
SH4ORT NOTES

output of one adder is not fed into the carry input of
the following adder so that most of the adders have to
be implemented using a single adder or two-bit adders
rather than the more economical 4-bit adders. Dadda's
scheme is more systematic and more 4-bit adders are
used in full capacity. As shown in Fig. 5, the structure
of the carry-save multiplier is very systematic and well
suited for using 4-bit adders.
We conclude that if the number of bits in the multi-

plicand or multiplier is small, the carry-save scheme us-
ing a ripple adder is favored over the other two schemes.
It is more economical, less complicated, and the differ-
ence in speed is not significant. However, as n increases,
the Dadda's multiplier gets increasingly faster than the
carry-save multiplier. It uses fewer components than
Wallace's multiplier and operates at the same speed;
hence it is always better than Wallace's multiplier.

IV. THE PURDUE FAST MULTIPLIER

In this section we describe the design, construction,
and performance of two fast multipliers implemented
at the PCM Telemetry Laboratory, Department of
Electrical Engineering, Purdue University. These iden-
tical multipliers were designed as parts of two digital
filters that, in turn, are part of an experimental PCM
system [5]. The experimental PCM system is an imple-
mentation of the optimum PCM system suggested by
Wintz and Kurtenbach [6].
The multiplier is designed to multiply a 12-bit multi-

plicand by a 10-bit multiplier. It uses the carry-save
scheme of reducing the summands and a ripple adder to
add the final two numbers. The unit was constructed
from Texas Instruments 74 series integrated circuits.
The wiring was done on perforated double-size boards
manufactured by Digital Equipment Corporation and
dual-in-line integrated circuit sockets are used for ease
in replacement of modules (see Fig. 6). The wlhole
multiplier occupies three double-size boards and be-
cause of limitations in the number of input and output
connections it is convenient that parts of the elements
of the summand matrix are generated along with the
circuitry producing the final product on each board.
The worst case multiplication time is about 520 ns;

this is in agreement with the 495 ns predicted. The
multiplication time could be decreased to 460 ns by
replacing the 74 series logic gates with 74 H series
since the propagation delay of the 74 H series is only
half that of the 74 series. This would increase the cost
of the multiplier from $456 to $550. The multiplication
time could be decreased to 410 ns by using an 11-bit
carry-look-ahead adder constructed from 74 H series
for adding the final two numbers. This will boost the
cost to $710. Using Dadda's scheme this unit would
have cost about $770 and the multiplication time would
have been 360 ns. Replacing the 74 series with the 74 H
series would also reduce the multiplication time of
Dadda's system to 270 ns while increasing its cost to
$1010.
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On Range-Transformation Techniques for Division
E. V. KRISHNAMURTHY

Abstract-This note points out the close relationship between
some of the recently described division techniques, in which the
divisor is transformed to a range close to unity. A brief theoretical
analysis is presented which examines the choice of quotient digit
when this type of division technique is used for conventional and
signed-digit number systems.

Index Terms-Conventional and signed-digit number systems,
deterministic generation of quotient digit, divide and correct meth-
ods, Harvard iterative technique, nonrestoring division, precision of
multiplication, range transformation of divisor, Svoboda's method,
Tung's algorithm.

I. INTRODUCTION
Recently a number of techniques for division have

been described which consist in initially transforming
the divisor to a suitable range by premultiplication, so
that the choice of the quotient digit is deterministic
without any need for a trial and error process [1], [611.
Although all these techniques are closely related, since
each one of them has been discovered independently
and reported in different journals at about the same
time, it is natural that little or no attention has been
paid in bringing out the close relationship that exists
between them. It is the object of this note to bring out
this relationship and place all these techniques on a
common basis with the hope that it would be useful for
workers in this field.

II. GENERAL DEVELOPMENT
Let us denote the dividend A and divisor B in float-

ing-point form with integral mantissa in radix : thus:

(1 a)
n

A = flea.a = flea. E aj#j
j=O
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d

B = 1,B3bb = 3e6b. Ej bjO31.
j=o

(lb)

Here ea, eb are the exponents and a, b are the mantissa
of A and B, respectively.

Let us for convenience assume that we are interested
in a quotient Q whose mantissa q has the same precision
as a. Thus

III. CONVENTIONAL NUMBER SYSTEMS
Case 1: 8=0.
We need

( Rj ) < b131-d- ( R+i)
aj + 1 max aj - 1 min-

Note

(aj/j + aj13-l+ . . .\

aj + 1 "max
n

Q = 13eq . q = 3eq E qj#j-
j==o

( Rj(
(c aj + IJmax

(Note that the exponent eq is to be suitably determined
[1].)

It is now interesting to study under what conditions
the quotient digit qj can be chosen as the leading (or
most significant) digit of every partial remainder (for
the first time, the dividend) plus a suitable constant,
say, a positive or negative. In Nandi and Krishnamurthy
[1], two schemes which arose as a special case of the
general divide and correct methods discussed in [2 ] and
[3] are described.

In the first scheme qj is chosen as the leading digit of
the partial remainder, if the divisor starts with the digit
1 and is followed by a 0 in the next lower order position,
while in the second scheme qj is chosen as the leading
digit of the partial remainder plus unity, if the divisor
starts with the digit (13- 1). It is to be noted that the
first one of these schemes is the same as Svoboda's
scheme [4].

For the purpose of our study, let us denote by Rj the
partial remainder at each step with Rj(j = n) =a, the
mantissa of the dividend.
The usual recursion is then (see [1])

Ri_ = R- qjb13Fd-l (2)

Assuming that we carry out a nonrestoring division
operation, if aj represents the leading digit of R;, and
we need qj=aj+b to be the true nonrestoring quotient,
then Rj-l has to satisfy

I =I - (aj + 6)b13d-1 I < bO3F'd-1 (3)

from which one readily obtains that b should be in the
range

and

(7)
,Rj aj( j

=
(1 - 1) .

Kaj - 1 in Kaj - I jm i (#B - 2 )

(Here =. denotes approximately close to.) Note Rj =0
implies aj =0, hence qj =0; we must omit this case in
finding the bound in (7). Also note that as in [1]-[3],
we do not insist in (3) that the coefficient or digit in
fith position of R1_1 becomes zero; in such a case (7)
is more stringent, i.e.,

(aRi ) (+ 1)

This scheme is useful if one wants qj to be stored in
the vacant storage (13'th) of Rj-1. (See [10], [11].)
Now (5) can be rewritten as

3 1
1 < b#-(d+) <

13- 2
(8)

This means the mantissa b must be transformed by suit-
able multiplication to range (8) with a suitable change
in eb, q, and eq (or a and ea).

Case 2: 8=1.
We need

(9)
( 22 < b0i-d1l < a Aaj + 2Jm aj/m~~~~~in

Note

(R 13

kaj+ 2/max 13+ 1
(10)

and

Ri Rj
< b3Fd-l <

a, + a + 1 aj + a- 1
(4)

Since we are interested in a divisor b which would
satisfy this condition for all Rj, we must consider the
greatest of this lower bound and the least of this upper
bound to determine the range of b. We will now consider
these for conventional and signed-digit number systems
and the possible choices of 8.

)iaj min
(1 1)

(When Rj =0, Rj/aj is undetermined; we exclude the
case R1=0 to obtain (11). For this case we take qj=0.
See [1 ].) Thus (9) can be rewritten as

-3+ < b13(d+1) < 1. (12)
, + 1

(5)

(6)
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(Here (d+1) is the number of digits in b, as seen from
(Ib).)

Note, however, the lower bound in (12) can be im-
proved to (,B- 1)/73 by setting initially an, the leading
digit of the dividend, as zero and taking care of the over-
flow of the quotient [1]. Hence we obtain,

-13
0 1<b3-(d+l) < .

We need

( Rj ) < R,B1d-1
aj + 2 max ajJ in

Note

(12a)

This means the mantissa b must be transformed by suit-
able multiplication to range (8) with a suitable change
in eb, q, and eq (or a and ea).

Case 3: 6> +2 and 8<-1.
It is easy to see that for these cases the inequality

(aj±Rj )a (a±?1iliVaj + + 1 Jr a; + - Jmin
cannot be satisfied for all Rj.
Thus for conventional number systems there are two

possible schemes for deterministic generation of the
quotient digit according as b satisfies (8) or (12). These
have been reported in [1].

IV. SIGNED-DIGIT NUMBER SYSTEMS
In this case, let us assume that y is the highest digit

magnitude in a and b [5 ], [6].
Case 1: 6 = 0.
We need

(17)

( )y
1 +

I
,8

aj + 2max y+ 2\ (d - 1)

(# -1)(y+2)-

(18)

However, (Rj/aj) <1I -fl unlike the conventional number
system where this quantity is always greater than 1 .13
(see (11)). In fact

(19)

Thus we obtain from (17), using (18) and (19),

(A-1)(y+2) 13-I
or

(y + 1)(y + 2) < 21 (20)
which in general cannot be satisfied for any positive
integral radix, when Yrmin has to satisfy the conditions

(1 - 1) > T > 2(1 + 1) for 1 odd

(Rj ) < b0,B-d- 1 < (Ri
aj + I max <aj - ( in

Now

Rj ) y( + 1/(01))
- 131 ,B

Kaj+ 1, max 'Y+1

13-1 y+i
and

tRj y( -1/(3-1))
131aj - /in o

-y 13-2
- 131j13-1 y-i

Thus (13) can be rewritten as

y 13 yy1 -2
< b,B3(d+1) <

,B-1Y+ 1 -1-y-i

(13)

(14)

(15)

(16)

This means b has to be transformed by suitable multi-
plication to range (16) with suitable changes in eb, q,
and eq (or a and ea).

Case 2:8 = 1.

( -1) > Y > 21 + I for d even.

Case 3: 8.+2 and b<-1.
It is easy to see that for these cases the inequality

( Rj Rj )

(aj+ 6i +i)max aj +'-i)min

cannot be satisfied for all Rj.
Thus for signed-digit number systems the choice

qj = aj is possible provided the divisor satisfies (16). (For
alternative choices, additional information, namely a
knowledge of the sign or magnitude of aj-1, is needed;
see [10], [11].)

V. REMARKS

It is worthwhile noting that a conventional number
system offers a wider range of divisor for deterministic
generation of the quotient digit; this range is (combin-
ing the contiguous intervals (12) and (8))

13-1 13-1< b1(d+3+) <
Al , - 2

For example, for 1 = 16, (21) can be written as

15 15
6 < b,14 (d+) <
16 - 14

(21)

(22)
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While from (16) for: = 16, -y = 9 we obtain

24 21
2- < b3(d+1) < - (23)
25 20

(Compare (23) with Tung's [6] result.)
It is interesting to note that the range transformation

schemes are analogous to the Harvard iterative scheme
[7] (see also Wallace [8]) in which the divisor is suc-
cessively multiplied so as to be transformed to a number
arbitrarily close to unity, as desired. The only difference,
as explained in [1], is that this initial range transforma-
tion together with a nonrestoring division scheme is
more economical, since the numerator need not be
multiplied more than once. However, the choice of a
suitable multiplier initially poses a problem and this
has to be considered to evaluate the relative merits.
Some studies have been made by the author regarding
optimal precision requirement and choice of the multi-
pliers for the direct as well as iterative schemes. (See
[9], [12].)
In this context, it is worthwhile noting that the inter-

val width or range of b in (16) contracts as y increases,
with a zero width for y= 3 -1. As observed elsewhere
[9], the range transformation of numbers involves
greater computational labor if the range width de-
creases; thus Tung's algorithm becomes unsuitable as
redundancy increases. Also, in Tung's algorithm the
quotient digit obtained can have a magnitude (f - 1),
larger than y, thereby requiring facility for storing a
two-digit quotient and a facility for two-digit multipli-
cation for computing the partial remainder. A different
analysis made by the author to remove these difficulties
has given rise to more efficient algorithms; these are
available in [10] and [11], and will appear elsewhere.
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I t Pictorial Output with a Line Printer

I. MACTEIDL.
Abstract-An improved method for the production of pictorial

output on a line printer is described. A reasonable black-white
contrast ratio is obtained by overprinting up to eight characters, and
pseudorandom noise is used to smooth out discontinuities in the
range of print densities.

Index Terms-Linear interpolation, line printers, overprinting,
pictorial output, picture coding, picture output.

The possible character positions on line printer out-
put may be regarded as cells in a two-dimensional array.
By choosing the character (or combination of over-
printed characters) printed in each cell on the basis of
average print density, a pictorial representation of any
desired two-dimensional data may be generated. The
maximum number of printed characters in a line is a
restriction to the horizontal size of the picture unless it
is assembled from several strips. Pictures produced in
this manner will be inferior to those produced by special-
purpose hardware, but the convenience and ready avail-
ability of a line printer will in many cases outweigh any
loss of quality.

Perry and Mendelsohn [1] describe such a method
of picture generation with a line printer. They use pairs
of adjacent character positions in each printed line as
basic density cells, and overprint a maximum of two
characters. We have found that a greater degree of
overprinting yields a worthwhile increase in maximum
density (and thus contrast) without an undue penalty
in printout time on the IBM 1403 line printer (1100 1pm
max.) attached to the Australian National University's
IBM 360/50 computer. Using a maximum of eight over-
printed characters, the output shown in Fig. 2(b) took
approximately one minute to generate on this printer.
The use of individual (rather than pairs of) character
positions as basic density cells results in finer resolution
and allows more information to be represented on each
line. With the 1403 printer set to ten characters per inch
horizontally and eight lines per inch vertically, notice-
able distortion results from the difference in horizontal
and vertical scales. This distortion is reduced by linearly
interpolating output lines between rows of the data
array, printing only eight lines for every ten rows in the
data array.
A difficulty in determining the density codes (i.e.,

overprinted character combinations) to be employed is
that it is not possible, given a conventional character
set, to choose combinations such that there is a smooth
transition from white to black, without perceptible dis-
continuities. The sudden transition from white (blank)
to the next lightest combination (comma) is noticeable
in the examples of pictorial output given in [1]. The
problem of representing numerical data with density
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