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computers, each trial can be made in less than 10 ps, so this
many trials could be made in about 3 to 5 hours. Using
special hardware for the solution of linear Boolean equa-
tions, these times could likely be improved by a factor of
10 or more.

Pless's scheme already has the disadvantage that about
38 000 sets ofprimitive coefficients must be stored in order to
obtain the full set of initial states. An attempt to improve the
security ofthe cipher by increasing the size ofthe FR's would
greatly increase this storage requirement.
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A New Hybrid Algorithm for Computing
a Fast Discrete Fourier Transform

IRVING S. REED, FELLOW, IEEE, AND T. K. TRUONG

Abstract-In this paper for certain long transform lengths, Wino-
grad's algorithm for computing the discrete Fourier transform
(DFT) is extended considerably. This is accomplisbed by performing
the cyclic convolution, required by Winograd's method, witb the
Mersenne prime number-theoretic transform developed originanly by
Rader. This new algorithm requires fewer multiplications than eitber
the standard fast Fourier transform (FFT) or Winograd's more
conventional algorithm. However, more additions are recuired.

Index Terms-Discrete Fourier transform (DFT), fast Fourier
transform (FFT), Winograd's algorithm.

INTRODUCTION
S EVERAL authors [1]-[13] have shown that transforms
Sover finite fields or rings can be used to compute circular
convolutions without roundoff error. Recently, Winograd
[14] developed a new class of algorithms which depend
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heavily on the computation of a cyclic convolution for
computing the conventional discrete Fourier transform
(DFT). This new algorithm, for a few hundred transform
points, requires substantially fewer multiplications than the
conventional fast Fourier transform (FFT) algorithm.

C. M. Rader [3] defined a special class of finite Fourier-
like transforms over GF(q), where q = 2P- 1 is a Mersenne
prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 61 *--. These
number-theoretic transforms are used and specialized here
to transform lengths of p points. The advantage of this
transform over others is that it can be accomplished simply
by circular shifts, i.e., no multiplications are needed [3]. The
disadvantage of this transform is that the sequence length p
is a prime number. As a consequence the most efficient FFT
algorithm cannot be used. It is rather inefficient with regard
to additions.

In this paper, it is shown that Winograd's method can be
combined with the above mentioned number-theoretic
transform over GF(q) to yield a new algorithm for comput-
ing the DFT. By this means, a fast method for accurately
computing the DFT of a sequence of real and complex
numbers of very long transform lengths is obtained.
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The number of multiplications and additions needed to
perform a cyclic convolution of 2, 3, 4, 5, 6, and 8 points are
given in Table I [17]. To compute the cyclic convolution of
two longer sequences of integers, a p-point transform over
GF(q) will be utilized in this paper. Since the latter transform
can be evaluated without multiplications [3], it can be used
with advantage to compute the cyclic convolution of two
p-point real number sequences. The number of integer
multiplications and additions needed to perform such a
cyclic convolution over GF(q) is precisely p (excluding the
multiplications by p1 in the inverse transform) and
p(p - 1), respectively.

THE DFT WHEN THE TRANsFoRM LENGTH d
IS A PRIMEd = q

The DFT is defined by
d-i

Ai= ai w'j
i=O

where w is a dth root of unity. Let
d-1

Ao= E ai
i=O

and

Ah=ae+Bj forj=12,..d-I
where

d-1

B1= Z a,wj
i=l1

That is, let

B= Wai (2)

where W is the (d - 1) x (d - 1) matrix (wij) and a, B are the
column matrices (at) and (Bj), respectively. If d= q' is a
prime, then by [18] one can find an element cx in GF(q') which
generates its cyclic multiplicative subgroup of q' - 1 ele-
ments. Using the element oa, a cyclic permutation of the
nonzero elements of GF(q') can be defined by o(i) = ocx for
i = 1,2, * *, q' -1. With this permutation, one can permute
the indices of B, a, and W defined in (2) so that the matrix
w =- (wG(J)d(U)i))j0, is cyclic. That is,

q'- 1

i=l

qi-l

=E aar(i)Wa(+J
i=l

TABLE I
COMPLEXITY OF HYBRID DFT FOR REAL AND COMPLEX DATA

No. Integer No. Integer 1 No. Integer No. Integer
d = ql q - 1 Mult. Add. Mult. Add.

Real Data Real Data oomplexData Conplex Data

367 2 - 3 61 488 61976 976 123952

373 22. 3 31 620 41044 1240 82088

733 2 .3 - 61 1220 153964 2440 307928

1831 Z- 3- 5 . 61 4880 607560 9760 1215120

1861 22. 3 * 5- 31 6200 412920 12400 825840

2441 23 5 61 1 8540 1073600 17080 2147200

ai x ai cyclic matrix can be partitioned into b' , cyclic
matrices of block size ai+1 x a + 1. Otherwise, the procedure
terminates. If the number of multiplications and additions
needed to compute the cyclic convolution of pi points is mi
and ai for i = 1, 2, ..., r, respectively, then Winograd,
Agarwal, and Cooley have shown in [16], [17] that the
number of multiplications for computing a q'-point DFT is
equal to ml*m2 m, and ajp2" Pr+mla2P3 ...

(1) Pr + mIm2 a3P4 .. Pr + "' + ml *-- m, iar, respectively.
For most applications, the two Mersenne primes 231 _ 1

and 261 -_ will provide enough bit accuracy and dynamic
range for computing the DFT. For these primes, one can
choose the prime q' to have the form

q = 1 + (a - 2n) - p for n = 1, 2, 3

where p = 31 or 61 and a = 3 or 5. Such values for the prime
q' are 367, 373, 733, 1831, 1861, and 2441.

If d= q' is the transform length of the DFT, then by
Theorem 1, there exists a permutation of rows and columns
so that the cyclic matrix W can be partitioned into blocks of
p x p cyclic matrices, such that the blocks form a (2' * a) x
(2n a) cyclic matrix. This cyclic matrix can be reduced
further by Winograd's method. First q' - 1 = 2- a p is an
even number and W2n ap = w-1 where w is the dth root of
unity in the field of complex numbers. For such a case,
Winograd showed that the elements in the p x p cyclic
matrices finally required by the transform are either all real
or imaginary numbers. To show this, consider the case
n = 1. For this case, q' - 1 = 2 * a p. The permutation is
given by a(i) = oc' for i = 1, 2, , ap, -, 2ap, where a is a
generator of the multiplicative subgroup in GF(q'), consist-
ing of q' - 1 = 2ap elements. Applying this permutation to
(2) and using the fact that ePaP=-1 mod q', one obtains the
cyclic matrix equation in terms of w as follows:

Thus, B,(j) is a cyclic convolution of a,(j) and wG(i) forj = 1,
2, q",q'-1.

Let q'- I=PI * P2 Pr, where (Pi,pj)= 1 for ij. If
one lets a1 = Pf P2 * Pr-I and b1= Pr, by [15], [16] the
cyclic matrix W can be partitioned into b2 = pr cyclic
matrices each of block size a1 x a1. Next let a1 = a2 x b2,
where a2 = PI * * * Pr-2 and b2 = Pr- 1 If a2 is not a prime,
then each a1 x a1 cyclic matrix can be partioned into b2
cyclic matrices of block size a2 x a2. In general,
ai = ai+1I bi+ 1, where bi+ 1is a prime. Ifai+ 1 1, then each

4'o X]1X2 * XmI2
I1 X2 X3 * X(m/2) +1

LAM-I21 XmXOXi
1m-x10x1x2

* XmXO Yo

XoX1 Yi

X(m/2)- I... Xm- 1 Ym-2

Xm/2 Xm JLYm-l

(4)
where m= 2ap, 4ok = b(k)5 XO = Wa, X1= Wa2, ,
Xap = w , xap+ 1 w ,,*xIx2ap= w and Yk = a¢,(k).
When it is clear, we let [ ]C represent the cyclic convolu-
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tion of a matrix as shown in (4). Also let [ ]T denote the
transpose of a matrix. Then (4) may be rewritten as

[40) 01k, (m-2, Pm-1]T = [X1 X29 9 Xm/2,
..

Xm5 X0]c

[Yo, Yi, , Ym- 2 Ym-1].

(5)
By [15], [16], the above cyclic 2 x ap matrix equation

can be partitioned into blocks of ap x ap cyclic matrices, so
that the blocks form a 2 x 2 cyclic matrix. To illustrate this,
note first that 2 and a - p are relatively prime. Thus, by the
Chinese Remainder Theorem, an isomorphism exists be-
tween an integer k modulo m, the pairs of integers k1 and k2
modulo 2, and a - p, respectively, i.e., k -* (k1, k2). This
relationship between k and (k1, k2) is

k=k1IMj1 + k2M mod m

where M1 andM -1 satisfy the congruences a * pMj 1 _ 1
mod 2 and 2Mj- 1- mod a * p, respectively.

Let the variables Xk = X(k ,k2) be rearranged in the order

T(u)-(B + Au) * (Y2+ Y1u) mod (U2- 1) (8)

where u2- 1 (u - 1)(u + 1) and u - 1 and u + 1 are
relatively prime polynomials.
Taking the congruences of T(u) in (8) modulo u - 1 and

u + 1, respectively,

T1(u) _ (B + A) - (Y2+ Y1) mod u-1 (9a)

and

T2(u) =-(B-A) (Y2-Y) mod u + 1. (9b)

By the Chinese Remainder Theorem T(u) can be recon-
stituted from (9a) and (9b) as follows:

T(u) = 2-1[(B + A) (Y2 + Y1)-(B-A)(Y2- Y1)
+ ((B + A). (Y2 + Y1)+ (B-A) * (Y2- Yl))u]

= X1 + X2U.

This is reexpressed in matrix form as

X(0,0), X10,1), X(0,2)s - X(O,ap-1)9 X(1,0)i, X(1,1)il X(1,2),
..

X(l,ap-l)

If such a rearrangement is also made on the variables y, and
(Dk, respectively, the cyclic convolution (5) has the block
form

[X1, X2]T= [A, B]c[Y,, y2]T (6)
where

Xi = [0(0,0)o) 0(0,1)9 , 0(0,ap- IJTJO
X2 = [(1,0) 11), 4(l,ap-)]T

Yi = [Y(o,o) Y(o,u) . Y(O,ap- 1)]Ta
Y2 = [Y(1,o), Y(I, ), Y(l,apl)]

A = [X(1,l), X(1,2), XX(l ap- 1), X(l 0)],

and

B = [X(O,l), X(0 2), * X(O,ap- 1), X(O O)].C

Since

X(O,ap- 1) =W =Oa )+(,1

W
'(O

= W

then
(I,j= i+a O,I) = Z(,j+ 1) a(1,0)+(1j+ 1)

{1,(lj+ 1) _ a(Oj)+((1,) _ *

for j = 0, 1, * *, ap - 1 where * denotes complex conjuga-
tion. Thus, in (6) the cyclic matrix A is the complex
conjugate of the cyclic matrix B, i.e.,

A = B*. (7)

The matrix equation in (6) can be obtained by computing
the set of coefficients of

X r(B+A) (Y2+ Y1)+ (A-B) (Y2- Y1)
lX L(A +B)-(Y2 + Y1)-(A-B) (Y2- Y1)

By (7), the elements of the cyclic matrices (B + A) and
(A - B) in (10) are evidently real and imaginary numbers.
Since (a, p)= 1, the cyclic matrices (B + A) and (A - B)
can be partitioned into blocks of p x p cyclic matrices
such that the blocks themselves form a x a cyclic matrices.
Thus, the elements of these p x p cyclic matrix blocks are
either real numbers or imaginary numbers, never complex
numbers. Hence, if the input datum is real, then a multi-
plication by an element in such a p x p cyclic matrix
requires only one real multiplication. If the input datum is
a complex number, then a multiplication by an element
in such a p x p cyclic matrix requires two real multiplica-
tions.
Using a procedure precisely similar to that used above for

n = 1, it can be shown that the elements in the required p x p
cyclic matrices of the 2' * ap cyclic matrix for n = 2, 3 are
also either real numbers or imaginary numbers. It was
pointed out in the last section that a transform of length p
over GF(q) can be used to compute the cyclic convolution of
p real number points. The register wordlength required to
compute a transform of length p over GF(q) is p + 1. The
number of multiplications and additions needed to perform
this convolution is p and 2(p - l)p, respectively. If one
combines this with the number of multiplications and
additions needed for Winograd's algorithm for the prime q',
the total number of multiplications and additions required
to perform a DFT of d = q' real or complex number points
can be computed. The results are shown in Table I.

It has been shown that Winograd's algorithm can be
combined with a transform over GF(q) to yield a new rather
fast hybrid algorithm for computing the DFT of real and
complex values. A flowchart of this new hybrid algorithm is
shown on the following page.
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HYBRID ALGORITHM FOR COMPUTING DFT FLOW-CHART

Enter the input data ai for

i=O,1,..,q'-1, where

q1=+(a.an).p is a prm

ijPermute the indices of a. and the matrix (w ),

where i, j # 0, defined in (2b) so that the matrix

W=(wa(i+i))i 0is cyclic

Permute the rows and columns of the matrix W
so that W can be partitioned into a. an x a. 2n
block matrix of px p cyclic matrices, where the
elements of the px p cyclic matrices are either

real or imaginary numb er's

1I
| Perform a 2n cyclic convoluticn using Winograd's

method

I'

Calculate B. for j = 1, 2, . . ., q-1 defined in (2a)
Calcate A. forj . q dfin

|Calculate Aj for j = E,1, 2, . ..D , q_ 1 defined in (2a)

END

In this algorithm, it is necessary to compute the cyclic
convolution ofp real number points. This cyclic convolution
of two p-point sequences of real number points is given by

p-1

Ck= E ejf(k-n)
n=O

where Ck, e., fn E GF(q), and (k - n) denotes the residue of
k - n mod p. To compute this convolution the components
of the truncated real number en andfn must be converted first
to integers a. and bn with dynamic ranges A and B, respec-
tively. In [6], [9], it was shown that a sufficient dynamic
range constraint for A and B is

A < q2B (12)
-2Bp

If the circular convolution of a. and b. is denoted by ck for
k = 0, 1, 2, * , p - 1, then using the procedure described in
the example of [7], ck can be obtained by using fast trans-
forms over GF(q). Ck in (11) can be obtained by scaling back
c' to the scale of the original real numbers for k = 0, 1, 2, *..,
p - 1. Evidently, the only error made in this computation of
the ck's is the truncation error.

The dynamic range constraint A of the input sequence
given in (12) is generally very pessimistic. It was shown in
[19] that for integer convolutions, one can lessen the severity
of the dynamic range constraint (12) and still maintain Ck in
the interval + (q - 1)/2 with a small probability ofoverflow.
To illustrate this new hybrid algorithm consider the

following example.
Example: Consider the DFT for d = 7 points. Let the

input function be defined by

an=1 forn=0,2

=0 forn= 1,3,4,5,6.

By (1), this transform is
6

AO= E ai= 2 + iO
i=O

(13a)

and

Ai= aO + bi for j= 1, 2, * , 6 (13b)

where
6-1

bj= aiwij, w =ei2-/7.
i=l

For d = 7, the permutation a is given by a(i) = c*x mod 7 for
i = 1, 2, *-*, 6. Applying the above permutation to (13b), one
obtains B= Wa as

[b3, b2, b6, b4, b5, b JT

= [W2, W6, w4, w5, wI, w3]C[a3, a2, a6, a4, a5, a1f. (14)

By [15] and [16], there exists a permutation ir of rows and
columns so that the above cyclic matrix can be partitioned
into 2 x 2 block matrix of 3 x 3 cyclic blocks as follows:

1b3\ w2W1w4w5w63
b5 W Ww w w wS O

b6 -W4W2WIW3W5W6 O1b51 146 352 k

b4 wwwwww 0
1b61 6I 5\14 jb2 wwWWw w w2 1
b,l w3w5w6w4w2wI 0

This matrix equation has the block form

[B1, B2]T= [C, D]c[Z1, Z2 ]T

= 2-1[(C + D)(Z1 + Z2) + (C - D)(Z1 -Z2)
(C + D)(Z1 + Z2) - (C - D)(Z1 - Z2)]

= 2-1[E + F, E - F]T. (15)

Since C and D are 3 x 3 cyclic matrices, it is evident that the
matrices C + D and C - D are also 3 x 3 cyclic matrices.
(Note that for a 6 x 6 cyclic matrix in (14), the powers ofw in
E and F in (15) are real numbers and imaginary numbers,
respectively.) In (15), E is

E = [eo, el, e2] = [-0.445, 1.247, - 1.802]c[O, 1, 0]

(16)

where approximately 'Re(w2 + w5) = -0.445, jRe(wl +

Perform px p cyclic convolution using- a trans-
form over GF(q), where q = aP- 1 is a Mersenne

prime
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w6) = 1.247, etc. Let ao = - 1.802, al = -0.445, a2 = 1.247
and yo = 0, Yi = 1, Y2 = 0. Then the matrix equation de-
fined in (16) can be obtained by computing the convolution
of the two sequences an and yn. This requires using a trans-
form over GF(q). In order to avoid overflow one needs to
choose q = 7 so that the integer components of a", y,, lie
in the interval + (7 - 1)/2.
By [7], the sequence ofa is converted first to a sequence of

integers x0 in the dynamic range A = 2. Since 2 is a 3rd root
of unity, the transform over GF(7) of x0 is

3 - I

Xk = E Xn . 2nk = _1 + 22k
n=O

for k=0, 1,2.

Thus Xo= 0, XI = 3, and X2 = 1.
Similarly, the transform over GF(q) of sequence yn is

3-1

Yk Z Yn * 2k= 2k for k = 0, 1, 2.
n=O

That is, Y0 = 1, Y1 = 2, and Y2 = 4. Define Ek = Xk* Yk, i.e.,
Eo = 0, E1 = 6, and E2 = 4. These are the only integer
multiplications needed to perform this DFT. The inverse
transform of Ek is

3-1

e = 3-1 E Ek * 2-nk for n = 0, 1, 2
k=0

or eo = 1, el =-1, e2 = 0-
In a similar fashion, matrix F, given in (15), can also be

obtained asf0 = -i,f = i - 0, andf2 =-i. Thus, by (15),
one obtains b1 = 2i, b2 =-2, b3 = (1-i)/2, b4 = (1 + i)/2,
b5 =-2, and b6=-i/2. Hence, finally Ao=2+iO,
Al 1 +ji, A2= +iO, A3= (3-i), A4= (3 + i),
A5 = 2 + iO, and A6 = 1 - ji. For this example, the dyna-
mic range of GF(7) is inadequate. Also, there is a large
truncation error due to the course approximation used for
the roots of unity. Evidently, theDFT in this example has an
accuracy of precisely 2 binary digits, including the sign bit.
This example, though only illustrative, suggests that the
large finite fields suggested above have more than adequate
dynamic range to compute the DFT with small truncation
error.

TRANSFORMS OF VERY LONG SEQUENCES
In order to compute the DFT of much longer, sequences

than considered in the last section, let d = d- d2 ... d
where (di, dj) = 1 for i * j. By using the Chinese Remainder
Theorem [20], it is shown by Winograd in [14] that theDFT
matrix W can be transformed into the direct product of W1,
W2, , W, where Wi is the matrix of a di-point DFT.
Assume the number ofmultiplications and additions used to
perform the drpoint DFT for i = 1, 2, , r is mi and ai,
respectively. Then, the number of multiplications and addi-
tions for computing a d-point DFT is m1 M2 .. m, and
a, d2 . dr + mla2d3 . dr +mIm2a3d4 Pr++mI
mr1 ar, respectively. To illustrate this, see Winograd's
example for computing a 12-point DFT given in [16]. By the
same procedure used in the computation ofthis example, the
number of integer multiplications and additions needed to

TABLE II
COMPLEXITY OF NEW HYBRID ALGORITHM FOR DFT

New Algorithm Radix-2 FFT

No. Integer No. Integer No. Real No. Real
d Factors Mult. Add. Mult. Add.

ComplexData Complex Data 2d log2d 3d log2d

4096 212 98,304 147,456

4476 3 x 4 x 373 14, 880 1,02064

8192 2 212,992 319A488
8796 3 x 4 x 733 28, 800 3,765,504

16384 214 458,752 688,128

20888 7 x 8 x 373 89, 280 6299,748

32768 2 983, 040 1474560

41048 7 X 8 x 733 175, 680 229364068

62664 3 X 7 x 8 x 373 267, 840 19,149,900

65536 216 2,097,152 3,145728

123144 3 x 7 x 8 x 733 527, 040 69,300,780

131072 217 4,456,448 668,4672

262144 218 9,437, 184 14155776

268560 5 x 9 x 16 x 373 1,740,960 124,534,776

524288 219 19, 922 944 29,884416

527760 5 x 9 x 16 X 733 3,425,760 450,573,816

perform the transforms of longer sequences of complex
numbers can be obtained by using Table I of this paper and
[14, table I]. These numbers are given in Table II. The
present algorithm and conventional FFT algorithm [21] are
compared in Table II by giving the number of real multi-
plications and additions needed to perform these algo-
rithms. The number of real multiplications and additions
needed to perform a transform of a few thousand points is
given in [14, table II].

ACKNOWLEDGMENT

The authors wish to thank Dr. N. A. Renzetti, Manager
of Tracking and Data Acquisition Engineering at the Jet
Propulsion Laboratory for his continued support and
encouragement of the research which led to this paper.

REFERENCES
[1] J. M. Pollard, "The fast Fourier transform in a finite field," Math.

Comput., vol. 25, pp. 365-374, 1971.
[2] A. Schonhage and V. Strassen, "Schnelle multiplication grosser

zahlen," Computing, vol. 7, pp. 281-292, 1971.
[3] C. M. Rader, "Discrete convolution via Mersenne transforms," IEEE

Trans. Comput., vol. C-21, pp. 1269-1273, Dec. 1972.
[4] R. C. Agarwal and C. S. Burrus, "Number theoretic transforms to

implement fast digital convolution," Proc. IEEE, vol. 63, pp. 550-560,
1975.

[5] , "Fast convolution using fermat number transforms with appli-
cations to digital filtering," IEEE Trans. Acoust. Speech, Signal
Processing, vol. ASSP-22, pp. 87-97, Apr. 1974.

[6] I. S. Reed and T. K. Truong, "The use of finite fields to compute
convolution," IEEE Trans. Inform. Theory, vol. IT-21, pp. 208-213,
1975.

[7] , "Complex integer convolution over a direct sum of galois
fields," IEEE Trans. Inform. Theory, vol. IT-21, pp. 657-661, 1975.

[8] E. Vegh and L. M. Leibowitz, "Fast complex convolution in finite
rings," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24,
pp. 343-344, 1976.

491



EmE TRANSACllONS ON COMPUtERS, VOL. c-28, NO. 7, JULY 1979

[9] S. W. Golomb, I. S. Reed, and T. K. Truong, "Integer convolutions
over the finite field GF(3 - + 1)," SIAM J.. Appi. Math., vol. 32,
Mar. 1977.

[10] J. M. Pollard, "Implementation of number-theoretic transforms,"
Electro. Lett., vol. 12, pp. 378-379, 1976.

[11] K. Y. Liu, I. S. Reed, and T. K. Truong, "Fast number-theoretic
transforms for digital filtering," Electron. Lett., vol. 12, pp. 644-646,
1976.

[12] I. S. Reed, T. K. Truong, and K. Y. Liu, "A new fast algorithm for
computing complex number-theoretic transforms," Electron. Lett.,
pp. 278-280, 1977.

[13] I. S. Reed and T. K. Truong, "Fast Mersenne-prime transforms for
digital filtering," Proc. IEE, vol. 125, pp. 433-440, May 1978.

[14] S. Winograd "On computing the discrete Fourier transform," Proc.
Nat. Acad. Sci. U.S., vol. 73, pp. 1005-1006, 1976.

[15] I. J. Good, "The interaction algorithm and practical Fourier
analysis," J. Royal Statis. Sci., Ser. B, vol. 20, pp. 361-372, 1958,
"Addendum, 'vol. 22, MR 21 1674; MR 23 A 4231, pp. 372-375,1960.

[16] S. Winograd, "On computing the discrete Fourier transform," Res.
Dept. Math. Sci., IBM T. J. Watson Res. Ctr., Yorktown Hts., NY
Res. Rep.

[17] R. C. Agarwal and J. W. Cooley, "New algorithm for digital convolu-
tion," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-25,
pp. 392-410, Oct. 1977.

[18] C. M. Rader, "Discrete Fourier transforms when the number ofdata
samples is prime," Proc. IEEE, vol. 56, pp. 1107-1108, June 1968.

[19] I. S. Reed, Y. S. Kwoh, T. K. Truong, and E. L. Hall, "X-ray recon-
struction by finite field transforms," IEEE Trans. Nucl. Sci., vol.
NS-24, pp. 843-849, Feb. 1977.

[20] I. Niven and H. S. Zuckerman, An Introduction to the Theory of
Numbers. New York: Wiley, 1966.

[21] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calcu-
lation of complex Fourier series," Math. Comput., vol. 19, pp. 297-
301, Apr. 1965.

Irving S. Reed (SM'69-F73) was born in Seattle,
WA, on November 12, 1923. He received the B.S.
and Ph.D. degrees in mathematics from the Cali-
fornia Institute of Technology, Pasadena, in 1944
and 1949, respectively.
From 1951 to 1960 he was associated with

Lincoln Laboratory, Massachusetts Institute of
Technology, Lexington. From 1960 to 1963 hewas
a Senior Staff Member of the RAND Corpora-
tion, Santa Monica, CA. Since 1963 he has been
a Professor of Electrical Engineering and Com-

puter Science at the University of Southern California, Los Angeles. He
is also a Consultant to RAND and a Director of the Technology Cor-
poration, Santa Monica, CA. His research interests include mathematics,
computer design, coding theory, stochastic processes, and information
theory.

T. K. Truong was born in Cholon, Vietnam, on
December 4, 1944. He received the B.S. degree in
electrical engineering from the National Cheng-
Kung University, Taiwan, in 1967, and the M.S.
degree in electrical engineering from Washington
University, St. Louis, MO, in 1971, and the
Ph.D. degree from the University of Southern
California, Los Angeles, in 1976.

Since 1976 he has been with the System Engi-
A-1X>_t'\i' neering Technical Staff of the Jet Propulsion

Laboratory, Pasadena, CA. He is also currently
a part-time Research Scientist at the University of Southern California.
His research interests include the areas of mathematics, computer logic,
and coding theory.


