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Properties of the Multidimensional Generalized
Discrete Fourier Transform

PAOLO CORSINI aNnD GRAZIANO FROSINI

Abstract—In this work the generalized discrete Fourier trans-
form (GFT), which includes the DFT as a particular case, is
considered. Two pairs of fast algorithms for evaluating a multi-
dimensional GFT are given (T-algorithm, F-algorithm, and T'-
algorithm, F’-algorithm). It is shown that in the case of the DFT
of a vector, the T-algorithm represents a form of the classical FFT
algorithm based on a decimation in time, and the F-algorithm
represents a form of the classical FFT algorithm based on decima-
tion in frequency. Moreover, it is shown that the T’'-algorithm and
the T-algorithm involve exactly the same arithmetic operations on
the same data. The same property holds for the F'-algorithm and the
F-algorithm. The relevance of such algorithms is discussed, and it is
shown that the T’-algorithm and the F’-algorithm are particularly
advantageous for evaluating the DFT of large sets of data.

Index Terms—Fast algorithms, fast Fourier transform, gener-
alized discrete Fourier transform, multidimensional processing,
signal processing. ’

I. INTRODUCTION

ET us consider the problem of evaluating the one-

dimensional discrete Fourier transform (DFT) of a
vector E having a large number of elements, on the hypoth-
esis that the working memory of the available processor is
not sufficient to handle the vector as a whole. Such a
situation can arise in several applications [1]-[4], such as
Fourier transform spectroscopy or musical sound analysis.
In this case it is convenient to fracture E into a matrix F2 and
to separately process single columns and single rows [5].
Such two-dimensional processing of a one-dimensional
vector can also be useful in evaluating the DFT of staggered
blocks [6], [7]. Unfortunately, the one-dimensional DFT of
E is not obtainable simply by evaluating the two-
dimensional DFT of F2, but proper “twiddle factors” must
be introduced between column transforms and row trans-
forms [5]. Then the classical two-dimensional processing of
the vector E consists of

1) evaluating the one-dimensional DFT of each column
of matrix F?;

2) multiplying, term by term, the matrix obtained after
point 1) by a matrix of twiddle factors;
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3) evaluating the one-dimensional DFT of each row of
the matrix obtained after point 2). '

Due to the presence of the twiddle factors, such two-
dimensional processing, even if each column DFT and each
row DFT is evaluated by means of a fast algorithm (FFT
algorithm), is more complex than an FFT algorithm applied
directly to the vector E.

In a previous work [8] the generalized discrete Fourier
transform (GFT), which includes the DFT as a particular
case, has been introduced and two fast algorithms for the
GFT computation have been given. Moreover, two
procedures have been presented that allow us to obtain the
one-dimensional DFT of E by evaluating a proper two-
dimensional GFT of F2. On the hypothesis that the number
of elements of E is a power of two, it has also been shown [9]
that the two procedures presented in [8], provided that each
column GFT and each row GFT are computed by means of
a proper fast algorithm, involve exactly the same arithmetic
operations on the same data as the classical FFT algorithms
based on decimation in time and on decimation in freq-
uency, respectively.

In this work the characteristics of the multidimensional
GFT are further investigated, and some general results are
derived that include as particular cases the properties
previously given in [8] and [9]. More precisely, the obtained
results can be schematized in the following points.

1) Two algorithms (T-algorithm and F-algorithm) are
given that allow us to obtain an a-dimensional GFT of an
a-dimensional array E* by evaluating a g-dimensional GFT
of a proper o-dimensional array F’ (¢ > a). It is shown that
in the case of the DFT of a vector E the T-algorithm and the
F-algorithm represent, respectively, a form of the FFT
algorithm based on decimation in time and a form of the
FFT algorithm based on decimation in frequency. It follows
that the classical FFT algorithms can be thought of as
consisting of the evaluation of proper multidimensional
GFT’s.

2) Two other algorithms (T -algorithm and
F’-algorithm) for evaluating an a-dimensional GFT of an
a-dimensional array E* are given, which consist of: a) in
reordering the elements of E* in a t-dimensional array F*
(¢ < T < ) having arbitrary dimensions, and b) in comput-
ing by means of the T-algorithm or the F-algorithm succes-
sive one-dimensional GFT’s along every coordinate of F*. It
is shown that the T-algorithm and the T"-algorithm, as well
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as the F-algorithm and the F’-algorithm, involve exactly the
same arithmetic operations on the same data.

From the previous points it follows that the one-
dimensional DFT of a vector E can be obtained by reorder-
ing the elements of E in an array F* having arbitrary
dimensions, and by computing by means ofthe T-algorithm
or the F-algorithm successive one-dimensional GFT’s along
every coordinate of F*. This t-dimensional processing in-
volves exactly the same arithmetic operations on the same
data as an FFT algorithm, but presents the advantage of
handling a number of elements at a time that can be
optimized with respect to the dimensions of the working
area.

II. GENERALIZED DISCRETE FOURIER TRANSFORM

In this section the one-dimensional GFT and the multi-
dimensional GFT are precisely defined.
Definition 1: Let

E={e}
wheret=0,1,---, T —1, and
G = {g.}

where z=0, 1, ---, T — 1 are two vectors of T complex
numbers, and let a and b be two constants. The vector G is
said to be the one-dimensional generalized discrete Fourier
transform (GFT) of the vector E with time parameter a and
frequency parameter b [briefly, the one-dimensional GFT of
(E, a, b)] if

T-1

g.= Z erw[T](t+a)(z+b) (1)

t=0
where W[T] = exp (—2n/ —1/T).

Note that, as a particular case, the one-dimensional GFT
of E with both parameters equal to zero coincides with the
one-dimensional DFT of E.

If relation (1) holds, then the elements of E can be
obtained again from the elements of G by means of the
inverse relation

1 T-1 _
eo= T g WTI7Cr0r0, @)
In fact, it results that
1 T-1 :
? Zo gzw['T]~(z+b)(t+a)
1 e (. Nz +b) (z+b)t+a)
= — e, T +aXz T~ ¢ t+a
T 2;0 xgo u,[ ] W[ ]
1 T-1 T-1
=1 3 (eamrre s wirpeoo).
x=0 z=0

The second summation is equal to zero for x # t and is equal
to T for x = ¢, so that relation (2) holds.
Definition 2: Let

Fo = {frins . n
Hd = {hzhkz, oy ka}
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= {a‘i = a‘i(”z, L TR na)a a; = ag(klﬁ n3, ", na)’ T,

’ ka—l)}
“ na)’ b; = b;(kla n39 T, no')’ T

bz = bg(klﬁ k2! T ko—l)}

(where n,, k,=0, 1, -, N,—1foru=1, 2, ---, o) are,
respectively, two o-dimensional arrays (having the same
dimensions) of [ [7-; N, complex numbers, and two vectors
of o functions of ¢ — 1integers. The array H° is said to be the
a-dimensional GF T of the array F° with time parameter vector
@° and frequency parameter vector W’ [briefly, the o-
dimensional GFT of (F°, ®°, ¥°)] if

& = afky, ks
¥ = {b'i = bq(nb ns,

hkl!kZD ey kﬂ
N,—1 N—1 /N;—1
= Z (( Z ( Z fe - W[Nl](n1+al)(k1+bl))
ne=0 n=0 \ny=0 1 T e

. W[Nz]("z +az)(k2+b2) ) .. )W[Na](”a+ao')(ka +ba)

Note that the calculation of the o-dimensional GFT of
(F°, @°,¥°), i.e., of the array H°, can be obtained in o steps in
the ith of which,i = 1,2,-++, 6, a o-dimensional array D[i]" is |
processed (D[1]° = F°) and a s-dimensional array D[i + 1]°
is produced in such a way that H’ = D[s + 1]°. To be
precise, in the ith step, for every value combination ofk ,,- - -,

ki—l’ ni+1’ T, no-y Say k’;, T k?—b n’i'+19 Y n:’ the
one-dimensional GFT of the vector
ik, e mnter, b m=0,1,-+, Ny

with parameters
a‘i,(kta Y kii“—la n:'.‘+1’ Y na'*)
b?(kf, T, k?—l’ n?+la T, n:)
is evaluated, so obtaining the vector

{d[l + 1];:, o, k:—l:k?s"H-ls s n:}, ki = 0, 1, e, Ni— 1

where d[ul;, .. k,_in, - n, 18 the (ky, -, Ky gm0, m)th
element of D[u]°.
As an example, let us consider for ¢ = 2 the two matrices
ny
—y
2 2 e f2
fg,o f(z),l 0Nz -1
Fz:nll f1,o f1,1 SN -1
r2 r2 . f2
le-l,O le“l,l le—l,Nz—l
and
k,
- —
2 2 2
h(z),O h(z),l hg,Nz—l
H? =kll hio hi 4 o hiNg-a
12 12 L2
th'—l,O ‘th"l,l hN1—l,N2—l
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and the two parameter vectors

©? = {a}(n,), aj(k,)}
W2 = {b?(n,), b3(k,)}.

Let H? be the two-dimensional GFT of (F2, ®%, ¥?). Such a
matrix can be obtained in the following two steps.

1) Evaluate for every value of n,, say n%, the one-
dimensional GFT of the n¥th column of F? with parameters
a3(n}) and b}(n%), so obtaining an intermediate matrix
D2J = {d[2]%,...}-

2) Evaluate, for every value of k,, say k%, the one-
dimensional GFT of the k}th row of D[2]* with parameters
a3(k*) and b}(k¥), so obtaining the final matrix H>.

For the sake of clarity, first we will introduce fast algor-
ithms for the evaluation of the GFT of a vector (Sections III
and IV), and then we will extend the obtained results to the
case of the GFT of a multidimensional array (Section V).

III. T-ALGORITHM AND F-ALGORITHM FOR
CoMPUTATION OF THE GFT OF A VECTOR

THE

The aim of this section is to show how the one-
dimensional GFT of a vector E with given parameters a and
b can be obtained by regarding the elements of E as
reordered in a proper multidimensional array, and by
evaluating a multidimensional GFT of such an array with
proper parameter vectors.

Definition 3: Let A° be theset of integers {N, N,,-**,N,}.
The o-dimensional array F° of [[5-; N, elements is the
A’-horizontal rearrangement of the vector E of T elements if
NN, - N,=T,and

ﬁ N,,) n,.

v=u+1

ag
iz mg = €1 for =Y (

u=1

Likewise, the vector G of T elements is the vertical rearrange-
ment of the g-dimensional array H° of [ [J-, N, elements if
T= N1N2 te No’ and

— o
9z = My ks, ko for

[4 u—1

z=Y ( N l,) k,.
u=1 \v=1

As an example, the N; x N, matrix F? is the {N,,

N,}-horizontal rearrangement of the vector E of T elements

if NyN,=Tand f? ,,=e for t = Nyn, + n,, that is, if

ny
—_—
€9 € €N, -1
F? = ", l en, eN, +1 €rN,-1
€Ny -1)N; €N - 1)N,+1 €N Ny—1

Likewise, the vector G of T elements is the vertical rearran-
gement of the N, x N, matrix H? if T= N,N, and
g. = h? ;, for z=k, + N k,, that is, if
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— ()2 2 ... K2 2 2 ... p2
G - {h0,0a hl,o; ) th—l,O’ hO,l’ hl,l’ s th—l,l’ 1)
2 2 e W2
ho,N;—la hl,Nz—l’ s th—l,Nz—l}‘

Definition 4: The parameter vectors ®° and ¥’ are the
A’-projections of type T of a and b if

,_[0 ifl<u<g

a“=\a ifu=a

u—1 fx—1

Y ( 11 Nv) k.+b
& x=1 \v=1

b“ = u—1

I1 N,

x=1

Likewise, the parameter vectors ®° and ¥ are the
A’-projections of type F of a and b if

i (IEI Nv)nx+a

u=12--,0.

(3)

aa=x=u+1 v=x+1
ﬁ N, u=12-,0.
x=u+1
ba_:b ifu=1
“ 10 ifl<u<eo

As an example, for ¢ = 2 the parameter vectors ® and ¥
are the {N;, N,}-projections of type T of a and b if

®? = {0, a}
W2 = (b, (k, + b)/N,}.

Likewise, the parameter vectors ®* and P2 are the {Ny,
N,}-projections of type F of a and b if

® = {(n, + a)/N,, a)
¥2 = b, 0).

The following theorem gives two fast algorithms (7-
algorithm and F-algorithm) for the evaluation of a one-
dimensional GFT of a vector. This theorem will be
generalized in Section V to the case of a multidimensional
GFT of a multidimensional array, and the proof of the
generalized theorem can be found in the Appendix.

Theorem 1: Let us consider the vector E of T elements and
the parameters a and b, and let us suppose that the set of
integers A’ = {N, N,," -, N }issuchthat T= N, N, --N,.
The vector G obtained after the following algorithms (7-
algorithm and F-algorithm) is the one-dimensional GFT of
(E, a, b).

T-Algorithm on (E, a, b, A°):

1) Reorder the elements of E in a o-dimensional array F°
in such a way that F° is the A°-horizontal rearrangement of
E.

2) Evaluate the g-dimensional GFT of (F°, ®°, ¥?) where
®° and W’ are the A’-projections of type T of a and b, so
giving a new g-dimensional array H°.

3) Reorder the elements of H° in a vector G insuch a way
that G is the vertical rearrangement of H°.
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F-Algorithm on (E, a, b, A°):

1) Reorder the elements of E in a o-dimensional array F°
in such a way that F? is the A°-horizontal rearrangement of
E.

2) Evaluate the s-dimensional GFT of (F?, ®°, ¥’) where
®° and W° are the A’-projections of type F of a and b, so
giving a new o-dimensional array H°.

3) Reorder the elements of H’ in a vector G insuch a way
that G is the vertical rearrangement of H°.

It should be noted that in applying the T-algorithm and
the F-algorithm, the parameter vectors ®° and ¥’ are
evaluated once for all and can be utilized for different data.
As a particular case, if the time parameter a is equal to zero,
then in the T-algorithm all the elements of the resulting
parameter vector @ are identically equal to zero. Likewise,
if the frequency parameter b is equal to zero, then in the
F-algorithm all the elements of the resulting parameter
vector W are identically equal to zero. Moreover, the
T-algorithm and the F-algorithm contain all the informa-
tion for the treatment of indexing and programming.

Note also that the arithmetic operations required by the
T-algorithm and by the F-algorithm are those involved in
point 2), since the reorderings relative to points i)and 3)are
simply obtained by a proper indexing. Point 2) requires the
evaluation of T/N; one-dimensional GFT’s of sets of N,
elements for i = 1,2, -, 6. Then, if we denote with O(N ;) the
number of arithmetic operations involved in the evaluation
of a GFT of a set of N, elements, it follows that the number of
arithmetic operations required by the T-algorithm or by the
F-algorithm is }'7_, (T/N;)O(N;). As a particular case, let us
consider the T-algorithm for evaluating the GFT of a vector
of T = 2° elements with time parameter equal to zero. This
algorithm requires the evaluation of (T/2) log, T one-
dimensional GFT’s of two elements with time parameter
equal to zero. Since the evaluation of a GFT oftwo elements
X0 and x; with parameters 0 and ¢ involves the computation

Yo = Xo + x; W[2]%, Y1 = Xo — X4 W[z]é

it follows that in this case the T-algorithm requires Tlog, T
complex additions and (7/2) log, T complex multi-
plications, ie., it has the same complexity as an FFT
algorithm.

Likewise, let us consider the F-algorithm for evaluating
the GFT of a vector T = 2° elements with frequency par-
ameter equal to zero. This algorithm requires the evaluation
of (T/2) log, T one-dimensional GFT’s of two elements with
frequency parameter equal to zero. Since the evaluation of a
GFT of two elements x, and x, with parameters y and 0
involves the computation

(xo — x1)W[2J¥

it follows that in this case also the F-algorithm has the same
complexity as an FFT algorithm.

As an example, let us evaluate the one-dimensional DFT
of a vector E having T =2* elements by using the 7T-
algorithm on (E, 0, 0, {2, 2, 2, 2}). This consists of the
following.

Yo = Xo + Xy, =
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Fig. 1. Flow graph of the T-algorithm on (E,0,0,{2,2,2,2}) where Eisa

vector of T = 2% elements.

1) Reordering the elements of E in a four-dimensional
array F* (having all the dimensions equal to two) by means
of the relation

f”l-"ZJKS-M = e, fOI‘ t= 8"1 + 4n2 + 2"3 + n4.

2) Evaluating the four-dimensional GFT of F* with time
parameter vector ®* = {0, 0, 0, 0} and frequency parameter
vector W* =1{0, k,/2, (k,+ 2k,)/4, (k,+ 2k, + 4k;)/8}.
This is accomplished in four steps, and in each step eight
one-dimensional GFT’s of two elements are performed, all
having their time parameter equal to zero. In such a way a
final four-dimensional array H* (having all the dimensions
equal to two) is obtained.

3) Reordering the elements of H* in a vector G according
to the relation :

fOI‘ zZ= kl + 2k2 + 4k3 + 8k4.

The flow graph of this algorithm is given in Fig. 1, where
each block represents the computation of a GFT of two
elements, the parameters being written into the block. Each
column of blocks represents one step for evaluating the
four-dimensional GFT of F*.

Likewise, let us evaluate the one-dimensional DFT of a
vector E of T = 2* elements by using the F-algorithm on (E,
0,0, {2, 2, 2, 2}). This consists of points 1) and 3) relative to
the previous example, and of the following point 2).

2) Evaluating the four-dimensional GFT of F* with time
parameter vector ®* = {(4n, + 2n;y + n,)/8, (2n3 + n,)/4,
n, /2, 0} and frequency parameter vector ¥* = {0, 0, 0, 0}.
This is accomplished in four steps, and in each step eight
one-dimensional GFT’s of two elements are performed, all
having their frequency parameter equal to zero.

The flow graph of this algorithm is given in Fig. 2.

Let us now compare in the case of a DFT the T-algorithm
and the F-algorithm with the classical FFT algorithms. By
examining the flow graph in Fig. 1, and by taking into
account the way a GFT of two elements with time par-
ameter equal to zero is evaluated, it is easy to verify that for
the given example the T-algorithm represents a form of the
classical FFT algorithm based on decimation in time [10].

— L4
9: = M iy ks
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Fig. 2. Flow graph of the F-algorithm on (E, 0,0, {2,2,2,2})where Eisa
vector of T = 2* elements.

Likewise, it is easy to verify that for the example given in Fig.
2 the F-algorithm represents a form of the classical FFT
algorithm based on decimation in frequency [11]. This fact is
true, in general, as stated in the following theorem. The
theorem proof can be found in the Appendix.

Theorem 2: Let us consider the vector E of T-elements,
and let us suppose that the set of integers A° = {N, N,; -,
N,}issuchthat T = N; N, - N,. The T-algorithm on (E, 0,
0, A%) represents a form of the classical FFT algorithm in
mixed radix based on decimation in time. Likewise, the
F-algorithm on (E, 0, 0, A”) represents a form of the classical
FFT algorithm in mixed radix based on decimation in
frequency.

From the previous theorem it results that the classical
FFT algorithms can also be viewed as consisting of the
evaluation of proper multidimensional GFT’s.

IV. T'-ALGORITHM AND F’-ALGORITHM

In this section two other algorithms for computing the
one-dimensional GFT of a vector are presented, which are
useful for computing the DFT of large sets of data.

From now on, besides the notations previously in-
troduced, the following entities are considered. That is,

F ={fpips 0
H* = {1}, }
={a} = a;(pz, P3, s Po)s a2 = a3(qy, P3, s Do) s
_ a; = aqs, 92, "> de—1)}
= {b7 = bi(p2, P3, """, P.), b2 = b3(qy, P3, -, po), s
} bi=bidy, 92, "5 4e-1)}
(wherep,,q,=0,1,--+, P, — 1forr = 1,2,---, 1) willdenote,

respectively, two t-dimensional arrays (having the same
dimensions) of [];=; P, complex numbers and two par-
ameter vectors of 7 functions of 7 — 1 integers.

Let us now consider the vector E of T elements and the
parameters a and b, and let us suppose that the two sets of
integers A* = {P,, P,,"--, P.}and A° = {N{, N, -, N, }are
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such that T=P, P, - P,and P, = N5, Ns ., " N .,
r=12 -, 1 where 6, =0, 6,,, > 9, and §,,, = 6. By
taking into account Definition 2, from the T-algorithm and
from the F-algorithm it follows that the one-dimensional
GFT of (E, a, b) can also be obtained according to the
following two algorithms (7"-algorithm and F’-algorithm).

T'-Algorithm on (E, a, b, A", A°):

1) Reorder the elements of E in a t-dimensional array F*
in such a way that F* is the A*-horizontal rearrangement of
E.

2)Evaluate the t-dimensional GFT of (F*, ®°, ¥*), say H",
where @ and ¥* are the A™-projections of type T of a and b,
according to a t-step procedure (see note of Definition 2), in
the ith step of which, i =1, 2, ---, 7, a -dimensional array
D[i]* is processed (D[1]" = F*) and a 7-dimensional array
D[i + 1] is produced in such a way that H* = D[t + 1]". To
be precise, in the ith step, for every value combination of g,

T qi—l9 pi+1, T, Pn Say ‘If, T, q?‘—l’ P:"‘+1, T, p:s the
one-dimensional GFT of the vector
{d[l];f @ - 1P DI+ 1, s Pf}’ bi= 0,1--, P,_,
with parameters
a:(qt’ ) ‘1?—1, p:'“+1a T, P?)
b:(QT, T ‘1?‘—1’ p?‘+1s T, Pf)
is evaluated by means of the T-algorithm on
({d[l]fli gl L PP Pf}’ a;’ bf’ {N5i+ 1> N5i+ 2777 N"Hl})
so obtaining the vector
{d[l + I]ZT g 1P 1 P:}’ qi= 0’ 1’ ) Pi—l
where d[u];, e, due 1P s pc 1S thE (@1 s Gu-1,Pw "> P)th

element of D[u]".

3) Reorder the elements of the t-dimensional array H® in
a vector G in such a way that G is the vertical rearrangement
of H'.

F'-Algorithm on (E, a, b, A", A°):

1) Reorder the elements of E in a t-dimensional array F”
in such a way that F" is the A'-horizontal rearrangement of
E.

2) Evaluate the t-dimensional GFT of (F*, @, ¥*), say H",
where @° and ¥* are the A*-projections of type F of a and b,
according to a t-step procedure (see note of Definition 2),in
the ith step of which, i =1, 2, -+, 7, a 7-dimensional array
D[iJ is processed (D[1]F = F*) and a t-dimensional array
D[i + 1] is produced in such a way that H* = D[t + 1]". To
be precise, in the ith step, for every value combination of g,

s Gi—15 Pi+1s """ Do, SAY q?! T q?—la p?+l’ T, p,tka the
one-dimensional GFT of the vector
{d[l]fﬁ @i 1P P 1 p:}’ Di= 0,1, Pi‘l

with parameters
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a:(qlf, T q?—la p:'.‘+19 T P:‘)
b:(q’{s T q}.‘—l’ p?‘+11 EY Pf)
is evaluated by means of the F-algorithm on

({d[l];; L gi- LPLPI 1 p:}’ a}, b:’ {N5i+ 1> Nt’.’+ 2,7 Naiu})
so obtaining the vector

{li+ 1058 i vanpten b 4i=0,1,, Py
where d[u]y,. .. 0o 1.5 - p. 1S the (@1, 5 Guo 1, Py 7, Pt

element of D[u]".

3) Reorder the elements of the 7-dimensional array H" in
a vector G in such a way that G is the vertical rearrangement
of H".

As a particular case, let us consider the problem of
evaluating the one-dimensional DFT of a vector E [i.e., the
one-dimensional GFT of (E, 0, 0)] where E is constituted by
T=P,P, clements and P,=N,N, N;,,
P, = Ns,:+1Ns,+2 " N,.Such a DFT can be evaluated by
using the T'-algorithm, i.e., by the following,

1) Reordering the elements of E in a matrix F2 according
to the relation f2 , =, for t = P,p, + p,.

2) Evaluating the two-dimensional GFT of F? with time
parameter vector ® = {0, 0} and frequency parameter
vector ¥2 = {0, g, /P,} according to the following two-step
procedure.

a) Calculate the one-dimensional DFT of the p,th
column of F2, p,=0,1, ---, P, — 1, by means of the
T-algorithm on ({p,th column of F?}, 0, 0, {N,, N,, -*-,
Nj;,}), so giving an intermediate matrix D[2]%.

b) Calculate the one-dimensional GFT of the q,th row
of D[2)* with parameters 0 and q,/P,q; =0, 1,-+-, P, — 1,
by means of the T-algorithm on ({g,th row of D[2]?}, 0,
41/P1, {Nsy+1, Nsy42,***, N,}), so giving a matrix H>.

3) Reordering the elements of H? in the vector G accord-
ing to the relation

2
91,92

so obtaining the DFT of E.

g.=h forz=¢q,+ P,q,

Likewise, under the previous hypotheses, the one-
dimensional DFT of a vector E can be evaluated by using the
F’-algorithm that consists of points 1) and 3) relative to the
T'-algorithm, and of the following point 2).

2) Evaluating the two-dimensional GFT of F? with time
parameter vector ® = {p, /P,, 0} and frequency parameter
vector W2 = {0, 0}, according to the following two-step
procedure.

a) Calculate the one-dimensional GFT of the p,th
column of F? with parameters p,/P,and 0, p, =0, 1, ---,
P, — 1, by means of the F-algorithm on ({p,th column of
F?},p,/P;,0,{N,, Ny, -+, N;,}), so giving an intermediate
matrix D[2]>.

b) Calculate the one-dimensional DFT of the q,th row
of D[2)%, 4, =0, 1, -, P; — 1, by means of the F-algorithm
on ({g,th row of D[2]%}, 0, 0, {N;,+1, Ns,+2, ", N}), s0
giving a matrix H2.
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As an example, let us evaluate the DFT of a vector E of 16

* elements by means of the T"-algorithm on (E, 0,0, {4, 4}, {2,2,

2, 2}). This consists of: 1) reordering the elements of E in a
4 x 4 matrix F2; 2a) evaluating the DFT of each column of
F2, so giving another 4 x 4 matrix D[2]?, 2b) evaluating a
GFT of each row of D[2]* with proper parameters, so giving
another 4 x 4 matrix H?; and 3) reordering the elements of
H? in the final vector G. Each column transform and each
row transform is performed by means of the T-algorithm on
sets of 22 elements, that is, by rearranging each column and
each row in a 2 x 2 matrix. The flow graph of the
T'-algorithm for this example is shown in Fig. 3.

Let us consider in this figure the main blocks on the left.
The p,th block from the top to the bottom (p, = 0, 1, 2, 3)
contains the flow graph of the T-algorithm on ({p,th column
of F?}, 0, 0, {2, 2}), used for computing the DFT of the
pertinent column of F2. Let us consider the main blocks on
the right. The g, th block from the top to the bottom (g, = 0,
1,2, 3) contains the flow graph of the T-algorithm on ({g,th
row of D[2]%},0, q,/4, {2, 2}), used for computing the GFT of
the pertinent row of D[2]*> with parameters 0 and q,/4.

The flow graph of the F'-algorithm on (E, 0,0, {4, 4}, {2, 2,
2, 2}) is given in Fig. 4.

The following theorem establishes an equivalence relation
between the T-algorithm and the T'-algorithm and between
the F-algorithm and the F'-algorithm. Such a theorem will
be generalized in the next section to the case of a multi-
dimensional GFT of a multidimensional array, and the
proof of the generalized theorem can be found in the
Appendix.

Theorem 3 : Let us consider the vector E of T elements and
the parameters a and b, and let us suppose that the two sets
of integers A* = {P,, P,, "+, P} and A’ = {N,, N,,-*-, N,}
are such that T=P, P, - P, and P,=N; . N;s .» -
N ,or=12-,1,whereé; =0,6,+; > d,,and 6,,, = 5.
The T-algorithm on (E, a, b, A”) and the T"-algorithm on (E,
a, b, A*, A’) involve exactly the same arithmetic operations
on the same data. Likewise, the F-algorithm on (E, a, b, A?)
and the F’-algorithm on (E, a, b, A", A?) involve exactly the
same arithmetic operations on the same data.

From Theorems 2 and 3 it follows that the previous
algorithms for evaluating the DFT of E involve exactly the
same arithmetic operations on the same data as the FFT
algorithms based on decimation in time and on decimation
in frequency, respectively.

Let us now illustrate the differences between the T-
algorithm and the T-algorithm. Since the two algorithms
involve exactly the same arithmetic operations on the same
data, such algorithms differ only in the order in which the
operations are performed. As a consequence of this fact,
when the dimensions of the working area are not sufficient to
handle the vector as a whole, the T'-algorithm involves fewer
transfers from storage to working area than the T-
algorithm. In order to explain this property, consider the
case of a DFT of a vector E of T elements, and suppose that
T = N°. Moreover, suppose that the working area is
sufficient to handle P elements at most, where P = N° and
T = P". By applying the T-algorithm, we must evaluate a
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Fig. 3. Flow graph of the T'-algorithm on (E, 0,0, {4, 4}, {2, 2, 2, 2}) where
E is a vector of 16 elements.

o-dimensional GFT of a 5-dimensional array having all the
dimensions equal to N. That is, we must perform o steps, and
at every step we must evaluate T/N one-dimensional GFT’s
of sets of N elements. One transfer from storage to working
area is needed for loading data involved in the computation
of P/N one-dimensional GFT, so that T/P transfers are
required at every step, for a total of ¢T/P transfers. By
applying the T'-algorithm, we must evaluate a t-
dimensional GFT of a t-dimensional array having all the
dimensions equal to P. That is, we must perform 7 steps, and
at every step we must evaluate 7/P one-dimensional GFT’s
of sets of P elements. Then T/P transfers from storage to
working area are required at every step, for a total of tT/P
transfers. Since usually 7 <o, it follows that in the
T'-algorithm the number of transfers is reduced. The
previous reasoning can be verified by inspecting the flow
graph of the T-algorithm in Fig. 1 and the flow graph of the
T'-algorithm in Fig. 3. Similar considerations hold for the
F-algorithm and the F’-algorithm.

In the literature some algorithms have been presented for
evaluating the one-dimensional DFT of large sets of data
[1]-[3]- Such algorithms require the same number of trans-
fers from storage to working area as the T'-algorithm or the
F'-algorithm, but are more complex. In fact, let us consider
as an example the method presented in [2] for evaluating the
one-dimensional DFT of a vector of T = 27 elements, on
the hypothesis that the working area is sufficient to handle
P=2°?% elements at most. Such a method involves
the rearrangement of E in a P x P matrix F? and the three
following computational steps:

1) evaluate the DFT's along the first coordinate of F 2

2) multiply term by term the matrix obtained after point
1) by a P x P matrix of twiddle factors,

3) evaluate the DFT’s along the second coordinate of the
matrix obtained after point 2).

825
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Fig. 4. Flow graph of the F'-algorithm on (E, 0,0, {4, 4}, {2, 2, 2, 2}) where
E is a vector of 16 elements.

Both points 1) and 3)involve the evaluation of P DFT’s of
P elements so that the previous method requires T log, T
complex additions and (7/2) log, T + T complex multi-
plications, that is, T complex multiplications more than the
T'-algorithm and the F’-algorithms.

V. FAST ALGORITHMS FOR THE GFT COMPUTATION
OF A MULTIDIMENSIONAL ARRAY

In this section the obtained results are generalized to the
case of a multidimensional GFT of a multidimensional
array. From now on, besides the notations previously
introduced, the following entities are considered. That is,

E =1{€ 1 1)

Ga = {g;l’zz’ A za}

q)a = {aal = aal(tZ’ t3a T, ta)a a; = a;(zly t39 T, ta)’ T

T Za—l)}

" tu)’ bz = baZ(zl’ t3, "7, ta)a T

bﬁ = bZ(Zla 23,77 zu—l)}

(wheret,, z,=0,1,---, T, — 1fors = 1,2, .-+, a)willdenote,
respectively, two a-dimensional arrays (having the same
dimensions) of []i-; T, complex numbers and two par-
ameter vectors of « functions of « — 1 integers.

Definition 5: Let us consider the two sets of integers
A={T, T,, -, T} and A°’={N,, N,, -, N,}. The
o-dimensional array F° of [[i-; N, eclements is the
A°-horizontal rearrangment of the a-dimensional array F* of
[I-: T, elementsif:a) N, . N, .- N, ,,=T,s=12,

a
ay = az(zla 22,

¥ = {bai = bi(tz, t3,
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s, o, with 3 =0, y544 > 7 and Y.+ 1 = 0, and b)

mns ng = €ty ot (4a)
for
Ys+1 Ys+1
te= Y ( 1T N,,)n,,, s=1,2,-",0 (4b)
u=ys+1 \v=u+1

Likewise, the a-dimensional array G* of [ [¢=, T, elements is
the A*-vertical rearrangement of the o-dimensional array H®
of [[-, N,elementsif:a),=N, .y N, ., "N, ,s=1,
2,-+, & with y;, =0, y,,, > 7, and 7,4, = 0, and b)

gﬁ,_,z, A z;,kz, o kg (5a)
for
VYs+1 u—1
Zs= Z ( l—l Nv)kua S=1,2,"',a. (Sb)
u=yst+1 \v=y,+1

Definition 6: The parameter vectors ®° and W’ are the
A’-projections of type T of the parameter vectors ®* and W~
if: a)Ny,+1 Nv,+2 Ny,+1 =T,s=12-",awithy, =0,
Ys+1 > Vs> and y,, ; = 0, and b) under the transformation of
coordinates defined by relations (4b) and (5b) it is

& _0 iflsu<?s+l_‘}{v
Tetu a: ifu:ys+1 — Vs
ystu—1 x—1
2 (IT NJk{+w (6)
b _ x=ys+1 \v=ys+1
ystu = ystu—1
[l N
x=ys+1

fors=1,2,-,0,u=12"", 9541 — 7

Likewise, the parameter vectors ®° and ¥’ are the
A’-projections of type F of the parameter vectors ®* and W=
if:ta)N, .yN, 2N, ., =T,s=12-,awithy, =0,
Ys+1 > Vs, and 7,4, = o, and b) under the transformation of
coordinates defined by relations (4b) and (5b) it is

Ys+1 Ys+1

I1 NJn+d
o _x=ystu+l \v=x+1
a?s""‘_ Ys+1

[I N

x=ystu+1

o [P ifu=1
y,+u=

.0 ifl<u£ys+1—ys

fors=1,2,",q,u=1,2,""", Y541 — Vs

Theorem 4: Let us consider the a-dimensional array E* of
[1:=1 T, elements and the parameter vectors ®* and ¥* and
let us suppose that the two sets of integers A* = {T,, T, -,
T,} and A°={N;, N,, ‘-, N, are such that
T;=Ny+1 Ny 2" Ny, 5=1,2, -+, o, where y, =0
Ys+1>7s and y,,; = 0. The a-dimensional array G* ob-
tained after the following algorithms (7-algorithm and
F-algorithm) is the a-dimensional GFT of (E*, @*, ¥*).

T-Algorithm on (E*, ®*, ¥*, A°):
1) Reorder the elements of E* in a g-dimensional array F’
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in such a way that F’ is the A’-horizontal rearrangment of
E*.

2) Evaluate the g-dimensional GFT of (F°, ®°, W) where
®@° and ¥° are the A’-projections of type T of ®* and ¥*, so
giving a new o-dimensional array H°.

3) Reorder the elements of H’ in an a-dimensional array
G* in such a way that G* is the A®-vertical rearrangment of
He.

F-Algorithm on (E*, ®*, ¥*, A°):

This algorithm differs from the T-algorithm previously
described only for the fact that in point 2) the parameter
vectors ®° and W are the A’-projections of type F of ®* and
e

Still referring to the a-dimensional array E* of [ [3-; T,
elements and to the parameter vectors ®* and ¥*, let us now
suppose that the three sets of integers A* = {T}, T, -, T},
A*={P,, P,, -, P}and A= {N, N,, -, N,} are such
that: a) T=P, ;4 P, 15 - P, +y,5=1,2, -, a, where
vi=0,v,>v,andv,,; =7,andb) P, = N; , ;N5 ;5"
Ns,,,r=12,---,7,where §; =0,6,,, > 6,and 6., = a.
By taking into account Definition 2, from the T-algorithm
and from the F-algorithm it follows that the a-dimensional
GFT of (E?, @, ) can also be obtained according to the
following two algorithms (T"-algorithm and F’-algorithm).

T'-Algorithm on (E*, ®*, ¥*, A', A°):

1) Reorder the elements of E* in a 7-dimensional array F*
in such a way that F" is the A*-horizontal rearrangement of
E*.

2) Evaluate the t-dimensional GFT of (F*, ®°, ¥*), say H",
where ®° and W' are the A*-projections of type T of ®* and
¥° according to a t-step procedure (see note of Definition
2), in the ith step of which, i=1, 2, -+, 7, a t-dimensional
array D[i]' is processed (D[1]' = F*) and a t-dimensional
array D[i + 1] is produced in such a way that H* = D[z + 1]
To be precise, in the ith step, for every value combination of
91" "5 qi-15, Pi+1, """ Pr, SAY qT? T ‘1?‘—13 pl"+l’ Ty Pf, the
one-dimensional GFT of the vector

{d[i];‘l- i PP+ 1 P’r’}’ pi=0,1,, Py

with parameters

a:(QT’ T, qr— 1 Pr+ 1" P:)
bf(‘lf, T, ‘1:"‘—1, pi*+ls R P;')
is evaluated by means of the T-algorithm on
(L1 A T,
a::a b:» {N5i+ 1 N&,~+2s T, NJH.I})
so obtaining the vector
i+ vt 4= 00 L, Py

where d[u];, ... 4. 1.pu - b 1S the (@4, ", Gy 1, Py 7, Do)t
element of D[u]". -

3) Reorder the elements of the t-dimensional array H' in
an a-dimensional array G® in such a way that G* is the
A*-vertical rearrangement of H".
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F'-Algorithm on (E*, ®%, ¥, A", A°):

This algorithm differs from the T'-algorithm previously
described only for the fact that in point 2) ®° and ¥* are the
A*-projections of type F of ®* and ¥* and successive
one-dimensional GFT’s along every coordinate of D[i]" are
evaluated by means of the F-algorithm.

Theorem 5: Let us consider the a-dimensional array E* of
[1:-, T; elements and the parameter vectors ®* and ¥, and
let us suppose that the three sets of integers A* = {T, T, -,
T}, A*={Py,P,,---,P},and A° = {N,N,, -, N }aresuch
that:a) ,=P, .,y P, 45 - P, ,s=1,2, -, o, where
vi=0,v4;>vi,and v, =t,andb)P,=N;s . Ns
Ns,. ,r=12,--+,1,whered; =0,9,,{ > 6,,and 6., = 0.
The T-algorithm on (E* ®* ¥*, A%)and the T-algorithm on
(E*, @*, ¥, A", A°) involve exactly the same arithmetic
operations on the same data. Likewise, the F-algorithm on
(E*, @, ¥*, A?) and the F’-algorithm on (E* @°% ¥* A", A?)
involve exactly the same arithmetic operations on the same
data.

VII. CONCLUDING REMARKS

In this work two pairs of fast algorithms for computing a
multidimensional GFT are presented; they are called the
T-algorithm and F-algorithm and the T'-algorithm and
F’-algorithm, respectively.

It is shown that in the case of the DFT of a vector the
T-algorithm and the F-algorithm represent a form of the
classical FFT algorithms in mixed radix based on decima-
tion in time and on decimation in frequency, respectively.
Moreover, it is proved that the T-algorithm and the.
T'-algorithm, as well as the F-algorithm and the
F’-algorithm, involve exactly the same arithmetic opera-
tions on the same data.

The T'-algorithm and the F’-algorithm are relevant if we
want to evaluate an a-dimensional DFT of an a-dimensional
array E” on the hypothesis that single transforms along the
coordinates of the data array cannot be handled as a whole
by the available processor. As an example, suppose that all
the dimensions of E* are equal to T (where T is a power of N)
and that the working area is sufficient to perform a GFT of P
elements at most (where T is a power of P and P is a power of
N). In this case it is possible to evaluate the «-dimensional
DFT of E by using the T'-algorithm or the F’-algorithm
which consist of reordering the elements of E* in an array F*
having all the dimensions equal to P, and in evaluating by
means of the T-algorithm or the F-algorithm successive
one-dimensional GFT’s (along every coordinate of the
7-dimensional data array) of vectors having P elements each.

In this work the GFT has been utilized as a mechanism for
evaluating in a multidimensional way the DFT of a vector or
of an array. On the other hand, observe that the GFT can be
useful in other applications, such as the evaluation of the
DFT of staggered blocks [6], [7] and the evaluation of the
DFT of a vector circular shifted or the DFT circular shifted
of a vector. Let us consider, for example, the DFT of a vector
E right circular shifted of a positions, a being an integer.
Such a DFT is given by
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T—

1
g:= Y, ep—a, WITI*

t=0

z=0,1,---, T—1

where |x |, means x modulo y. By putting |t —a|r=t' we
obtain

T-1 ‘
g.= 3 eW[TI""™ =01, T-1
=0

Then the DFT of E right circular shifted of a positions can be
obtained by evaluating the GFT of (E, a, 0). Likewise, it can
easily be verified that the DFT right circular shifted of b
positions (b being an integer) of a vector E can be obtained
by evaluating the GFT of (E, 0, b). Remember that the
F-algorithm for evaluating the GFT of a vector. with
frequency parameter equal to zero and the T-algorithm for
evaluating the GFT of a vector with time parameter equal to
zero have the same complexity as an FFT algorithm (see
Section III). Then, if we want to evaluate the DF T of a vector
circular shifted, or the DFT circular shifted of a vector, it is
convenient to directly perform the GFT instead of the phase
shift method given in [12] which consists of the evaluation of
the DFT of E and of T further multiplications.

APPENDIX

Proof of Theorem 4: The proof is made for the T-
algorithm. The case of the F-algorithm can be similarly
treated.

Point 2) of the T-algorithm on (E?*, @, ¥, A’) can be
written as

he ks, ke
N,—1 N;—-1 /N;1—1 - o
= Z (( Z ( Z f: I W[Nl]("r"al)(kl"'bl))
ne=0 n=0 \ny=0 Lz e

- W[N] +af)k+ b‘z’)). . ) W[N]+ 38ko + 5D
(7)

where F? is the A°-horizontal rearrangement of E*, and ®°
and ¥’ are the A’-projections of type T of ®* and ¥*. By
taking into account relation (6), the product

W[NY;+ 1]("y,+1 +age+ 1 ks +1 +b§,+ ...
W[]Vy + 2]("”* r+ag s Mhys+1+09+1)
s

can be rewritten as

W[ Ts'](t, +ag)(zs+ bg)
where
Ys+1 Ys+1
tt= Y | Il N.)n
u=ys+1 \v=u+1
and

Ys+1 u—1
=y, IT Nk,
u=ys+1 \v=ys+1
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By denoting with G* the A*-vertical rearrangement of H?, it
follows that relation (7) can be rewritten as

o
Yz1.22, ", 2a

T,—1 Ty—1 (Ty—1
= Z (( Z ( Z e . tW[Tl](!1+nT)(21+b°1‘))
1582, s ta 7

te=0 t2=0 \t;=0

. W[Tz](tz +a3)z2 +b3) ) .. ) W['I;](‘a + a3}z« +bP

Q.E.D.

Proof of Theorem 2: The proof is made for the T-
algorithm and the FFT algorithm based on decimation in
time. The case of the F-algorithm and the FFT algorithm
based on decimation in frequency can be similarly treated.

The T-algorithm on (E, 0,0, A%) involves the computation
of the o-dimensional GFT of (F?, ®°, ¥’), where F? is the
A’-horizontal rearrangement of E and ®° and W’ are the
A’-projections of type T of 0 and 0. From relation (3) it
follows that the elements of @ are all equal to zero, while the
elements of ¥ are given by

_ (kl + lez + 4+ NINZ st Nu—Zku—l)
(NyNz " Nyoy)
u=12-,0 (8)
The computation of the GFT of (F°, ®°, ¥°) consists of
o-steps (see note of Definition 2) in the ith of which the

following quantity is evaluated for every value combination
of ky, - -, Ny, say k%, - k¥, n¥ 0, nk:

bi

’ ki—l’ Ny,
. a

d[l + I]k'f, o k- kit g, g
Ni—1

-— ile

- z d[l]k;, UM+ R PRETIN 4
n=0

. W[Ni]n.(k#b‘.’)’ k;=0,1,---, N,— 1.

©)

By taking into account relation (8), the quantity
W[N,]"®%*%) can be rewritten as

W[T]nz(kl +Ngka+--+NyNp - Ni_1kNi 4+ 1Niy2 - Ng

Therefore, the recursive equation (9)is a different form of the
recursive equation (16) given in [10] which represents the
Cooley-Tukey FFT algorithm in mixed radix. QED.

Proof of Theorem 5: The proof is made for the T-
algorithm and the T"-algorithm. The case of the F-algorithm
and the F'-algorithm can be similarly treated.

Let F* be the A™-horizontal rearrangement of E*, and let ®°
and " be the A'-projections of type T of ®* and W*. First we
will prove that the T-algorithm on (E*, ®*, ¥*, A) and the
T-algorithm on (F*, @°, ¥, A°) involve exactly the same
arithmetic operations on the same data [point a)], and
second we will prove that the T-algorithm on (F*, @%, ¥*, A?)
and the T'-algorithm on (E* @*, W%, A", A?) involve exactly
the same arithmetic operations on the same data [point b)].
" Point a): The T-algorithm on (E* @° ¥*, A%) involves the
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evaluation of the o-dimensional GFT of a -dimensional
array F° with parameter vectors @ and W', where F°'is the-
A°’-horizontal rearrangement of E*, and ®° and W°' are the
A°-projections of type T of ®* and W* Likewise,
the T-algorithm on (F*, ®%, ¥*, A%) involves the evaluation of
the o-dimensional GFT of a o-dimensional array F°" with
parameter vectors ® and W, where F° is the
A’-horizontal rearrangement of F*, and ®°" and W are the
A°-projections of type T of ®° and ¥*. Point a) is proven if we
verify that F = F°’, ® =®°, and ¥° =¥°". From
Definition 5 it results

o’ = &
ny,ng, , ng . Sy, it

(10a)
for

Ys+1
H N,,) n,, s=1,2,---,0 (10b)

v=u+1

Ys+1
te= Y (

u=ys+1
where y, =0, ,,. Likewise, from the same definition it
results

4 = ¢*
P1:P2, " Pr . Tt1,t2, 0t

for
Vs+1 Vs+1
=Y ( IT P,,)P,., s=1,2,---,a (11)
u=vsg+1 \v=u+1
and 7'l‘l’,'lZ, *ty Ng = ;’lnply =t P
for (12)
Ort1 41
N 1
u=06,+1 \v=u+1
From relations (11) and (12) we have that
::-nz, g e‘:hfz, Bt I (133)

for

Vs+1 Vs+1 Sy+1 du+1
- ()
v=u+1 x=8,+1 \y=x+1

u=vg+1

s=1,2-,a (13b)

where P, = N;,.; " N;,, . Relation (13b) can be written as

Fys+1+1

Vs+1 du+1 Su+1
= SUS (T ) )|
u=vg+1 |x=8,+1 \y=x+1 v=0,4+1+1

Oyse1+1 [Oysiy+t
= ( Ny) n,. . (14)

X=8y q+1 \y=x+1

Therefore, since (14) coincides with (10b), we have that
F' =F"".

In a similar way it can be proved that ® = ®°" and
P =

Point b): The T-algorithm on (F*, ®°, ¥*, A?) involves the
evaluation of the s-dimensional GFT of (F°, ®°, ¥’),say H°,
where F° is the A’-horizontal rearrangement of F* and ®°
and W’ are the A’-projections of type T of ®* and ¥". Let us
evaluate H’ as explained in the note of Definition 2. Let us
put
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C[i]:l’ o kg Mg 1y M

Nsi—1 N1 1
2 Z f"p S5 a4 15 0y g

ns = n; =0

W[Nl]("‘ +a{)(ky +bY) ) .. ) W[Na.](na;+aﬂ,-)(kai+ bgi)'

Obviously, it results

11, n =S m,

clo + 1Ji,, .ox, = i, (15)
Then we can think of evaluating H° in t steps (without
altering the involved arithmetic operations), the ith of which
consists of performing, for every value combination of &,

"y kéis nb,-+1+1a tnt, Ny, SAY k:.l" T k?;,-, n:;i+,+1’ T, n:’ the
computatlon
. 4
C[l + l]kf, o, k’i’ ke 1o gy s ":Hl‘”’ “e, ¥
Ny —1 Nsi+1~1
— .o 119
= Z Z C[l]kr' ...,k:f ”a,-+1,"""6“1’"3',-.,.14—1"“"':
5,4 =0 n5;+1=0

: W[Nal,... l](n"‘“"l+a$l'+1)(k',i+1+agi+1)) oo )

. W[N6,+1]("“-'“+“3i“)(k“"“+b3i“). (16)
The T'-algorithm on (E*, @, ¥*, A%, A®) consists of 7 steps,
in the ith of which for every value combination of q,, -,

Gi-1> Pi+1s *'s Pes SAY qY, 0, @y, DXy, oo, DY, the
T-algorithm on

({d[l]tq: g 1.Gi B 1 p':‘}’ a'i:’ bf’ {Néi‘*' S R N“iﬂ})
is performed where
115, .0 =15 (17)

Then the ith step involves the following computation:

g[’](‘]f: T q:'— 1s p:*+ 15777, pf)qll, ...,qal
Nojpq =1 Ny+1—1

= X (( > elillat, s gt PR PE)ph et
=0 py=0 i

. W[Nai+ 1]mi+a[i]1)(q",+b[i11)) ) .

W[N,,, ]+ et +otiz) - (18)
Where I{i = 6,'+1 - 6i and
e[l](‘ﬂ‘, Y q:k— 1> Pf+ 17 p:‘)Pi, "'vPi\,
' = d[l];.p r q?—lypiypfﬂv 4
for
A Ai .
p= 3 (T Naei) (19)
u=1 \v=u+1
and
il _{0 forl<u<
"7 \at for u = A, u=12"-,% (20)

i+ 1],
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u—1 /x—1
z(nNMJ¢+w

x=1\v=1

l—[ N6+x

bli), =

and

* * *
4i-1,49i;Pi+1, """ Pr

= g[l](qfa T, qr— 1> p:'*+1a T, p:‘)qi,...,qi

for

= 3 (1 o)

u=1\v

(21)

Since the extremes of the summations in relations (16) and
(18) are the same, we can put

i

pu - n6;+u
i

qll - k5i+u

Then from relation (20) and from the fact that ®° and ¥° are
the A”-projections of type T of ®° and ¥" it follows that

a[i]u = agi+u
b[l]u = bg,-+u

Moreover, from relations (17) and (19) it results

e[I](pg’ a1 = f;l, p3, -, p?

u=1,2 -, A (22)

u=1,2-, i (23)

s D )py, -
for

Z(ﬂ)

Likewise, from relation (15) and from the fact that F° is the
A’-horizontal rearrangement of F” it results

[1],,, -,

T
— * *
Nggs M3g 410 *0 s MY P1,P2, "5 Pt

for

ne 5

ds+1 Os+1
pr= Y [T N,)nm¥, s=2,3--, 1
u=d0s+1 \v=u+1

Then we have (remember that A, = §,)

e[l](pg, s Pr )px ri, C[I]nn omapiie, , Ay
for
pl=n, u=1,2--,4; (24)
Os+1 Os+1
pr= Y ( I1 N,,)n,‘}‘, s=2,3,,1
u=ds+1 \v=u+1

Since relations (16) and (18) have the same form, by taking
into account relations (22), (23), and (24), it results that for
i = 1 the same arithmetic operations on the same data are
performed in relations (16) and (18) and the same result is
obtained. That is,

gl1®%, -, p¥)as, -, gy = 2L, -

* *
s kaniiv 1, s ng

for
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q: =k, u=1,2,-, 4 (25)
‘sx+l 6.:+1
pr= Y ( N.,)n:‘, s=23"
u=0;+1 \v=u+1

By taking into account relations (19) and (21) we have
3[2](‘1?, pga A p:)p%, --',pﬁz

= g[1)(p2, P, **, PSS, -t
for

A1

2 (T ) e

=

Y

u=1

(26)

A2
l—.[ Nll +v) Pf
v=u+1

Then from relations (25) and (26)

e[z](qf9 pg A p:‘)pf, ey p%z —

5 c[2]"f' i | k:)z- Map 410 s Mog 420 Mg+ a2 +10 """ Mg

for

At u—1

at= 3 (T v ke @)
u=1 \v=1

p3=n62+ua u=192a'”712
Os+1 O5+1

e
u=0;+1 \v=u+1

By reasonings similar to those relative to i = 1, by starting
from (27) it can be shown that for i = 2 the same arithmetic
operations on the same data are involved in relations (16)
and (18), and so on. Q.E.D.
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