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Uniform Shift Multiplication Algorithms Without
Overflow

PAOLO CORSINI AND GRAZIANO FROSINI

Abstract-In this correspondence the problem of performing the
multiplication by recoding the multiplier is considered. A special
recoding for fractional numbers in two's complement form is pre-
sented, that generates a class of uniform shift multiplication al-
gorithms having the property that every partial product is always
in the open interval (-1,1). Both the scan of the multiplier from the
least to the most significant bit and the scan in the opposite direc-
tion are considered.

Index Terms-Higher radix multiplication, modified Booth's
algorithms, multiplication algorithms, two's complement arith-
metic, uniform shift methods.

I. INTRODUCTION

In digital systems that operate'with real-time data arriving at
uniformly spaced time instants, it is useful to implement algo-
rithms for the arithmetic operations that require a constant op-
eration time, independent of the actual data values. Uniform shift
algorithms for multiplication have been proposed [11-[3] that do
not require sign correction for numbers represented in two's
complement form. An algorithm of this class examines at every
step Q + 1 bits of anN bit multiplier, and adds a proper multiple
of the multiplicand to the previous partial product, thus ob-
taining a new partial product. The final product is obtained after
M = N/Q steps.

In some applications, where fractional arithmetic is used, it
is advantageous to have uniform shift algorithms in which at
every step the partial product is always in the open interval
(-1,1), so that an overflow never occurs. This implies that the
quantities to be added to the partial product must be fractions
of the multiplicand or the multiplicand itself.

In this-correspondence the problem of the multiplier recoding
is considered [4]-[6], and a special recoding is given that allows
us to represent the multiplier in radix 2Q by means ofM signed
digits, where each digit is in the closed interval (-1,1). Two
multiplication algorithms are then derived (one corresponds to
the scan of the multiplier from the least to the most significant
bit, and the other to the scan in the opposite direction), having
the property that every partial product is always in the open in-
terval (-1,1). Such algorithms, that represent a class of uniform
shift multiplication algorithms, for Q = 1 coincide with the
classical Booth algorithms [1], while for Q = 2 and for Q = 3
represent a modification of the "uniform shift of two" and
"uniform shift of three" MacSorley algorithms [2].

II. MULTIPLIER RECODING AND MULTIPLICATION
ALGORITHMS

Let X and Y be two fractional numbers in two's complement
form, and let us consider the product P, xy. If X = Y = -1 the
product cannot be represented in fractional form and an overflow
occurs. If either X =-1 or Y =-1 (but not both), then P is ob-
tained simplybytwo'scomplementing YorXJIf-1 <(X,Y) <
1, then the product must be evaluated.

Referring to the last case, let Yo,Y1,Y2, * *,YN- 1 be the binary
sequence representing the multiplier Y, yo being the sign bit and
YN-1 the least significant bit. It results
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N-1
Y= -yo + E Y,2 t

n=1
(1)

In order to evaluate P, let us recode arithmetically the multi-
plier Y [4]-[6] so that it can be expressed as

M-1
Y = Zmr-m,

m=0

where r is the new radix and Zm. m = 0,1, * ,M - 1, are proper
signed digits. The product P = XY can be computed inM steps
by evaluating M partial products, the Mth of which coincides
with P. The partial products can be obtained by scanning the
signed digits of the recoded multiplier either from the right to
the left or in the opposite direction.

Right to Left Scan: Let us define as partial products the
quantities

M-1
PRi = X E_ zmrM-i-m i = 1,2, ... ,M.

m=M-i

Obviously PRM = P. Moreover, the following iterative relation
holds:

PRi = r'PRi + ZM-iX, i = 1,2, * -.,M, (2)
where PRo = 0. This relation represents-an M-step multiplication
algorithm in which the digits of the recoded multiplier are ex-
amined from the least to the most significant.

Left to Right Scan: Let us define as partial products the
quantities:

i-1
PLi=X Ezmr-m, i = 1,2,. ,M.

m=0

Obviously PLM = P. Moreover the following iterative relation
holds:

PL1 = PLi_1 + zi-lXi-i, i= 1,2,..-,M,
Xi = -l_i (3)

where PLo = 0 and Xo = X. Also this relation represents an
M-step multiplication algorithm, and the digits of the- recoded
multiplier are examined from the most to the least significant.

III. A SPECIAL RECODING OF THE MULTIPLIER

The problem of recoding the multiplier, in order to obtain
multiplication algorithms having particular properties, has been
extensively studied in the literature [4]-[6]. The goal of the
proposed recodings has been chiefly to obtain a multiplier rep-
resentation having a minimum number of nonzero digits, so that
the time required to perform a specific multiplication is mini-
mized.

In some applications it is advantageous to implement multi-
plication algorithms requiring a constant operation time, inde-
pendent of the actual operand values. This happens when oper-
ations with real-time data arriving at uniformly spaced time in-
stants are to be performed, and when a multiple data stream is
processed under the control of a single instruction stream (array
processors). In order to have a constant multiplication time, it
is necessary that each multiplication step consists always of the
same operations, i.e., of a shift operation and of an add operation,
even if one of the addends is equal to 0.

Referring to the above applications, we propose a multiplier
recoding having the property that every partial product is always
in the open interval (-1,1), so that an overflow never occurs. The
signed digits by which the multiplier is recoded are not neces-
sarily integers, and are constructed by scanning the multiplier
bits yo,Y 1, * * *, YN-I either from the right to the left or from the
left to the right. Each one of theM signed digits is constructed
by examining Q + 1 bits of the multiplier (where MQ = N) and
two consecutive signed digits are functions of two sets of bits
overlapped of one bit.
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CORRESPONDENCE

Theorem 1: Let Yo,Yi, - - *,YN-1 be the binary sequence rep-
resenting the multiplier Y and let us append to the right of the
least significant bit YN-1 an additional bit YN = 0. IfN = MQ,
M and Q being integers, then the multiplier can be recoded in
radix r = 2Q and--expressed as

M-1
Y= E z(Q) .(2Q) -M

m=0
where

O-1~~~~~+Z(Q)m = -YQm+ yQM+q2 q +yQm+Q2Q+. (4)
q=1

Proof: Relation (1) can be rewritten as
N-1

Y= -2yO+ E Yn2n
n=O

Puttingn = Qm + q, q = 0,1,---,Q - 1,m.= 0,1,-.-,M- 1,we
have

Q1 M-1
Q qY= -2y0+ Y YQm+q2Q

q=O m=0
M-i -1 M-1

-2yO + E yQm2-Qm + yL yQm+<Z2Qm2 .
m, 0 q=1 m=0

By adding and subtracting the first summation we obtain
M-i M-1 XQ-1
Y 2E ym2-Qm + YQm+q2 2

m=0 m=0 q=q1
M-Q

+ 2 E yQm2 Qm
m=l

In the last summation the index m first can be extended until M,
since in the theorem hypothesis YMQ = YN = 0, and then can be
changed by putting m = m - 1, so that we have

Y=M-i Q/ (2Q)-mX
Y=E ( YQm + y yQm+q2q +yQm+Q2-Q+) (2Q)m.

m=O q=1

Q.E.D.

,From (4) it follows that -1 < z(Q)m < 1. As particular cases
we have:

z ( )m=-Ym + Ym+I,
1 1

z(2)m = -Y2m + 2Y2m+l + 2Y2m+2,2 2

Z(3)m = Y3m + 2Y3m+1 + - Y3m+2 +4Y3m+3,

so that
z(1)m & 1,0,1},

Z(2)m 6 |-1i O2e1

Z(3)m E |-1-4 2 4' 4' 2' 4'1
Theorem 2: If the multiplier is recoded according to Theorem

1, then every partial product PRi (PLi) satisfies to the relation
-1 <PRi < 1 (-1 <PLi < 1).

Proof: The-proof is made for every partial product PRi. The
proof for the partial products PLi is similar and is omitted. In the
theorem hypothesis we have

M-1
PRi = X E z(Q)m(2Q)Mim

m=M-i
M-1 + Q Q1

=X E_ -YQm + E YQm+q2 q
m=M-i q=1

+ YQm+Q2 Q+l) (2Q)M-i-m
M-1 1

=X E -2YQm + L yQm+q2
m=M-i q=O

+-YQm+Q2-Q*1) (2Q)M-i-m

M-1 M-1 QG}-Qm1= X -2
, yQm2-Qm + MZ. YQm+q2Qm

m=M-i m=M-i q=O
M- 1

+2 , YQ(m+l)2-Q(m+l)J (2Q)M-i
m=M-i

By putting n = Qm + q (so-that n = N-iQ,N-iQ + 1, * *.,N
- 1) and by simplifying the elements of the first and of the last
summation, we obtain

N-1
PRj = X -2YN-iQ + E Yn2N-iQ-n + YN2iQ+1

n=N-iQ
N-1 -iQ-n)=X -YN-iQ + E yNn=N-iQ+1

The quantity in parentheses is greater than or equal to -1 and
less than 1. As -1 <X < 1, it follows that -1 < PRi < 1.

Q.E.D.

IV. CONCLUDING REMARKS

Let us substitute the signed digits (4) and the radix 2Q into
relation (2). The following uniform shift of Q multiplication al-
gorithm results to be defined:

PRi = 2-QPRi_- + Z(Q)M_iX, i = 1,2,.* *,M, (5)

where PRO = 0. The ith step of the algorithm is as follows:
1) the previous partial product is arithmetically right shifted

Q places (initially the partial product is zero);
2) the multiplier bits are scanned from the right to the left,

in order to construct z(Q)M-i; and
3) the multiplii.cand X first is multiplied by z (Q)M-i and is

then added to the quantity obtained from 1), so forming a new
partial product.

Relation (5) for Q = 1 becomes

PR = !PRi-1 + (-YN-i + YN-i+1)X, i = 1,2, ...,N2
and represents the classical single shift Booth algorithm [1].

Relation (5) for Q = 2 becomes

PRi = 4PRi-1 + (-YN-2i + 2 YN-2i+1 + 2 YN-2i+2)X,

i= 1,2,- -,N/2

and represents a modified form of the "uniform shift of two"
algorithm given in [2] and [3]. An advantageof the-form given
here is that N12 complete steps are exactly required, without the
need of a final shift.

Relation (5) for Q = 3 becomes

PRj = 8PRj1 + (-YN-3i + 2YN-3i+1

+ IYN-3i+2 + IYN-3i+3) X,4 4 i= 1,2,...,N/3

and represents a modified form of the "uniform shift of three"
algorithm described in p2].

Likewise, from relation (3) the following uniform shift of Q
multiplication algorithm results to be defined:

PLi = PLi-i + z(Q)i-lx,-i
Xi= 2-QXi-1 1,2, . (6)

where PLo = 0 and Xo = X. The ith step of the algorithm is as
follows:

1) the multiplier bits are scanned from the left to the right in
order to construct z(Q)i-1;

2) the quantity Xi-1 (initially Xo = X) first is multiplied by
z(Q)i-l and is then added to the previous partial product (ini-
tially the partial product is-zero), so forming a new partial
product;

3) the quantity Xi-1 is arithmetically right shifted Q places,
so obtaining Xi.
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It should be noted that for the left- to right-scanning algorithm
an adder and registers of double precision are required.
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The Automatic Counting of Asbestos Fibers in Air
Samples

T. PAVLIDIS AND K. STEIGLITZ

Abstract-A method is described for automating the counting
of asbestos fibers in air samples by computer processing of digitized
pictures. Preliminary results sh-ow the method is feasible.

Index Terms-Asbestos, asbestos fibers, counting, fibers, image
encoding, image processing.

I. INTRODUCTION

Presently, the levels of hazardous asbestos fibers in certain
industrial environments are monitored by human counting from
magnified air samples. In this paper we propose a system for
accomplishing the same end automatically, by digitizing the
microscope image and using a computer program to count the
fibers. The results of some preliminary runs are presented to show
the ultimate feasibility of such a scheme.
The advantages of automating a monitoring function such as

that discussed here are obvious: first, there is the consistency and
reliability inherent in an automatic process; second, the speed;
third, the ultimate decrease in cost.
The practical implementation of an automatic fiber counting

system can be accomplished by either local or remote computing.
If local computing is done, there is no communication problem,
but the capital cost of a dedicated minicomputer must be con-
sidered. If remote computing is done, a large time-shared system
can be used, but the communication costs must be considered.
The choice between these approaches will be governed mostly
by economic considerations. In either case the microscope picture
can be digitized by one of the many available techniques. In the
present work we digitized photographic prints (Fig. 1) using a TV
camera, a scan rate converter and an A-D converter into 256 X
256 pixels with 6 bits/pixel.
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LI. DATA STRUCTURE AND BASIC ALGORITHM

Before any further processing each digitized picture is con-

verted into a graph. This offers an immediate data compaction
and simplifies the subsequent processing steps [1], [2]. The
conversion is done in the following way: Each raster is scanned
for dark areas, i.e., where the brightness is less than some

predefined threshold T. When a "dark" interval is found it is
assigned a number and it is considered as a node of the graph. If
two "dark" intervals in adjacent lines overlap then the corre-

sponding nodeA of the graph are connected by a branch. Overlap
of two intervals is defined if they have at least a pair of cells one
directly above the other [Fig. 2(a)]. An alternative criterion is to
define overlap if they have a pair of cells with a common corner.

[Fig. 2(b)]. We used the first method in the present implemen-
tation. The graph is directed through the above-below relation
of the intervals corresponding to nodes.

Obviously fiber ends will be mapped into nodes of total degree
one [Fig. 2(c)]. However, nodes of total degree one can also occur

from bent or split fibers as shown in Fig. 3(a). This configuration
will yield a connected component of exactly two nodes. However,
the arrangement of Fig. 3(b) yields three nodes of degree one as

shown in Fig. 3(d). A multiply bent fiber [Fig. 3(c)] will give a

graph of the form shown in Fig. 3(e). On the other hand, two
crossing fibers will give the configurations of Fig. 3(f) or (g). It
can be seen that any node of total degree one from a bent fiber
must be the start of a "downward" path to a node of degree (1,
2) (denotes up-degree = 1, down-degree = 2) or an upward path
to a node of degree (2,1) or to a node of degree one. On the other
hand, crossing fibers can generate only paths from nodes of de-
gree (0,1) to (2,1) and (2,2) or from nodes of degree (1,0) to (1,2)
and (2,2). If the graph is searched and all nodes of degree (0,1)
or (1,0) connected by a chain of nodes of degree (1,1) to nodes of
degree (1,2) (or (2,1) respectively) are marked then the unmarked
nodes of total degree 1 will correspond exactly to fiber ends.
Therefore, the number of fibers will equal half the number of such
nodes.
The arguments above are based on the assumption that the

quantization width is small compared with the thickness of the
fibers.
The last assumption seems to hold in most practical situations

and the actual number of fibers is uncertain enough so that the
above algorithm can be considered as a heuristic. In fact, in-
spection of Fig. 1 shows that the main problem is the breaking
of fibers by nonuniform illumination, resulting in small segments
comparable in size to the quantization width.

Obviously further work on more sophisticated algorithms will
result in more accurate counts, and the present algorithm is
primarily aimed at demonstrating the feasibility of the ap-
proach.

III. IMPLEMENTATION

The procedures described in the previous section were im-
plemented in Fortran and tested on a number of pictures digi-
tized by the method described in Section I. Figure 4 is the digi-
tization of that part of Fig. 1 which is within dotted lines. It is seen
that the 256 X 256 matrix does not give high enough resolution
for all the available detail. However, it was decided to proceed
with these data for two reasons. One was economical and the
other had to do with the application. Fibers missed by the 256
X 256 quantization will be of diameter less than 0.2,u and this is
below the generally accepted limit of those constituting a health
hazard [3].

Fig. 5 shows the graph produced by the algorithm. The num-
bers indicate the correspondence of nodes of degrees (0,1), (1,0),
(0,2), (2,0), and (0,0) with Fig. 4. Nodes #82 and #139 are

marked. The count produced by the algorithm is then 8 which
is close to a human count on the original picture. (Note that it is
difficult if not impossible for human observers to agree on how
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