
IEEE TRANSACTIONS ON COMPUTERS, MAY 1968

resistor tree branch currents, provided that the particular resistor
in question is not part of a fundamental cut set which includes
other resistors;

inductor link voltages, provided that the particular inductor in
question is not part of a fundamental loop which includes other
inductors;

capacitor tree branch currents, provided that the particular
capacitor in question is not part of a fundamental cut set which
includes other capacitors.

ACKNOWLEDGMENT

The author is grateful for the vital contributions made to the
contents of this note by Dr. R. M. Warten.

REFERENCES
[1] T. R. Bashkow, 'The A matrix, new network description," IRE Trans.

Circuit Theory, vol. CT-4, pp. 117-119, September 1957.
[21 P. R. Bryant, "The explicit form of Bashkow's A matrix," IRE Trans. Cir-

cuit Theory (Correspondence), vol. CT-9, pp. 303-306, September 1962. %[3] E. Kuh and R. A. Rohrer, "The state-variable approach to network an-
alysis." Proc. IEEE, vol. 53, pp. 672-686, July 1965.

[41 S. Seshu and M. Reed, Linear Graphs and Electrical Networks. Reading,
Mass: Addison-Wesley, 1961.

[5] "Automated digital computer program for determining responses of elec-
tronic circuits to transient nuclear radiation (SCEPTRE)," vol. 1, IBM Electronics
Systems Center, Owego, N. Y., Rept. 66-928-611, September 1966.

High-Speed Binary-to-Decimal Conversion
M. S. SCHMOOKLER, MEMBER, IEEE

Abstract-This note describes several methods of performing
fast, efficient, binary-to-decimal conversion. With a modest amount
of circuitry, an order of magnitude speed improvement is obtained.
This achievement offers a unique advantage to general-purpose
computers requiring special hardware to translate between binary
and decimal numbering systems.

Index Terms-Algorithms, arithmetic, conversion, data process-
ing, logic.

INTRODUCTION

There has been a trend in the design of computer processors to in-
clude special hardware for translating between binary (used inter-
nally by the computer in calculations) and decimal (used by the pro-
grammer on the outside). Translation between binary and BCD
number systems is also of value in controlling the growing variety
of display devices.

In the past, the conversion task has been handled almost exclu-
sively by programmed subroutines. This is usually satisfactory, as
little total computer time is spent doing such conversions. However,
as new application areas open up for computer systems, it is con-
ceivable that greater speed in conversion will be required. Consider-
ing such advances in the state of the art, two important trends in
technology should be taken into account. Greater use of micrologic
circuits will make it more economical to incorporate additional hard-
ware for special functions. Also, new automated design techniques
will take advantage of these circuits, along with read-only memories,
to provide more customized systems. Such techniques offer an endless
variety of machines differing in speed and instruction set, but all from
the same production line.

This note describes algorithms designed to obtain fast, efficient
conversion from binary to BCD number systems, as well as addi-
tional means for improving the entire conversion process. The
algorithms first require scaling the binary numbers to fractions and
consist of iteratively multiplying the fractions by some power of ten,
particularly by one thousand in the fastest method, and re-encoding

Manuscript received June 30, 1966; revised December 28, 1967.
The author is with IBM Corporation, Systems Development Division, Pough-

keepsie, N. Y. 12602

the overflow from each iteration. The multiplication is accomplished
by shifting and adding in one pass through the adder.

A scheme for precisely converting fixed-point integers by these
methods is also described. It consists of compensating by hardware
means for errors introduced by scaling and truncating.

Use of these algorithms requires no more hardware than Cou-
leur's' method of doubling, used currently in IBM System/360, and
can offer up to ten times improvement in speed for floating-point
output. Furthermore, since the usual method of converting from
decimal to binary also requires iterative multiplication by ten, some
economy is achieved by the use of common hardware.

Special instructions should be designed with the overall task in
mind. Hardware to speed only the conversion is not worthwhile if
excessive computing time is taken with scaling, unpacking, and
other editing functions. One should consider what portion of the total
computer time is devoted to this task, and how much improvement
can be gained. An important factor is the I/O equipment in the sys-
tem and how it will be used. For example, for a machine used mostly
as a peripheral processor, the complete conversion need only be fast
enough to keep up with the printers attached to it.

BINARY-TO-DECiMAL CONVERS10N THEORY

Multiplication by Ten

The familiar method of converting binary fractions to decimal
consists of repeated multiplication by ten. After each iteration, the
integer portion of the product is removed and stored as the next-
lower-order digit of the decimal fraction. To demonstrate, a binary
fraction has the equivalent decimal representation 0. d,d2d3, where di
are integers and 0 <di <9. Then we may write

- dl + d3
'10' 102 10'

To find di, multiply by ten:

10fi = di + -2+ --+ *=d +f2.10' 102

Sincef2 is a proper fraction, (0 <f2<1), di is the integer portion and is
shifted off to become the first decimal digit. The next digit d2 is ob-
tained by multiplyingf2 by ten, and so on, until the desired number
of digits is obtained.

Multiplication by ten can be effected by appropriate shifting and
a single addition, since 10f= 8f+2f. By proper positioning of f at the
adder inputs, the multiplication can be executed in one operation.
Therefore, if gating circuits are provided which shift the fraction as it
is transmitted to the adder inputs, the overall speed is determined
by the number of additions required. Since each multiplication by
ten results in a new decimal digit, one digit per operation is de-
veloped.

The result should be compared with Couleur's method which re-
quires one operation per bit. That is, if shifting and adding can be per-
formed in one operation, then the binary number can be shifted left
one bit (doubled) every operation. Since a decimal digit is formed for
every log2 10 = 3.32 bits of the binary quantity, the method described
above inherently affords a more than three times improvement over
doubling.

Multiplication by One Thousand
Another significant speed improvement can be obtained by first

converting to radix one thousand:

k, k2 k3
1f03 106 109

1000-l = k1 +f4 where 0 < ki < 999.

The fractional portion has been denotedf4 since it is equal to the frac-
tion which would be obtained after three iterations of multiplication
by ten.

J. F. Couleur, "BIDEC: A binary-to-decimal or decimal-to-binary converter,"
IRE Trans. Electronic Computers, vol. EC-7, pp. 313-316, December 1958.

506



SHORT NOTES

The integers ki can be converted to decimal using a decoder, or

other means, on subsequent cycles. However, this decoding can be
done concurrently with multiplication of the fractions which follow
by one thousand. It will be shown later that the decoding can be done
without excessive circuitry, in two operation times. The decoding,
therefore, adds only two cycles after the last ki is obtained.

Multiplication by one thousand required two additions per k-digit
since

1000 = 210f-25.f + 23f

or alternately,
1000-f= 210-f- 24.f- 23

The term addition (as used here) includes the process of subtraction as

well. Since two additions are required for every three decimal digits
ultimately developed, this method is one and a half times as fast as

multiplication by ten. However, since all the operands can be avail-
able at the same time, one can perform the two additions in one oper-
ation time by using a carry-save-adder2 in front of the adder. Thus,
three digits can be obtained every operation, which is a three-fold im-
provement over multiplication by ten, and a nearly ten-fold improve-
ment over doubling.

Multiplication by One Hundred

For completeness, a compromise of the above schemes should be
mentioned. This uses an intermediate radix of one hundred. Noting
that 100 f= 26-f+25 .f+22 f, one sees that two additions are needed
to develop two decimal digits. If no carry-save-adder is available,
this method is no better than multiplication by ten (and is actually in-
ferior, due to the greater complexity). However, with a carry-save-
adder, a two-fold improvement is obtainable. The decoder for this
method requires only about one-third the circuitry as that needed for
multiplication by one thousand, and can be done in one operation
time. This method has merit if one wishes to reduce the decoding cir-
cuitry, or if the word length is fairly short.

BINARY-TO-DECIMAL CONVERTERS

Typical arrangements for carrying out the algorithms already de-
scribed are illustrated here. The principles involved in the method of
multiplication by ten are basic to each of the methods. Fig. 1 shows a

block diagram for a converter using this method. The two-times and
eigh-times multiples of the binary fraction are added each cycle.
Simultaneously, the integer register is shifted one decimal digit to the
left. The integer portion of the adder output is inserted into the right-
hand digit position of this register. The fraction portion of the adder
output is returned to the fraction register. The numerical example in
Fig. 2 demonstrates this operation.

Fig. 3 shows an arrangement using multiplication by one thou-
sand. The required multiples are added each cycle, with the integer
portion shifted into an over-flow register. The integer portion can be
any binary integer up to 999. Decoders convert it first to radix 100 and
then to radix 10 on subsequent cycles. Note the parallelism allowing
multiplication while the overflows from the two previous cycles are

both partly converted.

INTEGER CONVERSION

Since the conversion method presented here converts only binary
fractions, some consideration must be given to conversion of integers.
Suppose a machine permits integers having a maximum of six digits,
and the binary equivalent of 857 is to be converted. The correct
decimal digits would be produced if the number is first scaled down to
the equivalent of 0.000857. This may be accomplished by either
dividing by the binary equivalent of 106, or multiplying by 10-6.
However, the fraction 0.000857 cannot be expressed exactly i.i the
binary number system. Therefore, some error is introduced by the
scaling process. Floating-point numbers must also be scaled, but this

2 0. L. MacSorley, 'High-speed arithmetic in binary computers,' Proc. IRE,
vol. 49, pp. 67-91, January 1961.

INTEGER A 8:B9
REGISTER J CONVERSION RATE:

1 DIGIT/CYCLE

I DIGIT

Fig. 1. Binary to BCD, 1digit per cycle.

Fig. 2. Binary to BCD, 1 digit per cycle (numerical example).

0 asB 999
CONVERSION RATE:
3 DIGITS/CYCLE

I DIGIT

Fig. 3. Binary to BCD, 3 digits per cycle.

is more complicated, since the scaling factor must take the exponent
into account. Floating-point results are usually considered precise
only to a limited number of digits. Fixed-point results, however, are

often considered exact integers. It would not do, for instance, if

10 000 were converted to 9999. For this reason special care is needed

to compensate for small errors introduced in the scaling and conver-

sion processes.
Errors due to scaling and conversion come about in several ways.

Suppose a hypothetical machine has a fixed-point word of 12 bits,
not including sign. Since the largest integer it can contain is 4095,
four digits should be developed by the conversion instruction.

We choose to do scaling by multiplying by 104. Since we are

using fixed-point multiplication, we must actually multiply by the

integer part of 10- 42uA, which develops a double-word-length integer
(24 bits), and then shift the binary point (figuratively) to the left of

Fraction
Integer Register (BCD) Register Operation

(Binary)

0.1011 0.6875
1.011 Times 2

101.1 Times 8
110.111 Add

0110 0.111 Shift integer
1.11 Times2

111.0 Times8
0110 1000.11 Add

0110 1000 0.11 Shift integer
1.1 Times 2

110.0 Times 8
0110 1000 111.1 Add

0110 1000 0111 0.1 Shift integer
1.0 Times 2

100.0 Times 8
0110 1000 0111 101.0 Add

0110 1000 0111 0101 0.0 Shift integer
6 8 7 5

507



IEEE TRANSACTIONS ON COMPUTERS, MAY 1968

this double word. The value of 10-4-224 is 1677.7216. Truncating the
fraction results in an error, after multiplication and conversion, of

Es =-0.7216-2-24-104.I

-4.301 10-4*I

where I is the integer being converted, and Es is the scaling error. The
maximum scaling error is found for I equal to 4095:

E,(m=) = - 1.76.

A variable error whose magnitude can be greater than unity can-
not be tolerated. In this example, scaling was done by multiplying by
1677. The error would be smaller if 1678 were used. Then

E8 = + 0.2784. 2-24. 104. I

- + 1.66 10-4*I

and E(.max) = +0.68, which is tolerable. In this case we are fortunate.
For other word lengths, both values of E8 might be greater than unity.
If we had elected to scale by dividing by 104, a scaling error would
occur when the remainder was dropped.

Another source of error results from truncating the product after
scaling. The maximum error due to this source is 104 times the por-
tion lost in truncation. If the product were truncated to 12 bits (one
word), the error would have the range

0 > Et >- 104.2-12 =- 2.44.

However, by carrying 16 bits of the product, this source of error is
limited to

Et(ma) = -0.15.

A third source of error results if the adder which is used for multi-
plication by ten is not also extended this extra four bits. The 4 bits
are merely shifted left three places for one iteration, which is equiv-
alent to multiplication by eight instead of ten. For a 12-bit adder,
the range of error is

0 > Ea > - 104 2-12. (0.2) = -0.488.

By extending the adder 4 additional bits, this error is eliminated.
Summarizing the errors,

Es= 0 to +0.68, Et = 0 to-0.15 Ea = 0.

Total error

E = -0.15 to +0.68.

Care has been taken to limit the total error range to less than
unity, in this instance 0.83. The correct converted integer can be ob-
tained by adding a constant after scaling such that the final error
would be in the range 0<Ef <1.0. Here we find that if the binary
quantity 0010 is added to the low-order 4 bits of the 16-bit frac-
tion, a correction can be obtained equal to E, = 104 2-15.* (0.8)
= +0.24. The corrected final error is

Ef = E + E,, +0.09 < Ef < + 0.92.

Since only a four-digit integer is retained by the conversion, this error
does not affect the final result.

The addition required for correcting the integer might best be
done as part of the conversion instruction.

BINARY-TO-DECIMAL DOUBLE-PRECISION FLOATING POINT

For the purpose of illustrating a point, assume the exponent to be
zero. Assume also that the conversion instruction develops only four
digits but, for double precision, eight are needed. First, using double-
precision multiplication, the binary fraction is multiplied by 104. The
higher-order word of the product is an integer, which is then scaled
separately and converted to decimal. The low-order word of the

IMPROVING THE OVERALL PROBLEM

Having a fast instruction to do conversion is not worthwhile if
corresponding improvements are not made in scaling, rounding, un-

packing, leading zero suppression, and other editing chores. Suppose
separate instructions are available for converting from binary integers
(scaled) to decimal and from binary floating point to decimal. The
integer conversion instruction could automatically add the correction
factor and suppress leading zeros. The fraction conversion instruction
could mask the exponent field and add a rounding factor to the frac-
tion at the beginning of the instruction. If n digits are developed, the
rounding factor would be 0.5 10-n in floating-point binary. Both
instructions could also do unpacking. This might be executed by shift-
ing the decimal digits 8 bits instead of 4 bits during conversion, and
stuffing the extra 4 bits with the proper prefix. Width control can also
be done automatically by both instructions by loading the number of
digits needed into an index register.

When converting floating point from binary to decimal, a very

significant amount of time is required for handling the exponent. Sup-
pose the binary number is 2b f, where f is a proper fraction and b is a
signed exponent. The corresponding decimal representation is 10-d,
where d <f.

2b.f= 10t-d

b logio2 + loglof = t + log1od

t = b * log5o2 + logio (fld).
One chooses, as t, the smallest integer such that t > b - logo02. This may
be written as t = [b- log, o2 +. Once t is determined, the decimal frac-
tion is calculated as

d = 26-f/lOt.

The quantity 10 is not calculated, but is obtained from a table stored
in memory. The following outline shows a typical procedure for the
steps indicated.

1) Determine decimal exponent.
a) Right shift until exponent is right adjusted.
b) If zero, set decimal exponent to zero, and terminate; if not

zero, proceed.
c) Multiply by log 2 (fixed-point multiplication).
d) Add 1.
e) Store integer portion of result into index register (this is

decimal exponent).
2) Determine decimal fraction.
a) Load floating-point number.
b) Divide by 10 (obtained from table, using indexed address).

If the exponent field has 8 bits, the table of exponents contains 78
entries. A machine with a large memory could afford a larger table
which would speed up the procedure. The table would have 256
entries, one for each binary exponent. Each entry might contain
both the decimal exponent t and the factor 10-g. The decimal fraction
could be obtained by multiplying the binary fraction by 10-t, since
multiplication is presumed to be faster than division. To facilitate
the procedure, a special instruction can be provided which loads an

index register directly from the exponent field.

SUMMARY

This note has described ways to speed up number conversion.
Other types of conversion, such as between fixed-point and floating-
point numbers, can also be considered. Some studies should be made,
in various computing environments, to determine if extra hardware
for conversion is justified. If it is, careful planning is required to get
the most overall improvement without too much loss in flexibility.
With a modest amount of circuitry, one should expect an order of

double-word product is converted directly without further scaling.

508

magnitude improvement over present methods.


