
programming
pearls

BIRTH OF A CRUNCHER

Its practitioners give it the glorified name of “numer-
ical analysis,” but for most programmers the field of
number crunching is a lot like plumbing. We use it
often, but we don’t think about how it works until
something goes wrong.

I once held that Neanderthal view. I was cured by
a fine course in numerical analysis, which showed
me the elegance of the field. My appraisal of the
subject changed from “ugly and useless” to “beauti-
ful and useless.” I have good numerical routines
available in libraries; why would I ever have to
make my own?

I was recently delighted to discover that even for a
layman like me, numerical analysis can be very use-
ful. This column tells how I used some elementary
techniques to write a simple numerical routine. I
replaced a library function with a version special-
ized to the problem at hand; the code grew from five
lines to a dozen, but the routine was three times
faster and it made a big program run twice as fast.

The Problem
I was working on a program to compute traveling
salesman tours through point sets. Profiling the
thousand-line program showed that about eighty
percent of the time was spent in a five-line rou-
tine to compute distances. The specification called
for the Euclidean distance between points in K-
dimensional space. For instance, the distance be-
tween the three-dimensional points (aI, az, as) and
(h , ba, b3) is

d(aj - b# + (a2 - b2)’ + (u3 - b3)’

Program 1 computes the distance between the points
represented by the vectors A[l. .K] and B[l. .K].

sum := 0.0
for J := 1 to K do

T := A[J] - B[J]

SUlll := Sum + T+T

return sqrt(Sum)

PROGRAM 1. A Simple Distance Routine

0 1986 ACM 0001.0782/86/1200-1155 750

December 1986 Volume 29 Number 12

Program 1 has the advantage of simplicity: it is
easy to understand. Unfortunately, it has several dis-
advantages as well. It may, for instance, generate an
arithmetic overflow even if all inputs, intermediate
differences, and the output are in a valid range. Sup-
pose the machine can represent floating point num-
bers up to 103’ and consider computing the distance
between (0, 0) and (3 X lo”, 4 X lo”), which is
5 X 10zo. Squaring the difference O-3 X 10” yields
9 x 104’ and an overflow. This problem (and a simi-
lar problem with underflow) were not important in
the program at hand; the context ensured that differ-
ences were neither extremely large nor extremely
small.

A second problem with Program 1 is that it is very
expensive, at least as implemented in C on a VAX
11/75Oe. The March 1986 column sketched the per-
formance of that hardware/software system: arith-
metic operations range in cost from 3.3 microseconds
for integer addition to 15.7 microseconds for floating-
point division. When K = 2, Program 1 requires a
whopping 1140 microseconds to compute the Euclid-
ean distance between a pair of points in the plane.
Straightforward experiments showed that the lion’s
share of that time goes to computing the square root,
which requires about 940 microseconds.

My goal for the program was to provide a faster
distance routine. A method that works in many ap-
plications is simply to remove the sqrt from Pro-
gram 1; if distances are only compared, then the
monotonicity of sqrt makes it superfluous (the Feb-
ruary 1984 column describes such an application).
That wouldn’t work on this job; I therefore sought a
K-dimensional Euclidean distance routine with the
following attributes.

Domain: K is in the range 1. .16 (but typically
2, 3, or 4); the coordinates of points are in single-
precision.

Accuracy: The single-precision output should be
accurate to the last decimal digit, or a relative
accuracy of about l.Oe-7.

VAX is a trademark of Digital Equipment Corporation.

Communications of the ACM 1155

Progranmirtg Pear/s

Robustness: The inputs may be assumed to be
well behaved; overflow and underflow are not ma-
jor concerns.

Performance: The routine should be as fast as pos-
sible.

The rest of this column will focus on a routine with
these characteristics; Problem 17 describes an accu-
rate and robust method that is somewhat slower.

Newton Iteration
Numerical anal.ysts have developed many tech-
niques for finding a zero (or a root) of a function.
Given a function f(x), a zero is a real number r such
that f(r) = 0. To compute & we can find a zero of
f(x)=?-a;ifr’-a=O,thenr=&.Thusifwe
can find zeroes we can compute square roots.

So how do we find the zero of a function? We
could use our old friend, binary search. If a 2 1,
then & is in the range [l, a]. We can successively
halve that range until we get a good approximation
to &. If a = 4, for instance, we will examine the
ranges [l, 41, [l, 2.51, [l, 1.751, [1.375, 1.75],... .
Numerical analysts call this the bisection method;
each step yields one additional bit of accuracy in
the answer.

A superior scheme was invented by Isaac Newton,
the famous English computer scientist who also dab-
bled in mathematics and physics. His method does
not compute a range explicitly, but rather starts
with an initial guess x0 and generates a sequence of
approximations x1, x2, x3, To generate xi+1 we
must know both f(xi) and its derivative f’(xi). We
then proceed down the tangent line until it crosses
the x-axis:

k

X, x, -11

Intuitively, we are approximating the function lo-
cally by a straight line with equal y-value and slope.
Mathematically, we compute the next iterate by

xi+1 = xi - f(Xi)/f’(Xi)

To use Newton iteration we must be able to com-
pute both the function and its derivative.

To find & we will find the zero of f(x) = x2 - a,
so f’(x) = 2x. Newton’s iteration formula is then

Xi+1 = Xj - (Xf - a)/2Xi

= Xi - Xi/2 + a/2Xi

= (Xi + a/Xi)/2

For an intuitive appreciation of why the formula
works, observe that if xi is too small then a/xi is too
big; the average of the two is a better estimate.
(Schoolchildren call this the “divide and average”
technique.) Thus once we reach the final answer,
we don’t move away: if xi = &, then

x;+~ = (& + a/&)/2 = J;;

Figure 1 shows one step of Newton iteration
for finding &?, in which a = 2, x0 = 2, and x1 =
(2 + 2/2)/z = 1.5. That figure hints at the rapid rate
at which this method converges, but the story can’t
be told graphically. Here are the next few elements
in the sequence xi:

2.0000000000000000

1.5000000000000000

1.4166666666666667

1.4142156862745098

1.4142135623746899

1.4142135623730951

The values were computed by a simple “scaffolding”
program; see Problem 6. The final answer is correct
to 16 decimal places.

w
FIGURE 1. One Step in Finding Sqrt(2)

A Great Place to Start
There’s the basic idea of Newton iteration; two prob-
lems stand between us and a program:

What is a good initial value x0?

How many iterations should be made until xI is
declared to be the final answer?

We will explore the second question in the next
section; this section concentrates on the first.

The example in the previous section showed
Newton’s method converging very quickly. Each
iteration roughly doubled the number of accurate
digits; because the error at the i + 1” step is propor-
tional to the square of the error at the i’” step, nu-
merical analysts refer to this as “quadratic conver-
gence. ” That behavior is typical of the method, so
long as two conditions hold. The first requirement is

1156 Conrmunicatiom of the ACM December 1986 Volume 29 Number 12

Progratnmiilg Pearls

that the derivative is not near zero; that is always
true for square roots (so long as we compute J5 as a
special case), but it can be difficult for other func-
tions.

The second requirement for quadratic conver-
gence is that the initial guess must be near the final
root. Table I shows that when the current value is
far from the square root, Newton’s method gives
only one bit of accuracy per iteration. (Beware,
though, that for functions less well behaved,
Newton’s method will not even converge if it
starts far from the root.)

1000.0000000000000000

500.0010000000000000

250.0024999960000100

125.0052499580004700

62.5106246430170320

31.2713096020621940

15.6676329948683660

7.8976423478563581

4.0754412405194990

2.2830928243925538

1.5795487524060154

1.4228665795786682

1.4142398735915306

1.4142135626178485

1.4142135623730951

TABLE I. Convergence to Sqtt(2)

Most general-purpose square root routines get an
initial guess by black magic of some sort, such as
extracting the bit field that is the exponent of a
floating point number and halving it to approximate
the square root. (Using the last square root computed
is very effective in some applications; see Problem
9.) In the context of a distance function, we can use
other information to get the initial guess. When K is
2, for instance, we wish to compute a = &%?:

c

IA

a

b

We can use the maximum of b and c (b in the above
figure) as the initial guess x0. Thus we have the
inequalities

so we know that a is in the range [b, & x b].
In higher dimensions we will use as an initial esti-

mate the maximum of the differences in all dimen-
sions, which we’ll call D. The distance is at least

D and the sum of the squares of the K differences
is at most K x D2, so the distance is in the range
[D, D&l.

The Code
We can now write a program for computing Euclid-
ean distances. Program 2 uses as its initial value
the maximum difference. It iterates until two
subsequent values are reasonably close: until
) xi+1 - xi l/xi+1 is at most the one part in ten million
that corresponds to single-precision accuracy on my
machine.

T := abs(A[ll - B[ll)
Max := T
Sum := T+T
for J := 2 to K do

T := abs(A[J] - B[J])
if T > Max then Max := T
Sum := Sum + T+T

if Sum = 0.0 then return 0.0
/* find sqrt(Sum), starting at Max +/
Eps = l.Oe-7
2 := Max
loop

New2 := 0.5 * (2 + Sum/Z)
if abs(NewZ-Z)<=EpsxNewZ then break
2 := New2

return New2

PROGRAM 2. A General Distance Routine

Table II (on p. 1159) gives the run time of all pro-
grams discussed in this column. It shows that Pro-
gram 2 is about 35 percent faster than Program 1
when K = 2: the new square root code is indeed
faster than the system routine. When K = 16,
though, Program 2 is only about 1.5 percent faster
than Program 1: the bottleneck in this case is not the
square root, and finding the maximum difference
chews up most of the time saved by the faster root-
finder. Fortunately, the specifications stated that K
tends to be small.

There are two ways to improve Program 2: we’ll
start by speeding up the root-finder, and then
shortly work on computing the maximum differ-
ence. The current version iterates until it is close
enough; the next version will iterate a fixed number
of times guaranteed to produce convergence. That
will remove the cost of loop overhead, of testing for
convergence, and of computing the final iteration
that is so very close to its predecessor.

So how many iterations do we need? The specifi-
cations state that K I 16 and that we must compute
to single-precision accuracy. Because K 5 16, we
know that the distance is at most fi X D (where D
is the maximum difference, max), and therefore in
the range [D, 401. It seemed that the geometric

December 1986 Volume 29 Number 12 Communicatiorls of the ACM 1157

Progranmif~g Pearls

The Best Possilde Square Root Routine

This column describes a few hours’ work by an ama-
teur, using techniques ranging in age from a few
decades to a few centuries. We’ll now briefly
glimpse how a world-class numeribal analyst at-
tacked the problem of constructing a numerical rou-
tine. Professor LY. Kahan lectured on “Implementa-
tion of Algorithms” in the early 1970s; lecture notes
taken by Haugeland and Hough appeared as Berke-
ley Computer Science Technical Report #20 and are
now available a.s National Technical Information
Service Report AD-769 124. Olf the 339 pages in the
report, 53 are devoted to the construction and error
analysis of an u:nbeatable square root routine for the
IBM 7094.

Kahan starts by specifying the properties that the
routine should have. Monotonicity implies that
if x 2 y, then sqst(x) 2 sqrt(y). He demands that
sqrt(x*x) = x, but observes that one cannot ensure

mean of that range, 20, would make a good initial
value. I used my scaffolding program to examine the
convergence from that midpoint to the bounds of the
range. I first computed & starting from 2:

x abs(x-1.0)Il.O
2.0000000000000000 1.0000000000000000

1.2500000000000000 0.2500000000000000

1.0250000000000000 0.0250000000000000

1.0003048780487805 0.0003048780487805

1.0000000464611473 0.0000000464611473

1.0000000000000011 0.0000000000000011

1.0000000000000000 0.0000000000000000

Next I computed fi from the same start:

x abs(x-4.0)/4.0
2.0000000000000000 0.5000000000000000

5.0000000000000000 0.2500000000000000

4.1000000000000000 0.0250000000000000

4.0012195121951220 0.0003048780487805

4.0000001858445894 0.0000000464611473

4.0000000000000043 0.0000000000000011

4.0000000000000000 0.0000000000000000

Because Newton iteration scales linearly, these two
cases model computing m and Jlsis’i from any
starting value 21). Problem 15 proves that these two
extremes are indeed the two that are slowest to con-
verge; the right columns show that after the first
step the two inputs give the same relative error. The
process yields the required seven-digit accuracy

that s9rt(x)*s9rt(x) = x. He gives particularly stringent
requirements on the accuracy of the routine: his
code gives incorrectly rounded answers for only 29
distinct mantissas.

Kahan’s routine uses a few loop-unrolled Newton
iterations (which he calls Heron’s rule) after getting
a good starting value. He observes that the best
method for finding a starting value is quite machine-
dependent (on such issues as the relative cost of
table lookup versus multiplication). Kahan therefore
built his routine by considering a tree of all possible
sequences of IBM 7094 instructions:

You begin by doing necessary things, like loading
the arguments.. . . I used to work on [the tree] in
the evenings. It took several-3 or 4 or 5. It did
cover a big table. I would connect one branch to
another, indicating that they computed the same

after four steps. The unrolled loop in Program 3 thus
computes an accurate answer when K I 16.

. . . same as Program 2 . . .
/* compute sqrt(Sum),

starting at 2.OxMax */
Max := Max * 2.0
Max := 0.5 + (Max + Sum/Max)
Max := 0.5 l (Max + Sum/Max)
Max := 0.5 * (Max + Sum/Max)
return 0.5 (c (Max + Sum/Max)

PROGRAM 3. A Fast Distance Routine for K 5 16

Problem 11 suggests a further speedup to comput-
ing square roots: using table lookup to obtain a bet-
ter initial guess. The numerical examples above
show that if we can get the relative error down to
2.5 percent, then two further iterations suffice for
single-precision accuracy.

The final improvements leave the lofty planes of
numerical analysis to employ a couple of old coding
tricks. The first one is specialized to the C language.
Both the real program and the test program imple-
mented a vector of points as a two-dimensional
array of floating point numbers. The final program
introduced two new variables to point to the two
Euclidean points being compared, and thus replaced
K two-dimensional array accesses with K references
to a one-dimensional vector. The second trick is de-
scribed in Problem 10; it exploits an algebraic iden-
tity. Because these speedups are quite particular to

1158 Colllrilutlicafiofls of the ACM Decewrber 1986 Volume 29 Number 12

Progranlnfiq Pearls

function, using leftover telephone wire. And he kept perspective on his work:

His routine was about 20 percent faster than the
previous system routine, and much more accurate.
Because he considered the tree of possible programs,
Kahan could ensure that his program could never be
beaten.

Kahan knew that his methods weren’t easy:

You’re trying to ask me, was it worth the money
spent. Of course it wasn’t worth the money spent
if you want to figure it in terms of the number of
happier users. I probably tested more numbers
than will be run through the SQRT in a year on
the 7094.

[This analysis] may have frightened you into
thinking that to write a square root routine you
have to have spent years studying abstruse theo-
ries. I guess if you want to write the best possible
square root routine, maybe you do. There is a
limit to how near perfection it is worthwhile to
come, and it is not my intention to suggest that
you should write a program in this way, since
only a simple program could be optimized by
examining a tree structure in this way.

But we are trying to see how well we can do. For
the practical question, I hope most people would
have stopped [at an earlier routine]. We can’t af-
ford too many guys like me. But we can’t afford to
do without them, either.

I enthusiastically recommend this document. If
you’re fascinated by a “best possible” program for a
substantial task, you can’t afford to do without read-
ing Kahan’s report.

the implementation language, Program 4 was timed
but is not shown in pseudocode.

The four distance routines are summarized in
Table II. The speedup from Program 1 to Program 4
is a factor of 3.5 for K = 2, 2.8 for K = 4, and 1.9 for
K=16.

TABLE II. Summary of the Programs

Routine
number

Microseconds

K=2 K=4 K=16

1 1140 1270 2030
2 730 990 2000
3 350 500 1340
4 330 450 1070

Principles
Distance computations are the workhorse in many
programs. The new distance routine doubled the
speed of my loo@line traveling salesman program,
and similar speedups are common for other geomet-
ric programs. In addition to producing a useful rou-
tine, this exercise has illustrated several general
principles.

The importance of Context. The process of produc-
ing a fast distance routine changes dramatically with
many factors. For instance, most of the work de-
scribed in this column would have been counter-
productive on a system with a hardware square root
instruction. For very large values of K (say, lOOO),
the cost of the square root is relatively minor; for

K = 2 (that is, for planar points), the method
sketched in Program 17 is often faster than Program
4 and always much more robust. One must know a
great deal of context before starting to code.

Newton Iteration. This powerful technique is of
everyday utility for numerical analysts, and also of
occasional use to mere mortal programmers (see
Problem 1).

Coding Tricks. Though the big improvements are
usually due to algorithmic changes, little improve-
ments to code can reduce run time. In this case
study, unrolling the iteration loop was very effec-
tive: it removes loop overhead, convergence testing,
and an extra iteration. Other tricks included exploit-
ing algebraic identities, optimizing array references,
and storing precomputed answers in tables (see
problems 10, 11, and 12).

The Role of Libraries. An excellent library is a de-
light to use; most numerical libraries provide accu-
rate and numerically robust code. It is wise to re-
member, though, that few routines can be all things
to all users. In this case study, special-purpose code
was tailored to the context in which it was used to
be much more efficient than the general routine. Re-
usability and numerical accuracy were sacrificed for
raw speed; in this case, that was a sound engineering
trade-off.

Problems
1. Your library square root routine provides only

single-precision accuracy, yet your application

December 1986 Volume 29 Number 12 Communications of the ACM 1159

Prog~nrfrn~ing Pearls

2.

3.

4.

5.

6.

7.

6.

9.

10.

requires double precision. What do you do?
On a hand-held calculator, repeatedly take the
square root of a number then square it back
again. What does this exercise tell you about
the calculator’s internal structure?
Newton’s method does not work when f’(x) = 0;
this happens for square roots only when com-
puting &. What happens when Newton’s
method attempts to compute +.6 from a starting
value of xc, = l? Does the algorithm have simi-
lar problems for computing the roots of positive
numbers near zero?

12.

13.

Study the square root routine provided by your
system. If :it uses Newton’s method, what is its
initial value and how many iterations does it
make?

14.

Some computers have very fast hardware multi-
pliers and no hardware dividers; they imple-
ment division by multiplying by an inverse.
Show how to compute l/a by using Newton’s
method to find a zero of f(x) = a - l/x. Try
using Newton’s method to compute cube roots,
or to find roots of arbitrary polynomials.
Implement a “scaffolding” program for Newton
iteration. Its input is a number whose square
root is to be taken, a starting value, and the
number of iterations to be performed (provide
defaults); its output is a trace of the values.
Implement Programs 1, 2, 3, and 4 on your sys- 15.
tern. How do you test their correctness? Build a
testbed for timing them; how do your results
compare to Table II?
[J. L. Blue] Th is o umn explicitly ignored the c 1
problems of overflow and underflow in sum-
ming the squares of differences. Write a pro-
gram that is sensitive to those problems.
A common heuristic uses the last square root
computed as the starting value for the next
Newton iteration. Measure this in an applica-
tion. How many iterations does it make on the
average? How does it compare to other starting
values?
The second optimization to Program 4 observes
that Program 3 doubles Max only to halve it in
the next statement:

Max := Max + 2.0

Max := 0.5 * (Max + Sun/Max)
16.

Use a little algebra to speed up those state-
ments. 17.

11. Table lookup can speed up a program by trad-
ing space for run time. How can this technique
be used in computing a good starting value?

How could you use table lookup to compute
Euclidean distances if the planar point set has
both x and y coordinates in the range 0..9999?
[A. Appel] Show how the K absolute values
used by Program 2 to compute Max can be re-
placed with a single absolute value. (Hint: keep
track of the largest square seen so far.)
Hardware designers have observed that a divi-
sion and a square root box of comparable effi-
ciency require comparable amounts of hard-
ware. Show that square root is about as hard as
division in software, too, by sketching a routine
to compute X& accurate to one million decimal
digits.
[S. Cracker] Consideration of finite-precision
arithmetic complicates many programs, but
makes this square root routine particularly
simple:

x *- 1 .-

loop
NewX := 0.5 + (X + A/X)
if NewX = X then return NewX
X := NewX

Does it converge on your machine for all non-
zero inputs A? On all machines? (For a better
starting value, see Problem 9.)
[M. D. McIlroy] What is the best starting value
for Newton’s method for square roots in a
bounded range? Let n be a natural number and
let a, b, and r be reals satisfying 0 < a 5 r 5 b;
let R = r2. Given n, a, and b, we desire to
choose a starting value x0 = x for the Newton
iteration Xi+1 = (xi + R/xi)/2 to minimize the
worst-case relative error

Show that the optimal choice is x = a, inde-
pendent of the value of n.

(Hint from Doug McIlroy: Define the ifh rela-
tive error to be ei(x, r) = (xi - r)/r and find a
recursion for it. Iterate that recurrence relation
a few times to guess a closed form, then prove
it by induction.)
Problem 15 identifies the best starting value for
Newton iteration. How many iterations are re-
quired as a function of the number of dimen-
sions (K) and desired accuracy?
Moler and Morrison have described a fast, ro-
bust, and portable algorithm for computing
m (see “Replacing Square Roots by
Pythagorean Sums” in the IBM Journal of Re-

1160 Communicatior~s of he ACM December 1986 Volume 29 Number 12

Progranwkg Pearls

search and Development 27, 6, November 1983,
pp. 577-581). Their algorithm can be sketched
as

P := abs(P); Q := abs(Q)

if P < Q then SwapIP, Qj
if P = 0.0 then return Q

repeat IterCount times
R := Q/P
R := R * R
R := R / (4 + R)
P := P + 2*R+P
Q := Q + R

return P

Its cubic convergence means that the result is
accurate to 6.5 decimal digits after two itera-
tions, to 20 digits after three iterations, and to
62 digits after four iterations; its intermediate
results avoid overflow and underflow.
a. Use this code in a subroutine to compute

planar Euclidean distances. How does
its run time compare to Program 3 when
K = 2?

b. How can you use this routine to compute
Euclidean distances in K space? How long
would your code take when K = 1000, and
how does that compare to Program 3?

18. How would you write a Euclidean distance rou-
tine to run on a parallel processor that can per-
form P arithmetic operations at once?

Solutions to September’s Problems
2. Three variations of selection sort are shown in

this figure, in which the array is represented
horizontally and time proceeds down the verti-
cal axis.

Step 1

Step N

Step 2N
Heap 1 Heap 2 Straight

The left diagram shows a simple heapsort, which
builds the heap by sifting each element up the
partially built heap. The middle heapsort has the
same second phase, but builds the heap right-to-
left by sifting elements down. The right diagram
shows a straight insertion sort; it does not build
a heap, which avoids the construction cost but
greatly increases the cost of each selection.

Further Reading
There are dozens of excellent textbooks on numeri-
cal analysis. Which one is best for you depends on
your desires for breadth and depth and your interest
in mathematics and code.

3. The problem asked how programs should be
typeset to achieve Willamson’s three primary
goals of correctness, consistency, and clarity.

Correctness. The best way to get a correct pro-
gram in a document is to start with a correct
program on a computer. Life is easiest when one
can test and typeset the program from the same
source file; I do that whenever possible. In this
column, however, I presented the algorithms in
pseudocode but I implemented and tested them
in C. I therefore wrote the C programs in a form
as close as possible to the final pseudocode (for
instance, I was quite aware of the width of Com-
munications’ columns), and then used a text edi-
tor to make the remaining changes (I know--I
should write a program to do the job).

Consistency. Programmers should be consistent
about little details such as capitalization and in-
dentation Even better than adhering to your
own standard, follow one that already exists in
the field. For instance, if I did present C pro-
grams, I would use the format employed by
Kernighan and Ritchie in their C Programming
Language.

Clarity. The May and June columns showed
how Don Knuth’s WEB system produces clear
programs by varying fonts: bold for keywords,
italic for variables, typewriter for text strings,
roman for explanation, etc. The programs in this
column are typeset in typewriter font: that
fixed-size font reflects what most programmers
(myself included) see on their terminals, and it is
still readable even when shrunk to a fairly small
size.

CR Categories and Subject Descriptors: D.l.l [Programming Tech-
niques]; G.l [Numerical Analysis]: General

General Terms: Performance
Additional Key Words and Phrases: Kahan, W. (Professor)

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room ZC-317.
600 Mountain Ave., Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

December 1986 Volume 29 Number 12 Communications of the ACM 1161

