706

tient. If m bits are used from the reciprocal the table re-
quires 2™ entries and establishes m bits of quotient.

Since the table doubles in size for each additional bit of
accuracy required in the initial quotient guess, small changes
in the convergence rate per iteration may reflect substantial
changes in the size of the starting table. Notice in almost all
schemes the error is biased, hence it (or part of it) can be
subtracted from the quotient, slightly reducing the average
error. Referring back to Fig. 1, since we are approaching
the root from the left side uniformly, we may predict ahead
part of the distance for the next iteration. While this is at-
tractive, the error bias may serve a useful function when
left in the iterant. In certain cases it will serve to protect the
integrity of integers (i.e., integer quotients will be preserved
in their usual representation).

CONCLUSION

The problem of finding complexity or efficiency bounds
for division is much more difficult than for add or multiply
because of the multiplicity of approaches. The best known
techniques require two basic arithmetic operations (add or
multiply) to double the precision of the quotient. Even rela-
tively small improvements in the convergence rate of a
scheme can result in considerable hardware savings in the
area of a starting table. The development of these techniques
remains an open problem as does the application of non-
Newtonian higher order iterations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970

REFERENCES

[1] C. S. Wallace, ““A suggestion for a fast multiplier,” IEEE Trans.
Electronic Computers, vol. EC-13, pp. 14-17, February 1964.

[2] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
“IBM System/360 Model 91: floating-point execution unit,” /BM J.
Res. Develop., vol. 11, pp. 34-53, January 1967.

[3] R. E. Goldschmidt, “Applications of division by convergence,”
M.S. thesis, Dept. of Electrical Engineering, Massachusetts Insti-
tute of Technology, Cambridge, Mass., June 1964.

[4] M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE, vol.
54, pp. 1901-1909, December 1966.

[5] H. H. Laughlin, “Large-number division by calculating machine,”
Am. Math. Monthly, vol. 37, pp. 287-293, 1930.

[6] D. E. Knuth, “Seminumerical algorithms,” in The Art of Computer
Programming, vol. 2. Reading, Mass.: Addison-Wesley, 1969,
p- 215.

[7] M. Lehman, D. Senzig, and J. Lee, “Serial arithmetic techniques,”
1965 Fall Joint Computer Conf., AFIPS Proc.,vol.27. Washington,
D. C.: Spartan, 1965, pp. 715-725.

[8] E. V. Krishnamurthy, “On optimal iterative schemes for high-speed
division,” IEEE Trans. Computers, vol. C-19, p. 227-231, March
1970.

[9] J. F. Traub, Iterative Methods for the Solution of Equations. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1964.
[10] R. K. Richards, Arithmetic Operations in Digital Computers. New

York: Van Nostrand Rheinhold, 1955.

[11] M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of Pro-
grams for an Electronic Digital Computer. Cambridge, Mass.:
Addison-Wesley, 1951.

[12] R. J. Fieg, “‘Analysis of a computer divide algorithm,” unpublished
communication.

[13] P. Rabinowitz, “Multiple precision division,” Commun. ACM, vol. 4,
p. 98, February 1961.

[14] K. Kunz, Numerical Analysis. New York: McGraw-Hill, 1957.

[15] D. Ferrari, ““A division method using a parallel multiplier,” IEEE
Trans. Electronic Computers, vol. EC-16, pp. 224-226, April 1967.

High-Speed Computer Multiplication Using
a Multiple-Bit Decoding Algorithm

H. LING, MEMBER, IEEE

Abstract—This paper presents a method of performing the binary
multiplication beyond the scheme of multiple ADD and SHIFT. The
binary multiplication algorithm will be discussed first, followed by
block decoding method, logic implementation, hardware considera-
tion, and two examples which are at the end of the discussion.

Index Terms —Block decoding technique, fast multiplication,
high-speed computer logic, high-speed multiplication, parallel multi-
plication.

Manuscript received May 20, 1969; revised December 12, 1969, and
February 22, 1970.

The author is with the Information Sciences Department, IBM Re-
search Laboratory, San Jose, Calif.

INTRODUCTION

NE problem which the computer field has been con-
@ cerned with for many years is how to improve the

process of binary multiplication beyond the tech-
nique of repetitive ADD and SHIFT.

Some methods have been proposed, all of which have
some disadvantages. It was pointed out by Lamdan and
Aspinall [1], for example, that the realization of simultane-
ous multipliers necessitates a large number of components.
Recently, carry save adders have generally been used to in-
crease the speed of multiplication. However, due to the re-

LING: HIGH-SPEED COMPUTER MULTIPLICATION

quirement of a large amount of hardware support [2], it is
applicable only to a larger machine such as the 360/91.

The author [3] proposed a decomposition scheme to per-
form multiplication in 1966. This paper presents the detailed
binary multiplication algorithm based upon a multiple-bit
decoding technique. The sum (/) and difference (J) of the
factors are assumed to have been computed in advance. A
combinational logic module S is defined which has the
transfer function

2

&@=x—z

s

if the set of n inputs is interpreted as a binary fraction x. If n
is large enough to accommodate the entire length of
I (or J), the product is obtained in three additions, as
demonstrated by (20). If the number of bits exceeds n, then
copies of S may be applied to segments of I and J in parallel
and the results summed to form the complete product. In
particular, if the total length of the product is n-2* bits,
then a total of 1+ 2k additions are required.

707
Lemma 1:Ford=0orl, f() = 0.)
Lemma 2: f(x + y)= f(x) + f(y) + xy. 3)
Lemma 3: f(ny) = n*f(y) — yf(n — 1). “4)
From (4) f(y) can be rewritten as
f) = 1/4)y + (1/4) 1 2y). &)
Taking a binary fraction
X = i x, 27",
n=1

where x,=0 or 1, applying (2), (3), and (5) systematically, we
have

f(x) = f0.x1x,%3 """ x,)
n n—k+1 (6)
=Y /41 +2x) Y x, +k— 12"
k=1 =1

where 1 >x>(1/2), x, =1.

Equation (6) can be rewritten as follows:

THEORY f(x) = D(x) + 2L(x) (7
Let A and B be two fractions whose product is being _ _
sought (we note that with proper scaling A, B can be integers = 3D(x) — 20(x). ®)
or even general floating-point numbers). where!
D(x)=(1/2)x — B(x) 9
Lx)= 0.0 0 (x;x;) (x1x3) (x1x3) (x1X4) - -~ (x1X,,)
+000 O 0 (x2%5) (x5%3) (x,5x,) (10)
+000 0 0 (X, X).
OX)= 0.0 0 (x;x;) (x1x2) (x1x3) (x7x4) " " (X} X,)
+000 O 0 (x3x,) (x5x3) (x5x,) (1)
+ ... +
+000 0 0 C+ (- 1 %)
B(x)=0.0 0x,0x,0x50x, - - - 0x,_,0x,. (12)
Then If both I and J are binary integers,
AB =2[f(I) — f(J) — I — J)/2] 1) I=2%0"ijiyiy---i,) = 2" 13)
with J=2"0"jijajs " J) = 2™, (14)
I =4+ B)2 .
the product AB can be rewritten as
J =A-B)2
f(x) = (1/2)x(x + 1), AB = 2{f[2"] — f[2"]] — (I = J)/2}. (15)

It should be noted that the time required to square a
number will be equal to half of that required in the general
multiplication case due to J =0. The purpose of this section
is to decompose f(I), f(J) into efficiently manageable form.
The following lemmas are presented :

By substituting (4) into (15), the product 4B becomes

! Parenthesized terms represent bits expressed as logical AND functions,
with x’ representing logical complement of x.

708 IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

AB =2 {22" i — @ — 1)% — 22" £(j)

(16) TABLE I
o 1) J (d-J) THE LOGIC IMPLEMENTATION OF S
- - e — b
2 2 . , ,
S, S, s, S5 S,
or simply
I J i i hizly hizisis hizisis.
. 2 . am o i4050,15i51g iyi%isiLig IRAANAN
AB = 2{2 nf(l) -2 f(]) - 2n<§> + 2m<§>} (17) iy150, 056l IRAAAR INAARAA
iy 151 i5igly IAANA iiglyisisly
o . iy iy i5iig iyi5i5isig iyihigisisly
By substituting (8) into (17), the product AB becomes iiizid vigis IR AN AN
iigihisisis NARAALD
AB = 2{2?"[3D(i) — 20(i)| — 22™[3D(j) — 20(j hisiaisis
[306) - 200] - 2"[30() - 200] it
iyi5i5isiginig
o om iyiyihigisighy
— 1(E +J) AN ANS
iyiyi3ia05151
iy isisinig
Using (9) and regrouping 4B, we finally obtain
AB = 2{2"I — 2™J — 2*"[3B(i) + 20(j)] (19)
' . s S s g
+22"[3B(j) + 20(j)]}- ° ° ! °
. iisiyisini A AN IR A i\ isigisi;
Let S(x)=3B(x)+20(x); (19) can be rewritten as P i, ity i vics
151405061 IRAARY IR AR INAAAR?
_ n m 2n . 2m . AR 11213141713 1l3lalel7ls . 113lalslels
AB = 2{2" —2"J = 2*"[S()] + 2*"[S()]}- (20) iy iyiziaigiy iy iiyisisig i1iyi4iqini i1i5igisis
. N {1{2{3{451}, Lizlsialels Iiizlalsizis hisialsisiy
If both 4 and B are n digit numbers, it is obvious that S(i) L1131 4161g RS 115314140 I1i3l4islel7lg
will be 2n digits in length. The number of terms collected 5 ;2;“;5;627 ;1;3;4;5;7;3 ;1;2?;‘;3!. p 5 ;3:“;5:.6;7;8
“ N . . . 1°2%3%4t6*8 1*2%3%4f6'8 1°2%4%5657%8 1°3%4%s5%6t7%8
ff'om S(i) and S(j) will affect the accuracy of the mu1t1phcg- i1i3iaigiyi niiailisiy RANANEN iriisiely
tion, and how to collect all the terms from S(i) and S(j) will {1{2{3’_4{5{8 L {3{4{5{6{7’_8 ’.11'2[.31_4’.5’.71.8 Iyi5isisiglg
depend on the choice of multiple-bit decoding rules. i ;2;354;5;81. ;1;3;4;5;5;7;8 ;‘;2;3;5;6;7;8 i ;253;5;6;31.
124345864758 12¢3%4%5%6%8 1°2%3%4%557%8 1°2¢3%4*%5%6'8
iyiylyisisiniy INARNE A iy 1514 i5igiig INANANAN
LoGiC IMPLEMENTATION 1:11:21:3’:51:61:7128 1:11:21:31:41:61:71:8 1:11:21:31:4115’:61:8 %1%2’:3’:4’:5’:7%
As discussed above, n is an arbitrary integer. In order to Iiialsialeiyiy i1lalaisiei7iy iaisiaisiciy hial3iaisiiy
id h ltinle-bit d di hni h be L {zf3{4fsf7{s l.ll213141517’8 iyi3i3isli7ig NPT
consider the multiple-bit decoding tec nlqu.e, n as.. to a iy {2{3{4{5{7{3 iyiyihiyiisiy 1111:2,:4,:5,:6127,:8 ,:11:3,:4,:5,:61:7.
reasonable number. Let n=8 (the reason will be discussed I113151415161g IR i1i5l3i5Tgiqlg iyiai3igi5iis
in a later section). The state table of S is generated by iialsialsicls ;‘;2;3;4;6;7;8 ;‘;2;3;“;6;’;8
. . .« 1°2%4%5%6°7°%8 1°2%4%5%6%78
evaluating S(x)=x—x?/2 for all 128 8-bit positive normal- iyisiyisigiyi iyiyihisicisig
ized binary fractions. If inputs are 0 - i,i,i3 - - - ig and out- 113140516171 11503151171
puts are 0 - 0S,5,S, - - - Sys, the logical relations may be ;‘;2;3;‘;5;6;8 ;1:1;3;5;6;7;8
N . 1°2%3%4%6*7%8 1°2%3%4%6f7'8
readily determined. For example, iyiyiniaisighh iyiyisiyiyiqig
iyiy05 14 sigi

So = iy, Sy =iy,

PRV YRR YR

. s ,
S5 = iyiyly + iyiyiaisihiy + iyihiLisigiy

............ S ! hY !
+ iyi5iyisigis + iqi5iyisigig. ° ° ' 12

. .. N . iyisiglsig i1igisig INAAA iyihiy
(+means logic or.) The completed decision is listed in iyiigiqiy iyisii iy iyisiglg i) igiqig
Table I. Equation (20) and Table I show that the multiplica- 1igisioly I1isiiqly Litslels Lty
. . . INAARA] Ll4l5l6l
tion of two 8-bit numbers can be completed with three OnDe iii:i:l-:i;
consecutive additions with some hardware support (the iyiyidsisig iyiyisigig
implementation of s). Any number larger than 8 bits, say I1i3lafsizig 1i415l6l
. . . 1y i5i40sigiqi Pyigisini
16 bits, can be decomposed into two 8-bit blocks; the pro- A e
. . 1l3lalslelylg 1lalslely
cedure then follows in an obvious manner. INRARN AN
iyisisiglg

HARDWARE CONSIDERATION

The last phase of design is to implement the final solution
as obtained by the decision maker as listed in Table 1. 13 Sia s
Fan-in and fan-out are always the basic problems facing
switching circuit designers (especially when passive ele-
ments are used such as diodes). Large numbers of fan-in and

R - -
1115l Llg Lilg

LING: HIGH-SPEED COMPUTER MULTIPLICATION

fan-out not only deteriorate the input waveform, but also
affect the circuit delay. Since the advent of integrated cir-
cuits, an active device is no more costly than a passive one.
The waveform deterioration has been removed somewhat,
but the overall rise time and delay time per stage still affects
the choice of the maximum number of fan-in and fan-out
elements. The author has obtained 25 ns per stage using
2N976 with 8 fan-in and 3 fan-out operating at current
switching mode. Today, a 1-ns per stage integrated chip is
available and 0.5 ns per stage is obtainable in laboratory
scale. A further increase in the number of fan-in and fan-out
elements is possible. Of course, the limitation of the state-of-
the-art plays an important role in deciding the maximum
number of fan-in and fan-out elements.

—— A, 5 By g

Accumulator

Register A

Register B

709

which is 37513 in decimal.

Example 2: Let A=59881, B=41377. These numbers are
contained in registers A and B; in binary, they show as
follows:

Register A = 1110100111101001
Register B = 1010000110100001.

In order to hold the product of 16 bits by 16 bits, the
length of the accumulator should be 32 bits. After com-
pleting step 2 (three consecutive additions) the accumulator
holds the product of 4,_g B;_g and Ag_;6 Bo_6. The
register A and register B hold the product of A; g By_;¢
and Ag_,¢ By _16- These now show as

A9—16 39—16

10010010100010011001001010001001

A1—8 B9—16

100100101000100°1
——— Ay 16 B1 3

100100101000100 1.

The product of 16 bits by 16 bits can now be obtained with a total of five additions. The product is
10010011101011101010010010001001

which is 2477696137 in decimal.

DESCRIPTION

In order to explain the operating procedure step by step,
an example is given.

Example I: Let A=233, B=161. In binary, these numbers
are shown as

A=11101001
B=10100001.

From (1), (13), and (14), I and J assume the following values:
I=28(0.11000101)
J=25(0.1001).

Step 1: Substituting I and J into Table I, Sy, S, S5, -+, S; 5
are logically formed. S(i) and S(j) are shown as follows:

S(i) = 0.01111001001100111
S(j) = 0.01100111100000000.

Step 2: Complete the multiplication (8 bits by 8 bits) with
three consecutive additions:

AB = 2[1100010100000000
- 100100000000
— 111100100110011.1
+ 11001111000.0]
1001001010001001

CONCLUSION

Using this algorithm to perform the multiplication re-
quires minimum circuit delay (only one shift operation in
forming 7 and J). No arithmetic operation is needed to ob-
tain the bit pattern of S(i) and S(j). The logic equations (all
the S’s listed in Table I) are not in the most simple form be-
cause the existence of redundant elements in S’s may reduce
the total number of required chips. Factoring out the term
i,i,. common to some S’s, will eliminate the number of fan-
ins, but one additional level is created.

The use of this method to perform multiplication for any
8-bit machine requires three additions, a 16-bit machine re-
quires five additions, and a 32-bit machine requires seven
additions.

ACKNOWLEDGMENT

The author wishes to thank Dr. T. C. Chen for his con-
tinued helpful criticism and R. Shively for his revisions and
suggestions.

REFERENCES

[1] T. Lamdan and D. Aspinall, “Some aspects of the design of a simul-
taneous multiplier for a parallel binary digital computer,” 1965 Proc.
IFIP Cong., vol. 2. Washington, D. C.: Spartan, 1966, pp. 440-446.

[2] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
“Floating-point execution unit,” IBM J. Res. Develop., vol. 11, no. 1,
pp- 35-53, 1967.

[3] H. Ling, ““A short note on binary multiplication,” IBM Res. Note NC
626, May 1966.

