
IEEE TRANSACTIONS ON COMPUTERS, JUNE 1971

Q* = Qrs-t
R* = Rrs.

The scale factor exponent s-t will, however, probably
provide less than optimal accuracy for the quotient. There-
fore, we pick up quotient digits by rescaling the dividend by
r' before the division operation. This is accomplished by a

left shift ofA positions of the dividend in the 2n-digit register
before dividing. The scale factor exponent of the quotient
resulting from the operation will then prove to be s- t + A
and that of the remainder s+ A. To determine the range of
permissible values of s- t+ A we estimate

IQI < rP'
and use (1) to get

< t-p' -s + n-1 (7)

where everything on the right is either known or estimated.
Equality in (7) gives the maximum permissible left shift
before dividing. If p'=p, the maximum shift yields the
optimal quotient scaling. If p' > p, this and the other shifts A
in the range (7) will yield permissible scale factor exponents.
If p' <p, (7) may permit too large a left shift thus leading to
quotient overflow.

In practical applications of scaling it will be necessary to
take account of many combinations of the four arithmetic
operations. No new conditions are involved over and above
those we have already discussed. The important thing is the
correct estimate of bounds for the magnitudes of the results
of the operations at each stage. In general, we will attempt
to use optimal scaling, when possible, to minimize the error
due to using a fixed number of digits. In some cases, due to
the way operations combine, optimal scaling may be im-
possible. In other cases we may be willing to sacrifice some
accuracy for the sake of scaling expediency.

CONNECTIONS WITH FLOATING POINT
In the discussion above we represented a number X by its

,scaled machine representation X*= Xrs. The number X*
was assumed stored in the registers of the machine but not
the scale factor exponent s. This was assumed to be handled
externally by the programmer. It is then the responsibility
of the programmer to do the accounting necessary to asso-
ciate an appropriate scale factor exponent with each ma-
chine number and record it so that the machine number can
be properly interpreted in terms of the true number, for
example, as X=X* r

In floating point arithmetic we represent the true number
X as

X = X*rx

where for X00, X* is a normalized machine number. If,
for easier correspondence with our previous discussion, we
assume X* is an n-digit complement integer, we recall that

n-2< n-i(8Ir X*I< r (8)

~The normalization condition (8) implies that the leading
digit of X* is a sign digit and that the next digit to it is not.

In floating point operation we store both the normalized
part X* and the exponent part x internally and they are
then dealt with automatically by the hardware and/or the
program. Thus the responsibility for accounting for the
scale factor exponent becomes that of the machine and not
the programmer. Reviewing (5), (6), and (7) we see that this
is a matter of very simple integral arithmetic on exponents
provided an appropriate and consistent way of defining p'
can be set down. The normalization condition on X*, in
effect, does this and, in fact, yields p'= p, and so optimal
scaling at each step. To see this we note that if X* is a
normalized n-digit integer such that X= X*r', then

X* = integral part of [X * r-x].
That is, from the external scaling point of view, X* is the
machine representation ofX with scale factor exponent - x.
Therefore, if we determine p by the usual inequality

rP- < IXI < rP

and bear in mind the normalization condition (8) we get

rn-2 <IX*K= lXr-xl < rP-'

and it follows that x<p-n + 1. Similarly, x>p-n+ 1.
Therefore, x =p-n + 1. That is, -x = n-1-p. We see from
(1) that this last is the optimal value for the scale factor
exponent - x. This shows that normalizing always picks
up the unique optimal scale factor exponent for X. The
negative of this exponent is then stored internally along with
X* as the floating point machine representation.

In spite of the fact that the process of normalization
theoretically produces optimal scaling in floating point
operation, this is not always the case. It may be that the
optimal exponent is too large or too small to be repre-
sented by the number of digits allocated to it. Although
most computers can detect this overflow or underflow, it
can usually be avoided by at least a preliminary rough
scaling of the problem by the programmer himself.

A Binary Multiplication Scheme Based
on Squaring

TIEN CHI CHEN, MEMBER, IEEE

Abstract-Using the formula A * B=[(A+B)/2]2-[(A-B)/2]2, the
binary multiplication problem is reducible to that of decomposing the
square of P 0 * P1P2 ... Pk into a sum of two or three quantities. For
the eight-bit case, a study of the multiplication parallelogram sug-
gests p2=R+S+T, where Pl and p8 appear only in R, and P2, P7 appear
only in R and S. Each bit in T involves the ORing of no more than four
terms, each involving no more than four Boolean variables. For a two-
input adder, S and Tare combined into a six-variable problem, each bit
may have up to 14 terms. The six- and four-bit problems are degenerate
cases with R=O and R=S=O, respectively.

Index Terms-Computer arithmetic, high-speed binary logic,
multiplying technique, quarter-square multiplying technique, squar-
ing technique.

Manuscript received September 29, 1970; revised January 18, 1971.
The author is with the IBM San Jose Research Laboratory, San Jose,

Calif. 95114.

;678



SHORT NOTES

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

P81 P82 P83 P84 P85 P86 P87 S

P71 P72 P73 P74 P75 P76
P61 P62 P63 P64 P65-S6H8

P51 P52 P53 5H
P41 P42 4 4 4/ 4 4

P31P3 4 35 36<3

P21 223 P24 P25 P26 P28/

Fig. 1. The analysis of the squaring parallelogram.

In a recent communication Ling [1] described a binary
multiplication scheme using A - B = 2 [22ni - 22mj-22nS(i)
+ 22mS(j)], with i, j being normalized fractions,
i=2-n- 1(A + B), j= 2-m- 1(A-B). If P is a k-bit fraction,
then each bit in P_-P2/2 _ S(P) can be specified by multiple
ORing of terms involving the k bits in P. The case k= 8 was
then analyzed; the number of terms required to specify
each bit of S(P) vary from 1 to 26.

This is potentially a very high speed scheme that can
exploit the inherent efficiency and fan-in fan-out character-
istics of large-scale integrated (LSI) hardware. Furthermore,
the interconnection problem is relieved in the sense that the

M=0.0 0 0 0 0 P34P35P36P46P56

N=0.00 0 0 0 0 0 p45 (3)

where J is the antidiagonal, K is the southeast border of the
parallelogram, and L, M, N are successive layers enveloped
by K. We note that Pl, P8 do not appear in L, M, N and
P2, P7 are absent in M, N. Further, the dependence of J on
P1, P2, P7, and P8 can be removed through trivial adjustments
ofK and L. We have

J + K + L = J + K + L (4)

with

J = 0.0 0 0 0 0 p3 0 P4 0 P5 0 P6

K = 0PI2 (PIP'2) P13 P14 P15 P16 P17 P18 P28 P38 P48 P58 P68 P78 0

L = 0.0 0 P23 (P2P'3) P24 P25 P26

original 2n-bit problem is transformed into two well-
defined problems each with essentially n bits.
The method is reminiscent of the quarter-square multi-

plication method in analog computation [2], with

(A + B)2 (A B)2 (1)

An alternative scheme based on this method can have a

simpler, more efficient hardware implementation. The de-
velopment of such a scheme is the subject of this note.

If A, B are fractions, so are the quantities (A +B)/2 and
(A-B)/2. Because adders with two or three inputs are

generally available, our main interest is to decompose the
square of an arbitrary k-bit fraction P = 0 P1P2... Pk into a

sum of two or three terms with minimum logic complexity;
thus we are seeking Y, Z, R, 5, and T such that

p2 = y + Z = R + S + T. (2)

The squaring ofP leads to a multiplication parallelogram
(Fig. 1), a typical term being Pij-Pi APj Exploiting sym-
metry, one can write the result as follows for the case k= 8:

p2=J+K+L+M+N

J=0-0 P10 P2 0 P3 0 P4 0 Ps ° P6 0 P7 0 P8

K= 0.0 P12Pl3Pl4Pl5Pl6Pl7Pl8P28P38P48P58P68P78
L=0.0 0 0 P23P24P25P26P27P37P47P57P67

P27 P37 P47 P57 P67 0 P7-

We obtain P2=Y+Z by identifying Y=K and Z=i
+ L +M + N. Note that Z involves only variables P2
through P7. The analysis of this expression is demonstrated
in Table I, where each bit Zm involves no more than 14 terms,
and each term involves no more than six variables. This is to
be compared with the Ling algorithm, where a bit in S(P)
may involve 26 terms, and each term may involve seven

variables (not eight, because Pi can be normalized to unity).
With the use of three-input adders, we write P2=R

+ S+ T with the identification R = Y= K, S L. Then
T(= J+M+ N) is easily analyzed; as shown in Table 11,

each bit tm involves no more than four terms and each term
no more than four variables.
The squaring problem for a six-bit fraction reduces to the

case above with two of the input bits set to zero. However,
the result is obtained more simply if the symmetry of the
problem is maintained. We write

Q = 0° q q2 q3 q4 q5 q6 = 2P (5)

with Pi=P8=0, Pk=qk-1 otherwise. In this formulation
K = 0, and Z alone gives the complete decoding ofp2 = Q2/4.
We can also write P = S+ T; or P= U+ V + W with

U=0.0 0 0 P23P24P25P26P27P37P47P57P67

V=0.0 0 0 0 0 P34P35P36P46P56

W= 0.0 0 0 0 0 p3 p45(P4P'5)OP5 0 P6 0 P7-

In a similar vein the squaring of a four-bit fraction can be

P8

679



80IEEE TRANSACTIONS ON COMPUTERS, JUNE 19

TABLE I
THE ANALYSIS OFp2 = Y + Z

Y O=-PI2 (P1P2') P13 P14 P15 P16 P17 P18 P28 P38 P48BP58 P68 P78 0 P8 =k
Z =0-0 0 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 zll Z12 13Z14 = J + L + M + N

P2 P3 P4 PS P6 P7 P2 P3 P4 P5 P6 P7 P2 P3 P4 PS P6 P7

Z3 =1 0 1 11 X Z7 =X 1 0 1 0 X z9=X X 0 1 1 0
1 X X XX O 0 11 X X X X 1 0 1 0

0 1 0 1 1 0XO 0 1 1
z4=1 0 0 X X X 0 1 1 X 1 X X 0 1 1 0 1

1 0 1 0 X X 1 0 X 1 X X 1 X1 1 1
1 0 1 1 0 X 1 0 1 0 0 1 X 1 0 0 1 1
,111 X XX 1 0 1 0 1 0 X 1 0 1 0 1

1 0 1 1 0 X X I I 0 0 1
z5 =0 1 0 1 1 1 1 0 1 1 1 1

0 11 X X X 11 0 0 1 0 ZO=X X O 1 0 X
1 0 1 0 XX 1 1 0 1 11 X X 0 1 1 1
1 0 1 1 0 X 11 1 X X 1 X X 1 1 X
1 1 X 1 X X X X 11 00
1 1 0 0 11 Z8 =0 0 1 0 X X

O 0 1 11 X ZI= X X X 0 1 1
Z6 =0 1 0 0 0 X 0 1 0 0 1 X X X X 1 0 1

0 1 0 1 0 X 0 1 0 1 1 0
0 1 0 1 10 0 1 1 00 X Z12=X X X X 1 0
0 1 11 X X 0 1 1 0 1 1
1 0 0 1 XX 0 1 11 X1 Z13=X X X X X X(=O)
1 0 1 0 1 1 1 00 X X 1
1 0 1 1 0 X 1 0 1 0 X 0 Z14=X X X X X 1 (=P7)
11 0 00 X 1 0 1 1 0 1
11 0 0 1 0 1 1 0 X 0 1
11 0 11 X 11 0 X 1 0
11 1 X 1 X 11 0 11 X

l 1 1 0 0 0

Example: Z3P24P3'P 56 VP23

TABLE II
THE ANALYSIS OF p2 = R + S + T

R= Y=k
S (-( 0 P23 (P2P3) P24 P25 P26 P27 P37 P47 P57 P67 0p7 =L
T 0.0 0 0 0 t5 t6 t7 t8 t9 tIo tll t12 = J + M + N

P3 P4 PS P6 P3 P4 P5 P6

tS = 1 XX tg =X 0 1 1
X 1 0 1

t6=1 0 X X
1 1 1 X t0=X X 1 0

t7=X 0 1 1 tll=X X X X(=O)
0 11 0
1 01 0 t12 =X XX1 (=P6)

.-1 1 X 1

-8=X 10 0
01 X 1
10 X 1

Example: t8 =P4PSP6VPp3P46 vp36p'4.

obtained by examining 16P2 with Pi=P2=P7=P8 =0. Here
p2 is equal to V + W, or T alone.

ACKNOWLEDGMENT
The author is indebted to Dr. H. Ling for discussions and

an early perusal of Dr. Ling's paper. He wishes to acknowl-
edge discussions with Dr. C. V. Freiman, who had con-
sidered approaches exploiting the quarter-square algorithm
in-1965, and conversations with Dr. C. Tung and Dr. W. G.
uel, Jr.

REFERENCES
[1] H. Ling, "High-speed computer multiplication using a multiple-bit

decoding algorithm," IEEE Trans. Comput., vol. C-19, Aug. 1970,
pp. 706-709.

[2] A. S. Jackson, Analog Computation. New York: McGraw-Hill, 1960,
p. 477.

A Distance Criterion for Figural
Pattern Recognition

ALEXANDRU VINEA AND VLADIMIR VINEA

Abstract-The set of transformations which preserve the equiva-
lence classes of figural patterns is considered. The simple figure and
its abstract description in a metric space are defined. An appropriate
distance is proposed to be applied to pattern recognition.

A trainable classifier using the nearest neighbor method is de-
scribed. Some experiments with printed or handwritten letters are
presented.

No statistical results are given, but the visual examination of
figures that were recognized reveals that the method successfully
imitates human performance.

Index Terms- Classifier, complex plane, contour following, dis-
tance criterion, Euclidean transformations, nearest neighbor recog-
nition, pattern recognition, standard figure. training procedure.

Manuscript received November 10, 1969; revised October 1, 1970.
A. Vinea is with the Centre of Economic Computation and Economic

Cybernetics, Bucharest, Romania.
V. Vinea is with the Institute for Electronics and Computing Technique,

Bucharest, Romania.

6,90


