
 An Efficient Polynomial-Modulus Based Technique
for Multiplication of Large Integers

Mustafa Kamal, Magdy Bayoumi, Ashok Kumar
Center for Advanced Computer Studies

University of Louisiana at Lafayette
P.O. Box 44330

Lafayette, LA 70504
{kamal, mab, ak} @cacs.louisiana.edu

Abstract—This paper proposes a computational method for
polynomial-modulus residue number system (PMRNS), a
system in which residue is calculated after decomposing the
numbers into polynomial of desired radix. This residue can be
used to find product, sum, and difference so that different steps
(e.g. finding the residue, addition/subtraction etc. of residues,
conversion of result into an integer) can be performed in
parallel to enhance the speed of operation. The advantages of
the proposed method are: i) it does not need to calculate
multiplicative inverse for conversion from the residue product
to the number, and ii) it does not need to increase the number
of modulus as the number gets larger, instead radix can be
increased to meet the computational need.

I. INTRODUCTION

 It is known that it is possible to uniquely determine a
nonnegative integer given its residues with respect to a set
of moduli, provided that the integer is known to be smaller
than the product of the moduli. This can be accomplished by
Chinese remainder theorem (CRT)

 The obtained advantage is that by considering the
residue of large integers modulo a set of moduli, these large
integers are decomposed into smaller ones that can easily be
added, subtracted and multiplied. These operations are
performed in a carry free fashion implying speed and
parallelism.

 In a ring of polynomials over any field, there again is a
Chinese remainder theorem, here Polynomial
multiplications can be performed in the same way as
integer, by taking polynomial residues, large polynomials
can be decomposed into smaller one that are easy to
multiply, add and subtract. Following two theorems
describes the above concepts.

Theorem.1: Given a set of polynomials
m x m x m xn() (1) ()(), (),..........., ()0 that are pair wise
relatively prime and a set of polynomials
c x c x c x() (1) ()(), (),........,0 with deg c xi() () > deg

m xi() () then the system of equations c x c xi() () ()= (mod

m xi() ()) i k= 0,....., has at most one solution for c x()

satisfying deg ()()c(x) m x
i

k
i<

=
∑ deg

0

 [3].

Theorem.2: Let M x m xr

r

k

() ()()=
=

∏
0

 be a product of

relatively prime polynomials; let M x M x
m x

i
i

()
()() ()

()= and

N(i)(x) satisfy N x M x n x m x xi i i i() () () ()() () () ()().+ = 1
Then the system of congruences be a product of relatively
prime polynomials; let ()c x c x m x i ki i() ()() () mod ()= = 0…
is uniquely solved by

()c x c x N x M x M xi i i

i

k

() () () () mod () []() () ()=
=
∑ 3

0

Specific application of the above two theorems by
Skavantozos and Taylor[2], results in the development of
Polynomial Residue Number System(PRNS).

The Polynomial Residue Number System (PRNS)
examines the problem of multiplying two (N-1) st-degree
polynomials mod ()x n ±1 , over some modular ring
z mm = −{ , , }0 1 1… , a ring which is closed with respect to the
operations of addition and multiplication mod m [2].

13220-7803-9197-7/05/$20.00 © 2005 IEEE.

First known modular polynomial basis multiplier over
GF m()2 was proposed by Mastrovito[4] and extensive
research has been made on this algorithm using different set
of polynomials and many different formulation of Mastrovito
algorithm has been proposed.

 Sunar and Koc[5] mdified the Mastrovito algorithm
using trinomials and have shown the m2 1− XOR and m2
AND gates are sufficient to implement the multiplier.
Halbutogullari and Koc[6] developed a method for
constructing Mastrovito multiplier for arbitrary irreducible
polynomial, trinomials, all-one polynomials and equally
spaced polynomials. So far for these special polynomials,
XOR gate count and time delay of Halbutogullari-Koc
algorithm appear to be lowest. Comparison of complexities
of Halbutogullari-Koc and Mastrovito for related s-ESP-
based multipliers are shown Table I.

Best known time complexity for multiplying large
integers using software has been developed by Dan Zuras[7]
having time complexity O n().1365 .

To satisfy the high speed requirements of multiplier,
proposed technique introduces a new concept of multiplying
large integer numbers, decomposing it into smaller one and
perform the arithmetic operation and also the range change
can be done without increasing the number of moduli,
thereby increasing the speed. This technique addresses not
only conversion into residue and multiplication but also
inversion process.

II. BASIC DEFINITIONS.
 Definitions1: Monic Polynomial is a polynomial whose
coefficient fn with largest index is equal to 1.

 Definitions2: Remainder Theorem states that when a
polynomial f x() is divided by ()x di− in F x() is
f di() .

III. PROPOSED TECHNIQUE.
Step 1: Integer to polynomial conversion.

Conversion of integer number into polynomial of
desired radix. All numbers in computer are stored in binary
form i.e in radix 2. Now to change the radix from 2 to 2n ,
the n digits are taken at a time from the least significant
position to the most significant position.

Step2: Calculation of residue:
 If we choose the root of the modulus to 0 or 2n ,
the residue conversion is only a shift and add operation.
This is done by conversion matrix such that all residue can
be calculated in parallel.
Step 3: Multiplication of residues.
 Most efficient multiplier for small numbers can be
used.
Step 4: Inversion of polynomial product into number.

 This is obtained by multiplying polynomial product
by the inversion matrix. This also can be done in parallel.

IV. SELECTION OF POLYNOMIAL MODULUS AND RESIDUE
COMPUTATION.

 PMRNS performs the mathematical operations by
expanding the numbers into polynomial, such that the
indeterminate x of the polynomial
A x a a x a x a xr n

n() = + + + + −
−

0 1 2
2

1
1…… is the radix r can

be any integer. By increasing the value of r we can reduce
the degree of polynomial.

Example 1: Let A = 570 and if radix r = 10 then
A10

22 710 510= + +. . can be represented as polynomial

A x x x10
22 7 5() = + + having degree of 2. Now we can

reduce the degree of the same number if we choose r = 100
generating polynomial A x x100 72 5() = + and degree of
1.

 Each modulus should be monic polynomial of degree
one. From Chinese remainder theorem we know that the
solution of n-tuple residue set is unique if the number
represented by n-tuple residue set is less than the product of
the modulus M m m m md= 1 2 3. . .…… .

 If we choose a set of polynomial modulus
m x x d1 1() ()= − , m x x d2 2() ()= − , m x x d3 3() ()= − , ….
m x x dk k() ()= − then the product of modulus is
M x x d x d x d x dk() ()()() ()= − − − −1 2 3 … = p p x0 1+ +

p x p xk
k

3 +…… . It is obvious the solution of the n-tuple
polynomial residue set will be unique if the degree of the
polynomial represented by the product of the polynomial
modulus M x() is greater than the degree of
A xr () otherwise the number cannot be represented

uniquely. Careful choice of the di can reduce the
magnitude of the residue.

Example 2: Using remainder theorem it is very easy to
calculate the remainder of the polynomial. If m x x1 1() = −

and A x x x10
22 7 5() = + + then residue R1

22 71 51= + +. . =
14.

V. PMRNS THEOREM AND PROOF.

A
m
l

R
ii

k

i=
=
∑

1

 where m r di j
j i j

k

= −
= ≠
∏(),

&1

 l d di i j
j i j

k

= −
= ≠
∏()

&1

and the product of modulus M x x d x d x dk() ()() ()= − − −1 2 …… .

1323

Proof: The proof can be obtained by mathematical induction
and it is omitted for brevity. An example is given for
illustration next. For simplicity let us assume
A x a a x() = +0 1 and M x x d x d() ()()= − −1 2 . Here the

degree of M x() is k=2. Now R A d a a d1 1 0 1 1= = +() ,
R A d a a d2 0 1 22= = +() , m r d1 2= −() , m r d2 1= −() ,
l d d1 1 2= −() and l d d2 2 1= −() . Therefore

A
r d
d d

a a d=
−
−

+
()

()
()2

1 2
0 1 1 +

()
()

()
r d

d d
a a d

−
−

+1

2 1
0 1 2 =

()()
()

a a r d d
d d

0 1 1 2

1 2

+ −
−

 = ()a a r0 1+ .

Example 3: If A = 115 , B = 308 and r = 8 then
A = + +3 6 8 182. . and B = + +4 6 8 4 82. . . Therefore,
A x x x() = + +3 6 2 and B x x x() = + +4 6 4 2 . Let
M x x x x x x() ()() ()()= + + − −2 1 1 2 then
R A() { , , , ,)= − −5 2 310 19 and ()R B = { , , , , }8 2 4 14 32 . The

product R A R B(). () { , , , , }= − −40 4 12 140 608 . Applying

PMRNS theorem we get A B.
. . .

. . .
()=

− − − −
9 8 7 6

1 2 3 4
40 +

10 8 7 6
1 1 2 3

4
. . .

. . .
.()

− − −
− +

10 9 7 6
21 1 2

12
. . .

. . .
.()

− −
 +

10 9 8 6
321 1

140
. . .

. . .
.()

−
 +

10 98 7
4 321

608
. . .
. . .

() = 35420.

VI. A METHOD FOR PARALLEL COMPUTATION.

Maximum speed could be achieved by parallel
calculation of residues and the co-efficient of the
polynomial, this is done by developing three matrix []D ,
[]a and []D −1 .

Where []D

d d d d
d d d d
d d d d

d d d d

k

k

k

k k k
k
k

=























0
0

1
0

2
0 0

0
1

1
1

2
1 1

0
2

1
2

2
3 3

0 1 2

.

.

.
.

.

.

[]a is a row matrix made by the co-efficients of the
polynomial as [] []a a a a ak= 0 1 2 . and []D −1
matrix is the inverse of the matrix []D .

 After inverting []D , we may find some of the elements
are fraction. To avoid fraction multiplication, multiply each

element of the []D −1 by the l.c.m L (least common multiple)
of the denominator of each element and generate a matrix

[]D
−1

 then divide by L to get []1 1

L
D

−
.

 Now if we multiply matrix []a and matrix []D we get

the set of residue { }R . After the required mathematical
operation we can convert those residues to the co-efficients

of the polynomial just multiplying by the matrix []1 1

L
D

−
.

Example 4: Multiplication of two numbers A=115 and B
=308.

 Let r=16, m x x1 2() ()= + , m x x2 1() ()= + , m x x3() = ,
m x x4 1() ()= − , m x x5 2() ()= − and

()M x x x x x x= + + − −()() ()()2 1 1 2 then A = +3 716. and

B = + +4 316 1162. . can be represented by A x x() = +3 7
and B x x x() = + +4 3 2 .

 []D =

− −

− −



























1 1 1 1 1

2 1 0 1 2

4 1 0 1 4

8 1 0 1 8

16 1 0 1 16

, []D − =

− −

− −

−

−

− −

































1

0
1

12
1
24

1
12

1
24

0 1
3

2
3

1
6

1
6

1 0
5
4

0
1
4

0 2
3

2
3

1
6

1
6

0
1

12
1
24

1
12

1
24

.

Here lcm = 24 therefore []D − =

− −
− −

−
− −

− −























1

0 2 1 2 1
0 16 16 4 4

24 0 30 0 6
0 16 16 4 4
0 2 1 2 1

[] []I L Dn = =

− −
− −

−
− −

− −























−1 1
24

0 2 1 2 1
0 16 16 4 4
24 0 30 0 6
0 16 16 4 4
0 2 1 2 1

1

[] []a = 3 7 0 0 0 and [] []b = 4 3 1 0 0

[][] []R A a D() = = − −11 4 3 10 17

() [][] []R B b D= = 2 2 4 8 14

() () [][]R A R B Rp. = − −22 8 12 80 238

[] [] []A B R Ip n. .= = 12 37 24 7 0 = 12 3716 2416 7162 3+ + +. . . =
35420.

1324

The limit of maximum number can be increased without
any alteration of M x() but just by increasing the radix r.

Example 5: If A = 308 , B = 4627 and radix r=16 then
A x x x() = + +4 3 2 and B x x x x() = + + +3 2 2 3 . The

degree of the polynomial of the product A x B x(). () is 5
which is equal to the degree of M x() , therefore, we cannot
get unique result. Thus increasing the radix r=32 we get
A x x() = +20 9 and B x x x() = + +19 16 4 2 results in 3 as the

degree of the polynomial of the product A x B x(). () which
is less than the degree of M x() .

VII. CONCLUSIONS.
PMRNS performs the residue conversion, multiplication

of residues and inversion from the product of the residue
simultaneously in a pipeline. Similar research is scarce to
find for comparison. Best known complexity of multiplying
large integers is in the range from O N().1465 to O N().1365 [7],
depending on length of the number. This research leads to
this method which finds the complexity of multiplying to
integers in the range from O N().15 to O N().124 as shown in the
Table 2. This method also has the following advantages.

1. Limit of the maximum number does not depend on the
value of M x() but on the degree of the product of the
polynomial-modulus.

2. Any number can be used as a radix.

Above two criteria provides PMRNS highly flexible in
increasing the maximum range of the number. Also VLSI
implementation requires less space.

3. To accommodate a larger number, each time we do not
have to increase the degree of the polynomial, just by
increasing the radix to a higher number during the initial
conversion will do the job.

4. By appropriate selection of the set di we can make
most of the element of the matrix []D and inverse of []D as
power of 2 such that residue and coefficient calculation will
be only shift and addition operations.

5. In the computer, numbers are represented in binary. If
we select r as power of 2 then the calculation of the co-
efficient of the polynomial is instantaneous.

Therefore, PMRNS provides much faster residue
conversion than RNS system because RNS needs division
for getting residue.

6. This system splits a multiplication into several small
multiplications such that all of them can be done in parallel
thereby farther reducing the total computation time.

ACKNOWLEDGMENT
The authors acknowledge the support of the U.S.

Department of Energy (DoE), EETAPP program
DE97ER12220 and the Governor's Information Technology
Initiative.

REFERENCES
[1] Neil M. Wigley and Graham A. Jullien, “On Modulus Replication for

Residue Arithmetic Computaions of complex Inner Products,” IEEE
Trans. On Computer VOL 39, No 8, August 1990.

[2] Alexander Skavantozox and Frd J. Taylor, “ On the polynomial
Residue Number System,”IEEE Trans. On Signal processing, Vol.
39, No 2, Feb 1991.

[3] Richard E. Blahut, “Fast Algorithms for Digital Signal
Processing,”Addision-Wesley Publishign Company.

[4] E.D Mastrovito, “VLSI Designs for Multiplication over Finite Fields
GF m()2 ,”Proc. Sixth Symp. Applied Algebra, Algebric Algorithms,
and Error Correcting Codes (AAECC-6) pp 297-309.

[5] B. Sunar and C.K. Koc,”Mastrovito Multiplier for All
Trinomials,”IEEE Trans. Computers, vol. 48, no. 5 pp. 522-527.

[6] A. Halbutogullari and C.K. Koc. ,“Mastrovito Multiplier for General
Irreducible Polynomials,” IEEE Trans. Computers vol 49, no. 5, pp.
503, May 2000.

[7] Dan Zuras, ”More On Squaring and Multiplying Large Integers,”
IEEE Trans. On Computers Vol. 43m No 8, August 1994.

Table 1
Comparison of Related s-ESP-Based polynomial Basis multiplier

Reference #AND #XOR Time delay

Mastrovito[4] m2
2 1

2
3
2

2s
s

m m
+

−  T m TA x+ +(log)1 2

Halbutogullari-
Koc[6] m2 m s2 −  T m TA x+ +(log)1 2

Table 2
For N=1024

Regular
Multipliction

 PMRNS

Complixity Run Time Bit-Time#Modulus Precision
N1.5 32768 3 Double
N1.4 16384 3 Single
N1.38 14263 5 Double O N()2

 N1.24 5405 5 Single

1325

