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Arithmetic Algorithms in a Negative Base
P. V. SANKAR, S. CHAKRABARTI, AND E. V. KRISHNAMURTHY

Abstract-Algorithms are described for the basic arithmetic
operations and square rooting in a negative base. A new operation
called polarization that reverses the sign of a number facilitates
subtraction, using addition. Some special features of the negative-
bise arithmetic are also mentioned.

Index Terms-Algorithms, basic arithmetic operations, negative
base, polarization, square rooting.

1. INTRODUCTION
T HE use of a negative base for representation of

numbers has been suggested as early as 1957 by
Wadel. Since then, a few papers have appeared
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on this subject [I]-[9]. This paper is concerned with
the development of algorithms for the basic arithmetic
operations in a negative base.

Let a be a number in base -# (where # is a positive
integer) given by

m
a = E ai(-O)i

i-O
(1)

where O<ai<(0-1) with a,,0O (normalized form),
unless otherwise specified; thus a is negative or positive
accordingly, as m is odd or even, respectively.

II. BASIC OPERATIONS
A. Addition

Addition in the negative-base number system is
similar to that in the positive base but for the fact that
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we obtain a "twin carry" (a pair of carry digits), while
adding two single digits. This is illustrated by the fol-
lowing example in base -10:

9 + 1 = 190

190 = 1(-10)2 + 9(-10) + 0 = 10(1o)

where a twin carry (1, 9) arises. In fact, it will be shown
later that three different types of twin carry can arise
when we add the operand digits and a previous carry.
The digits in a twin carry belong to two successive
digit positions, as illustrated in the example.
Although one could avoid using twin carry by deter-

mining the three possible carries 0, +1, or -1, we pre-

ferred using this since -1 has a valid representation in
base -3 as a pair of digits 1, (1-1); this avoids defining
subtraction at this stage.

In general, the algorithm for the addition of any two
numbers a and b (positive or negative) given by

m

a = E ai(-O)i
i=o

and
n

b= Ebi(_)i
i=o

(2)

TABLE I
LOGIC FOR ADDITION

Cases ci di+, ai+bi+ci Si ci+1 di+2

>2/P, (fl-1) 1
1 (A-i) 1 >3 (ai+bi+ci) modPB 0 0

1 0

>: ~~~~~(A~-1) 1
2 0 or 1 0 (ai+bi+ci) mod /

</3 0 0

a This case (ai+bi+ci) > 2/ is not possible for base -2.

it has a different function from the complement code
used for representing the negative numbers in the posi-
tive base.

Let a be the given number and d be the polarized
form. Consider

m

a = , ai(-3)i.
i=o

We can equivalently write (5) as

(5)

a=- [(-_)m+l+ E (-_3)i(13+1-ai)+(#-a0)i (6)
i=l

(3) =-[d ] (7)

proceeds finding the sum digit si and the twin carry
digits ci+l, di+2 from a knowledge of ai, bi, c+, and di+, foi
each i=0, 1, 2, * , max (m, n)+2 as specified by the
logic in Table I (the suffix here indicates the digit posi-
tion to which s, c, or d belong). The algorithm terminates
when i = max (m, n) + 2 giving

max (m,n)+2

a + b = E si(-o)i. (4)
i=O

Example 1: -,B=-10, a= 1614097 (positive), b=
416034 (negative), and s = 11911 (positive).

8 7 6 5 4 3 2 1 0 i

0 1 0 1 0 1 1 0 0 di

0 9 0 9 1 9 9 0 ci
4 1 6 0 3 4 bi

1 6 1 4 0 9 7 ai

o 0 0 0 1 1 9 1 1 si

B. Polarization A lgorithm and Subtraction

Since a-b =a+(-b), to subtract b from a, it is
enough to replace b by the representation of -b in base
-13 and then add this number. The operation of trans-
forming +b to -b or vice versa in -13 representation
is defined as polarization; this term is appropriate since
the sign of the number only is reversed.
The polarization has no analog in positive-base

arithmetic, as it is required only for subtraction. Thus

where
m+l

a= E ai(-#)i.
i=O

(8)

s The rules for polarization can now be derived from

(6)-(8).
Rule 1: If a,$0, 1 for all i then do=(3-ao); di=

(13+ 1-a;) for 1 <i <m, and dm+l = 1.
Rule 2: If ai=O for O<i<j then da=O for O<i.j;

dj+l=(3-aj+i); da=(,B+1-a,) for j+2.<im; and
am+l = 1.

Rule 3: If some intermediate ai=0 or 1 for O<i<m
then di = 1 or 0, respectively, and a twin carry (43O)i+2+
(,131)Q43)i+l is generated; this is to be added to the
remaining digits of a before polarizing the (i+l)th
digit.

This addition of the twin carry along with the polari-
zation can be realized by adding a suitable binary vari-
able 6, as specified by the following algorithm.

Algorithm: At the start (i= 0), set b=0 and for each
i (i=0, 1, 2, * * *, m) follow the rules specified by the
decision tree (Fig. 1). At the terminal step, set dm4l=
bm±l and sl§p.
Example 2: - = -10, a = 8019, and d = 12001.

4 3 2 1 0 i

0 0 1 0 bi

8 0 1 9 ai

1 2 0 0 1 di
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then obtain

= O s 2.,3....., e - I )

=1I

Sia, ( +8-a. a,)mod_
o_-..81#1 S-.,i,

( F .8-- 1.mod_a,
1-8e, 1

Fig. 1.

(12b)
m

Pi= Pij(-)
j=O

and
n

P= pi(-)i.
i=O

(12c)

As the sign of a number is implicit in the negative-
base representation, the multiplication of two operands
of different signs directly results in a product with the
correct sign. Since

amax = ((-#)m+2 - 1)/(#3 + 1) (13a)
and

Example 3: -A3=-2, a=110011001011,
a =0010001011001.

and

12 11 10 9 8 7 6 5 4 3 2 1 0 i

O' 1 0 0 0 1 0 0 1 0 0 1 0 5i
1 1 0 0 1 1 0 0 1 0 1 1 ai

O O 1 0 0 0 1 0 1 1 0 0 1 di

Remarks: 1) From the polarization algorithm, we see
that either a( #O) or its polarized form d (or both) will
have 1 as the most significant digit. 2) The polarization
either increases or decreases the length of a number by
one digit; in the former case we say a polarization over-
flow has occurred. 3) An alternate way of interpreting
subtraction is

a - b = a + (-f3)b + (1-l)b
=a+L(b) +(i- 1)b (9)

where L(b) = left shift of b by one digit. From (9) we see
that addition is a fundamental operation in the negative
base.

In the negative binary, (9) takes the form

a - b = a + b + L(b). (10)

bmax =

it can easily be
(m +nn+3) digits.
Example 4:

P= 1911686.

((-#)n+2- 1)/(f3 + 1) (13b)
proved that P can have at most

-,B=-10, a =5378, b = 37, and

6 5 4 3 2 1 0 j,

5 3 7 8 aj

3 7 bi

1 5 6 poo

1 6 9 0 Po0(-10)
1 8 1 0 0 PO2(-10)2

1 7 5 0 0 0 P03(-10)3

1 7 4 7 4 6 Po

1 8 4 Plo

1 8 1 0 Pll(-10)
0 0 9 0 0 P,2(-10)2

1 9 5 0 0 0 P13(-10)3

1 9 5 8 9 4 0 P1(-10)

1 9 1 1 6 8 6 P

C. Multiplication
Let a and b be, respectively, the multiplicand and

multiplier (positive or negative) defined by
m

a = E aj(-#)j
j=o
n

b = bi(-)i.
i=O

(11)

The multiplication algorithm consists in forming the
product of two single digits Pi = ajbi for each i and for
all the values of j, and then forming the partial products
Pi and the final product P (to be defined below) by shifts
and additions, as specified by the following recursions.

For each i, form

(12a)

D. Division
Let us represent the normalized (n+ 1) digit dividend

by A, the (d+1) digit divisor by B, and the (m+1)
digit quotient as Q in base -,, in floating-point-integral
mantissa form. Thus

n
A = (-#)ea.a = (_,#)ea. E aj(-#)j

j=o
d

B = (-13)eb.b = (-13)eb. E bj(-O)j
j=o

Q = (3)eq. q = (-O13)eq. E qj(_O)j
j=O

(14a)

(14b)

(14c)

where ea, eb, and eq are the exponents and a, b, and q are
the integral mantissa, respectively.
The nonrestoring division algorithm used in the
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positive base can be extended to the negative base. This
algorithm consists of a sequence of subtractions (polar-
ized addition) and shifts. The steps of the algorithm
follow.

Step 1: Prefix two leading zeros to the dividend a to
prevent initial overflow of the quotient (see Remark 1
following Step 4); this dividend is denoted as the initial
partial remainder R.; the number of digits in R. is taken
as (n+1). Prefix one more leading zero to Rn to match
the extra digit of the polarized divisor b (in the case of
polarization overflow).

Step 2: Form

Rn-1 = R- b(- )n-d
= Rn + b(-#)n-d (15)

which will result in

qn = 1

and

sgn Rn_l j£ sgn Rn.

From now on obtain qj for each j=(n-1), (n-2),

,(n-rm) using the recursion

R_1 = R, + qjb(-#)ij- (16)

where qj indicates the number of times b(-#)jd iS
added to Rj until

sgn Rj1 $ sgn Rj. (17)

(In Remark 2 we will explain that this condition (17)
can lead to a quotient digit qj= +1.)

Step 3: Obtain the actual quotient by converting
qj= +, if any. This is done as follows.

a) If qj+p,$1 is followed by p(odd) quotient digits
qj+p-i = qj+p-2 = * * =qj = +1, then due to borrow
propagation, the actual quotient digits qj* are given by

qj+i*= (1 - 1),

qs+i* = 0,

amax . (-3)n+2/(3 + 1) (18)

and

bmn (-_3)n/(# + 1)

qmax=. (a/b)max = ( _)2
(19)
(20)

(where-. denotes approximately equal to).
Hence to prevent quotient overflow we prefix two

zeros to a (Step 1) and choose qn= 1. If there is no over-
flow then qn-i =3 thereby resulting in qn=q- =0 (see
Example 5).
Remark 2-Possibility of qj= +13: Since

(Rj)max = b(_3)j-d+l- 1

if we choose qj= (,B-1) then

Rj-l = Rj - ((-)b(_ )i-d> 0

that will not satisfy the condition (17) unless qj= +13.
A similar result can be proved for Rj negative. Also,

since the nonrestoring division does not permit qj=O,
the only manner by which this can occur is as an ordered
pair (1,1).
Example 5: =-10, a = 000136, ea =0, b = 16, eb =0,

n+1=5, d+1=2, m+1=4, q=1(190)21=21, and
e= 0.

R4
b (-10)3

R3
b. (-10)2

fori-=,3, * * * ,(p- 2)

for i =0,~2, . ..(p -1)

and

qj+p* = (q+p-1).

b) If qj+p 513 is followed by p(even) quotient digits
qj+p-l =- qj+p-2 = * = qj+13, then due to borrow propa-

gation the actual quotient digits qj* are given by
qj+±* = (d-1), for= 1, 3,~* *,(p-1)

qj+i* = 0, for i=,2,* ,(p-2)

and

qj+p* -= qj+p.

Step 4: If we stop after obtaining qn-m

eq = ea - eb+ n- m -d.

Remark 1-Initial Overflow: If we assume that the
most significant digit of the divisor b is aligned with the

most significant digit of the dividend a for division,
then since

S.(-10)

4 3 2 1 0
O 0 0 1 3 6
O 0 4 0 0 0
O 0 4 1 3 6
O 0 0 4 0 0

4 5 3 6
o 4 0 0
4 9 3 6
o 4 0 0
3 3 3 6
O 4 0 0
3 7 3 6
o 4 0 0
2 1 3 6
o 4 0 0
2 5 3 6
o 4 0 0
2 9 3 6
o 4 0 0
1 3 3 6
o 4 0 0
1 7 3 6
o 4 0 0
O 1 3 6

o 4 0
1 7 6

4 0
O 1 6

0 4
o 0 0

1

190

2

1
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E. Square Rooting

This algorithm, as in the positive base [10]-[13],
resembles division, except that the divisor at each step
changes according to certain predetermined rules. The
most significant digit of the square root is determined
by finding out the largest square of a natural number
< ((3- 1), that is either equal to or less than the first
digit (or the first three digits, as the case may be) of the
given number. It may be remarked that the pairing of
digits from the least significant end is not needed here,
as it is in the positive base, since positive numbers in a
negative base can have only an odd number of digits
that when paired will always leave a single digit at the
most significant end. This algorithm proceeds by choos-
ing the divisor from the set of certain prescribed odd
numbers in ascending order and subtracting (polarized
adding) until the partial remainder changes its sign (or
changes the parity of the number of digits); the quo-
tient is given by the number of subtractions in each
step.
The principle of this algorithm is as follows. Let a

be a number in -,B representation given by

R-*= Ri'-1 + Dij(_ )2i

= Rij-l + D,ji-#)2i (25)

until

sgn Rij #- sgn Ri1-1

where

Di = 2Ci+l(-3) + 2j- 1 (26)

and

Ci = Ci+±(-O) + ai (27)

and

Cm+l = 0. (28)

Then

ai = j.

This algorithm terminates after finding ao. (The
algorithm could be continued by adding extra zeros and
an appropriate exponent.)
Example 6: - =-1O, b = 14641, and V\b = a = 121.

m

a = E ai(-O)i.
i=O

Then

a2 = am2(-0f)2m + am-12(-f)2(m-1) + . * * + a02

+ 2amamn-(-3)2m-1 + .. + 2amal(-Of)m+l
+ 2amao(_,3)m + * * - + 2a,ao(-f3).

(21)

(22)

Equation (22) can be written as

a =am ()2m+ [2am(-,B)m+am-,(-#)m-I]a 1(-O)m-1
+ [2(am( O)m+am-((-O)m ) +am-2(- )m2I
+ .-2(-)m-2++( - +o.([2(am(-2)m+am-1( O)
+ - * + a,(-#)) +ao] ao. (2

If we set
2m

a2 = b = E bi(-O)i
i=o

5 4 3 2 1 0 Quantity Quotient
O 1 4 6 4 1 b=R20
1 9 0 0 0 0 l * -10)4
O 0 4 6 4 1 R21 = R10 a2=1

1 9 9 0 0 (2a.(-1O)+1)(-l0)2
0 2 5 4 1 Ril
1 9 7 0 0 (2a2(-10)+3)(-10)2
0 0 2 4 1 R12=R0R al=2

1 9 7 9 2a2(-10)2+2a,(-10)+1
0 0 0 0 Ro' a0=1

Remarks: 1) If b is negative, this algorithm diverges.
?3) 2) It is possible to generate either the positive or the

negative square root by shifting the initial position of
the divisor (to the left or right) through two digits.

(24)

then we can use (24) to write the recursions for the
square-rooting algorithm.

Steps of the Algorithm: Start with the given (2m+1)
digit number b as the dividend (mth partial remainder
Rji.=m). To obtain the most significant digit am of
the square root, subtract (or polarize and add) from the
2mth digit position of b, odd numbers of the form (2j- 1)
for j = 1, 2, * *- , ((3- 1) until the partial remainder
R1i(i =m) changes sign. (R1j refers to the partial re-

mainder after each subtraction j corresponding to the
given digit position 2i.) In such a case, the next partial
remainder Ri-10 equals Rij and the quotient digit a,

equals j(i=m). For obtaining the successive digits, the
following recursions are used for i= (m-l), (m-2),

, 1,0.
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Deterministic Division Algorithm in a Negative Base
P. V. SANKAR, S. CHAKRABARTI, AND E. V. KRISHNAMURTHY

Abstract-Described here is a deterministic division algorithm
in a negative-base number system; here, the divisor is mapped into
a suitable range by premultiplication, so-that the choice of the quo-
tient digit is deterministic.

Index Terms-Deterministic division, negative base, range
transformation.

I. INTRODUCTION

ECENTLY, deterministic division algorithms
[1 ], [2 ] have been described for conventional and
signed-digit number systems; these algorithms

transform the divisor to a suitable range by premultipli-
cation, so that the choice of the quotient digit is de-
terministic, without any need for a trial and error pro-
cess. It is possible to develop a similar algorithm for
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division in a negative-base number system [3]. Let us
denote the (n+1) digit dividend as A, the (d+1) digit
divisor as B, and the (m+1) digit quotient as Q in float-
ing-point form (integral mantissa) in base -d. Thus

A = (-0)e- a = (_O)ea E aj(-I)j

d

B = (.....fyb.b = (_b5)eib , b

Q = (-j3)ea.q = (._3)es E j_
j=o

(la)

(lb)

(Ic)

where ea, eb, and eq are the exponents and a, b, and q are
the mantissas, respectively.

II. NOTATION AND DEFINITIONS

The same notations and definitions as in [3] (for
negative base) are used. However, for the sake of con-
venience, we define the following. -


