementations of the various cell functions. Even
though this may be only a rough gauge of actual delay
when integrated circuits are used, it is valid as a com-
parative tool when considering alternate designs. Worst
case delays for a full N+1-bit quotient are as follows.
Basic array: T=2N2+7N+5, where the delay per bit
is 3 for the EXCLUSIVE-OR gate plus 2(N+1) for carry
ripple; and IAD: T=12(N+1) for N<9, or 14(N+1)
for 10<N<32 where the delay per bit is 7 for the A cell
plus 2 (or 4) for the CLA cell plus 3 for the EXCLUSIVE-
OR gate. It should be noted that a functionally equiva-
lent A cell having lower delay but more gates could be
designed. Similarly, the CLA cell and the EXCLUSIVE-OR
gate could be combined to reduce overall delay, again at
increased cost.
Approximate speed and cost curves are plotted in

Fig. 3(a) and (b). Note that at N= 16 bits, the IAD is
about 2.6 times faster than the basic array and about
22 percent more expensive; while at N= 32 bits, the
figures are five times faster and 25 percent more expen-

174

CAPPA AND HAMACHER: ARRAY FOR BINARY DIVISION

sive. The number of gates and inputs involved for
either array at the larger values of N is clearly only
feasible if the arrays are implemented using reasonably
large-scale integration of sublogic blocks.

It is also instructive to compare the IAD design pro-

cedure with another recent high-speed divider design
technique reported by Stefanelli [7]. Working with his
best design, procedure four, it is easy to see that N quo-

tient bits are computed in a delay of approximately

N(rm + 2T,,± r8) + INTb
divider converter

where Tm, Tr,, and rT are the delays through the multi-
plier gate, parallel counter, and subtractor of [7, fig. 10]
and rb is the delay through each box of the converter of
[7, fig. 11]. These circuits are actually ternary, although
the external inputs and outputs (divisor, dividend, and
quotient) are binary. For comparison to the IAD, it is
reasonable to assume at least three units of delay for
each of rTp, T., and rb; this being the delay through a

standard two-level binary synthesis of each function as-

suming binary-coded ternary representation, and as-

suming input complements are not available. One unit
of delay is assigned to rm since it corresponds to an

AND-gate function. Therefore, total delay through the
Stefanelli divider (procedure four) is approximately
13N compared to 14N for IAD. A cost comparison be-
tween these two dividers is somewhat more difficult
because no detailed synthesis has been specified in the
Stefanelli paper. In any event, a reasonably straight-
forward line of reasoning leads to the conclusion that a

comparison of the array costs can be approximated by
a comparison of the cost of the A cell used in the IAD
with the cost of a four-input two-output ternary parallel
counter (Stefanelli) since these two modules are the
basic components in the main body of the respective
arrays. The A cell of the IAD should be substantially
cheaper than any implementation of the Stefanelli
counter.

It should also be noted that the size of the Stefanelli
counter is actually a slowly varying function of N,
which is difficult to determine, and the above size (four
inputs, two outputs) is for the case of N= 12. For larger
N, a slightly larger counter would be required.
A comment should be made about fan-out problems.

They certainly exist in all three designs discussed in the
preceding, for the larger values of N, but their elimina-
tion would affect the cost and speed of each design to

about the same degree, so that the parameters com-

puted above remain a valid indication of the relative
merits of the various design procedures.

V. CONSTRUCTION OF AN 8-BIT DIVIDER

In order to verify the practicality of the IAD design
procedure, a prototype divider was built from com-

mercially available integrated circuits. In the prototype,

a 16-bit dividend is divided by an 8-bit divisor yielding
an 8-bit quotient. The total network is mounted on

eight standard cards, holding a total of 136 IC's, each
card generating one quotient bit. The IC technology
used was SSI and MSI high-speed TTL with a basic
gate delay of about 6 ns. The worst case delay per
quotient bit was computed to be 65 ns implying that all
eight quotient bits could be generated in about 512 ns.
Experimentally, worst case delays of under 500 ns were
measured. Since we have demonstrated that speed is
almost linear with operand length, it is feasible to con-
struct combinational division circuits from currently
available high-speed TTL IC's that operate within
about a memory cycle (1 ,us) in a 12- or 16-bit computer,
assuming that a word-length accuracy quotient is gen-
erated. Whether or not the cost can be justified clearly
depends on the application.

REFERENCES
[1] 1. Flores, The Logic of Computer Arithmetic. Englewood Cliffs,

N. J.: Prentice-Hall, 1963.
[2] F. C. Hennie, Finite-State Models for Logical Machines. New

York: Wiley, 1968, ch. 10.
[3] A. Habibi and P. A. Wintz, "Fast multipliers," IEEE Trans.

Comput. (Short Notes), vol. C-19, pp. 153-157, Feb. 1970.
[4] S. D. Pezaris, "A 40-ns 17-bit by 17-bit array multiplier," IEEE

Trans. Comput. (Short Notes), vol. C-20, pp. 442-447, Apr. 1971.
[5] J. C. Majithia, "Nonrestoring binary division using a cellular

array," Electron. Lett., vol. 6, pp. 303-304, 1970.
[6] H. H. Guild, "Some cellular logic arrays for non-restoring binary

division," Radio Electron. Eng., vol. 39, pp. 345-348, 1970.
[7] R. Stefanelli, "A suggestion for a high-speed parallel binary

divider," IEEE Trans. Comput., vol. C-21, pp. 42-55, Jan. 1972.
[8] M. Cappa, "Cellular iterative arrays for multiplication and divi-

sion, " M.S. thesis, Dep. Elec. Eng., Univ. Toronto, Ont., Canada,
Oct. 1971.

Maurus Cappa was born in Barile, Italy, on
December 22, 1947. He received the B.A.Sc.
and the M.A.Sc. degrees in electrical engineer-
ing from the University of Toronto, Toronto,
Ont., Canada, in 1970 and 1971, respectively.
His gradutate work in the Comptuter Group of
Electrical Engineering at the University of
Toronto was sponsored by a National Re-
search Council Scholarship.

He is currently with Collins Radio Com-
pany, Toronto, Ont., Canada, where he is in-

volved in the design of frequency synthesizers for use in military
transceivers.

V. Carl Hamacher (S'66-M'68) was born in
London, Ont., Canada, on September 28,
1939. He received the B.A.Sc. degree in engi-
oneering physics from the University of Water-
loo, Waterloo, Ont., Canada, in 1963, the

g M.Sc. degree in electrical engineering from
Queen's University, Kingston, Ont., Canada,
in 1965, and the Ph.D. degree in electrical
engineering from Syracuse University, Syra-
cuse, N. Y., in 1968.

He was appointed Assistant Professor in
both Electrical Engineering and Computer Science at the University
of Toronto, Toronto, Ont., Canada, in 1968, and is currenitly an As-
sociate Professor in those departments. His research interests include
automata studies, iterative array structures. and computer organiza-
tion.

Dr. Hamacher is a member of the Association for Computing
Machinery and Sigma Xi.

175

