
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-23, NO. 1, JANUARY 1974 TECNRNICAL YL-IBRARY

FIast CFCMANYSINGER DIVISION

Fast Com putational or wt Y

ROBERT J. POLGE, MEMBER, IEEE, B.K. BHAGAVAN, AND JAMES M. CARSWELL

Abstract-Radix-2 fast Fourier transform programs of the
Gentleman-Sande type leave the transformed array in a scrambled order

of frequencies. Unscrambling is accomplished by moving each element
from its present location into a new location obtained by bit reversal.
Bit reversal can be interpreted as an exchange of groups of bits
symmetric with respect to a pivot. Two formulas are developed for

simultaneous and sequential exchanging in place, with negligible
auxiliary storage. Programs for one-step and sequential unscrambling
were implemented. Binary unscrambling is useful to unscramble large
arrays in peripheral storage. The one-step unscrambling program
presented is more efficient than other programs available in the
literature.

Index Terms-Bit reversal, fast Fourier transform, unscrambling.

I. INTRODUCTION

HE fast Fourier transform (FFT) programs based on the
Gentleman-Sande algorithm [1] leave the transformed

array in a scrambled order of frequencies. The unscrambling
for a radix-2 transformation is achieved by bit reversal where
the new address of an element is obtained by reversing the
order of the binary expansion of the original address. The
implementation of bit reversal on a general-purpose computer
is important since unscrambling accounts for a significant
portion of the total FFT computation time.

In this paper two formulas for unscrambling are developed
by interpreting bit reversal as an exchange of symmetric bits.
The first formula shows that a complex array of size N = 2m
can be unscrambled directly given an integer array of size VAN
ifM is even or -v/N1- if M is odd. The second formula is more
general; it shows that unscrambling can be performed in steps
where each step corresponds to the exchange of groups of
symmetric bits. Two applications of the formulas, the one-step
algorithm and the binary-pair algorithm, have been
implemented on a computer and listings of the programs are

included for reference. The binary-pair algorithm has been
adapted to unscramble arrays exceeding core capacity. The
binary-pair and the one-step algorithms are compared with two
others suggested in [11 and [2] for computing efficiency and
compactness of coding. All the algorithms were coded in
Fortran and the computations were carried out on the
Univac-l 108 Executive 8 system.

Manuscript received October 19, 1972; revised April 19, 1973. This
work was supported in part by the Advanced Ballistic Defense Missile
Agency, U.S. Army, Huntsville, Ala.

R.J. Polge is with the Department of Electrical Engineering,
University of Alabama, Hunstville, Ala.

B.K. Bhagavan is with the Research Institute, University of
Alabama, Huntsville, Ala.

IJM. Carswell was with the University of Alabama, Huntsville, Ala.
He is now with North American Aviation, Downey, Calif.

IL. THE FFT AND THE NEED FOR BIT REVERSAL

The Fourier transform and the Fourier series are

approximated on the digital computer by a finite summation
called the discrete Fourier transform (DFT). Consider a set X
ofN complex samples and denote as X' the direct DFT of X.
The elements x'(k) are defined by a finite summation

1N-1
x'(k) = N- E w-jkxoNj=O

(1)

where the complex coefficient w is equal to exp (i2ir/N).
Similarly, the inverse DFT is defined as

N-1
x() = £ wikx'(k).

k=o
(2)

The DFT is very useful; unfortunately its computation is time
consuming. For example, the computation of X from X'
requires N2 complex multiplications and N(N - 1) complex
summations.

The FFT is an efficient computational algorithm, originated
by Cooley and Tukey [3] to compute the DFT. Many
algorithms have been developed since. Gentleman and Sande
[1] have proposed an FFT algorithm that minimizes computer
storage by using the same array for the input data and for the
transformed data. However, the transformed samples are not
stored at the proper location and the transformation must be
followed by a permutation called unscrambling. Only the
radix-2 FFT is considered in this paper. In this case N is a

power of 2 and the unscrambling corresponds to bit reversal.
The radix-2 FFT algorithm of an array of size N = 2M is

based on the factorization of N into a product ofM factors
each of which is equal to 2. It is implemented in the following
four steps: initialization; a sequence of transformations that
corresponds to a partial transformation with respect to each
factor; a division by N in the case of a direct transformation;
and an unscrambling procedure.

For example, assume that N = 8. The factorization of N
into a product of factor 2 corresponds to a binary expansion
of j and k. Substituting j = 4j3 + 212 + jj and k = 4k3 + 2k2
+ k1 in (2), factoring W(413 + 21j2 + i,)(4k3 + 2k2 + k1) and
collecting with respect to the j, variables yields

1 1

X(j34+ j22 + jj)= w4i3 k E w2i2 (2k2 +k)

k1 =0 k2 =0

5 v1(4k3+2k2+k1)

k3 =0

- X'(k34+k22+k1) (3)

1

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

where ii and ki take the values 0 and 1, w = exp (i2nr/8) = cos
(ir/4) + i sin (ir/4), and the factors WI2k38, Wi3k28, and
wj3 k3 16 were deleted because they remain equal to 1 for any
combinations ofj2, 13, k2, and k3 .

Equation (3) is implemented in the following four steps:

1

X(M)14 + k22 + kl)=wf; (2k2+kl) Z w4j1 k3
k3 =0

* x'(k34 + k22 + ki) (4a)

X(2)014 +j22 + k)=w2i2 k1 E w4j1 k2
k2 =0

* x(1)f4 + k22 + k,) (4b)

1

X(3)(J14 + j22 + j3)= Z W4j3kI
k, =0

* x(2)014 +i22 + kl)

X034 +j22 +il) =x(3)014 +±22 + j3)

Nis expressed as jM'M-1 1211 where ji = 0 or 1 for i = 1, 2,
,M. The pivot of the address is defined to be the central bit

ifM is odd and to be between two central bits ifM is even. Bit
reversal corresponds to an exchange of the bits symmetric with
respect to the pivot, i.e., an exchange between irn and
M+1-rn where m < [M], with [denoting "integer part
of." Clearly, the exchange is necessary only when jm 0
iM+_-rm. The exchange of pairs of bits can be performed all
in one step, or can be done sequentially in groups of one or
more pairs at a time. This property will be used to develop
efficient unscrambling formulas for unscrambling in one or
more steps. Table I shows how k is obtained from k by bit
exchange and the ordering ofX before and after unscrambling.

III. FORMULA FOR ONE-STEP BIT REVERSAL

This section shows that the bit reversal defined by (6) can
be implemented in one step by the direct computation of k

(4c) from k. The two cases, M even and M odd, are similar, but do
differ sufficiently to justify separate development.

(4d)

where (4a) to (4c) are the three partial transfonnations with
respect to the factor 2, and (4d) shows that a permutation is
required because the samples are stored at a wrong address
where the least significant bits are used in place of the most
significant bits.

The array X(3) is said to be scrambled because a
transformed sample, instead of being stored at the proper
location k, is stored at an address k obtained by binary
expansion of k and bit reversal. Equation (4d) shows the
unscrambling procedure, namely, that x(3)(k) is stored into
x(k), where k =/34 +±22 +1l and k=j14 +j22 +j3.More
generally, whenN = 2m,

M M
k= E jrm' and k = 1M

m
2m-

m=l m=l
(5)

The partial transformations defined by (4a), (4b), and (4c)
are performed in place. That is, the arrays X', X(), X(2), and
X(3) can share the same storage, and the superscript will drop
subsequently. To continue to preserve storage one must also
perform the unscrambling in place without using an auxiliary
array. This can be accomplished by exchanging the elements
x(k) and x(k) in the array X. The elements need to be
exchanged only when k > k (or alternatively when k < k).
Note that if both k > k and k < k were used, every exchange
will be canceled by an identical exchange. Therefore, un-
scrambling is defined by the sequence of exchanges

MEven

When M is even, the M bits can be equally divided into two
groups of magnitude M1 = M/2. An M-bit number k may be
expressed as a function of two M1 -bit numbers k, and k2 by

k=k2N, +k1 (7)

where k = O, 1, , (N-l),N, = 2M1 = , and ki, k2 =O,
1, --, (N1- 1). Thus, if the binary expansion of k is

k=MIM-l .M-M1+ 1 M-Ml 1211

then the binary expansion of k1 and k2 are

and

k2 =MiM-1 'M-M1 +1

Therefore, the bit-reversed version k of k can be written as

k=j112 1M-11M
k=il2 ..jM-lM11 j-,1 M-M

A A

= kNlN +k2 (8)

where k, and k2 are obtained by bit-reversing kI and kI2,
respectively. Equations (7) and (8) will be used as a pair

k=Ik2N, +Ikc
kI=kcNj +kI2. (9)

x(k) x(k), for k> k. (6)

The index k could be computed from (5), but this
computation requires too many operations. Instead, note that
k is obtained from k by exchanging symmetric bits. More
precisely, the binary expansion of a general address k, 0 < k <

Equation (8) shows that bit reversal of an M-bit group is
equivalent to the following sequence: 1) bit reversal of the Ml
least significant bits, 2) bit reversal of the M1 most significant
bits, and 3) exchange of the most significant and least
significant groups of M1 bits. Therefore, if k is an address for
an array of size N = 2M, where M is even, the bit-reversed

2

POLGE et al.: FAST COMPUTATIONAL ALGORITHMS

TABLE I
EXAMPLES OF BIT REVERSAL BY EXCHANGE OF BITSa

A) M=4,N= 16

Binary Binary
Expansion Expansion Exchange

k ofk ofk k x(k) =x(k)

0 0 oooo00 00 0 notneeded
I 00 01 10 :00 8 x(l)=x(8)
2 00 110 01 100 4 x(2)=x(4)
3 00 11 1 1 00 12 x(3)=x(12)
4 0 1 1 0 0 0 1 0 2 seek =2
5 0 1 0 1 1 0 11 0 10 x(5)=x(10)
6 0 1 110 0 1 110 6 not needed
7 01 1i1 1 1 :1 0 14 x(7)=x(14)
8 10:00 00 101 1 seek=1
9 10 01 10:01 9 notneeded

10 1 0 1 0 0 1 0 1 5 see k=5
11 1 0 1 1 1 1 01 13 x(l1)=x(13)
12 11 1 00 00 11 3 seek=3
13 1 1 01 10o 11 11 seek= 11
14 1 1 110 01 111 7 seek=7
15 1 1 1 1 1 1111 15 not needed

B) M = 5, N = 32 (this table is incomplete)

0 00000 oo6oo 0 notneeded
1 o0ooi I0o00 16 x(l)=x(16)
2 o0oIo 01000 8 x(2)=x(8)
3 00911 1 1 oo 24 x(3)=x(24)

10 0 1 10 0 1 9 1 0 10 not needed
11 01011 11010 26 x(I1)=x(26)
14 01110 011i0 14 notneeded
15 01111 11110 30 x(15)=x(30)

aVertical dotted line denotes position of pivot.

address k of k is obtained immediately if one has a table for
the bit reversal of an array of size VN-= 2M/2.

For example, Table IA) could be used to unscramble an
array X of size N = 256. In this caseM = 8, Ml = 4, N1 = 16.
Assume that k = 52, then

k2 = [k/16] =3 andk1 =k-16k2 4.

From Table IA), k, = 2 and k2 = 12. It follows that

k=2(16)+ 12=44.

M Odd

When M is odd, the M bits are divided into the following
three groups: a 1-b group on the pivot, and two groups of
magnitude Ml = (M - 1)/2 symmetrically placed about the
pivot. An M-bit number k may be expressed as a function of a
1-b number j and two numbers k1 and k2 by

k=k22Nl + jNl +±k (10)
where k = 0, 1, , (N-1), N1 = 2m, = VW , and
kl,k2 =0, 1, , (Nl -1) and j =0, 1. Again, after bit reversal
and exchange of the least and most significant groups of bits,

one obtains

k=k22NI +jN1+ki
AkNA N
k=k12AN+jN +k2 (11)

That is, if k is an address for an array of size N= 2M, whereM
is odd, the bit reversed address k of k is obtained immediately
if one has a table for bit reversal of an array of size JK7N =
2(M - 1)1/2

For example, Table IA) could be used to unscramble an
array X of sizeN= 512. In this caseM= 9, M1 = 4, N1 = 16.
Assume that k = 153, then k2 = [k/32] = 4, j = [(k -
k2(32))/16] = 1, and k, = k - (k232 + j16) = 9. From
Table IA), k, = 9, k2 = 2. It follows that when k= 153,

k=9(32)+ 16+2=306.

The formulas for one-step unscrambling are implemented
efficiently in Section V.

IV. AGENERAL FORMULA FOR UNSCRAMBLING IN STEPS

The unscrambling of X defined by (6) can be performed in
steps without using any auxiliary storage. Instead of a direct
motion, the element x(k) will be moved to location k, when k
> k, via a series of intermediate locations. The locations for
the intermediate exchanges are defined as k, and k2 where k2
differs from k, only in the reversal of groups of bits
symmetric about the pivot. In each step the exchanges will be
performed only for k2 > k, so as to satisfy the condition that
k be greater than k. In order to compute k2 from k1, it is
necessary to express k, as a function of symmetric groups of
bits, each group consisting of one or more bits.

Let the M bits of an address be divided into five groups of
bits w1, W2, W3, W4, and w5 of size M1, M2, M3, M2, and
Ml, respectively, such that M = 2M1 + 2M2 + M3, group
W3 straddling the pivot, w1 and w5, w2, and W4 being
symmetrically placed about the pivot. IfNi = 2Mi(i= 1, 2, 3),
then a general address k, can be written

k= w5NIN2 2N3 + w4NlN2N3

+w3NlN2 +w2N, + w1 (12)

where 0 < wI, ws <N1;0 ;w2,w4<N2;0.<w3<N3.
Unscrambling in steps will be illustrated by the particular

case where only the symmetric groups of bits w2 and W4 are
subject to bit reversal, the other groups remaining unchanged.
If W4 is replaced by wit2 and w2 by W4 in (12), this partial bit
reversal with respect to w2 and W4 changes k, into k2. An
exchange of eements is necessary only when k2 > kl, which
implies w2 > w4. Such an exchange is defined by

k, = w5NlN22N3 Ww4NlN2N3 + W3N1N2 + W2N1 + w1

*c2 =w5N1N22Nf3 ±+ 'W2N1N2N3 + W3N1N2 ± w4N1 + wl1
(13)

where w, = 0, 1, , (N1 -1); W3 =0, 1, ''', (N3-1);ws =

3

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

0 l, - (N1 -l);1W2 = (W4 + 1),,(N2- 1); and W4 = 0, 1,
,(N2-2).
Assume that the unscrambling is performed in I steps, i = 1,

2, , I, starting with the least and most significant groups of
bits. During the ith step, the bit reversal involves two
symmetric groups of bits of size M2 (i), such that

E=1M2(i>

and the sizes of the five groups are defined by

Ml(l)= 0

M1(i) = M1(i-1) + M2 (i- 1)

M3 (l) =M-2M, (i)-2M2(i).

Clearly, a particular set of values of w1, W3; and W5 defines a
block of elements, and w2 and w4 defime the various
elements inside each block. Notice, however, that the
increment (INC = k2- k,) does not depend on w1, W3 or W5
and hence all the elements with the same specified w2 and W4,
i.e., one pair of elements in each block, move by the same
amount. Thus, it is more efficient to unscramble all the blocks
at the same time, by exchanging the N1 2N3 pairs of elements
which correspond to the same value of INC. Equation (13) has
been used to develop various algorithms to unscramble in steps
by selecting different sets for M2 (i).

For a simple illustration of (13), consider a scrambled array
X of size 16 = 24. Assume that the unscrambling will be
performed in two steps, one pair of bits at a time, i.e., I = 2
and M2 (1) = M2 (2) = 1. The binary expansion of an address is
given by

k =w48 + w34 + w2 2 + w,

where wi = 0, 1. The first step of the unscrambling corresponds
to the exchange of w, and w4, when wl== w1 =1 and w4 = 0.
It is performed by exchanging four pairs of elements at
addresses defined by k, = v + 1 and k2 = 8 + v, where v =
w34 + w22 = 0, 2, 4, 6. The second step corresponds to the
exchange of w2 and W3. It is performed by exchanging the
pair of elements defined by k, = W48 + W34 + W22 + wl, k2
= w48 + w24 + w32 + w, for I2 = w2 = 1 and W3 = 0, that
-is, k1=w48 + 2 +w1 and k2 = w48 + 4 +w1. Table IIA)
gives the values of k, and k2 and Table IIB) shows how the
indexes of the elements that are in scrambled order become
ordered after two sets of exchanges. Unscrambling one pair of
bits at a time is denoted as binary unscrambling and is
implemented in Section V.

V. FORTRAN PROGRAMS FOR UNSCRAMBLING

Various unscrambling programs have been developed using
(9), (11), and (13). Three of these programs are briefly
discussed. UNSONE accomplishes the unscrambling in one

step with a minimum number of exchanges. UNSBIN performs

the unscrambling one pair of bits at a time, with a minimum
amount of coding. UNSDRM is a modification of UNSBIN for
use when the core is not large enough to hold the data to
transform and it must be stored in peripheral storage.

Since the index 0 is not allowed in the computer, the
addresses of exchanging elements are incremented by 1. A
hybrid notation, mathematical and Fortran, is used to best
unify the mathematical development and the corresponding
Fortran implementation. The Fortran naming follows the
mathematical notation.

Subroutine UNSONE (X,M)

This subroutine is based on Section III. It unscrambles a
complex array X of size N = 2M in one step. The program
works in the following two steps: 1) a bit-reversed array is
constructed (or read), and 2) the array X is unscrambled. The
listing is in Appendix I. By definition,

MI = [M/2] andNI = 2**Ml.

The program includes two unscrambling algorithms, the
first which is based on (9) is forM even and the second which
is based on (11) is for M odd. The algorithm for M even is
written in cards 19 to 26. All the elements ofX for which k,
> k2 must be exchanged. Let KU= k2 + 1 andKV= k, + 1,
then the ranges for KU andKV areKU= 1, 2, , (N-1) and
KV = (KU + 1) N. Define a bit-reversed array IX such as
IX(I + 1) = LIV; then k2Ni = IX(k2 + 1) and k1N, = IX(k1 .
+ 1). Equation (9) can be written

KP1 =IX(KU) +KV
KP2 =IX(KV) +KU (14)

which shows that KP1 and KP2 can be obtained easily for M
even, given IX.

The algorithm for M odd is derived in a very similar
manner. It is written in cards 28 to 40. In this case IX is
defined as IX(l + 1) = 21N1. For j = 0, (11) yields

KP1 = IX(KU) + KV

KP2 = IX(KV) + KU. (15)

However, another pair of exchanges is defined byj = 1 which
corresponds to an increment NI ofKP1 and KP2

KP1 =KP1+N1

KP2=KP2+NI. (16)
Either one of the two unscrambling algorithms requires the

construction of a scaled bit-reversed array IX(l + 1) =-NX,
where NX = 2MX and MX = [(M + 1)/21. The algorithm
proposed is very compact. It is not the most efficient, but this
is secondary because the dimension ofIX is relatively small. A
scaled bit-reversed array of size 2Nj can be obtained easily
from a scaled bit reversed array of size Ni. More precisely,
consider an array IX(k1 + 1) of size Ni, where ki = , 1, , (N
-1), and an array IX(k+1 + 1) of size N1+1 = 2N1, where k+1

4

POLGE et al.: FAST COMPUTATIONAL ALGORITHMS

TABLE II
BINARY UNSCRAMBLING

A) List of (k,, k2)

Stp1 k 1 3 5 7Stepi1 k 8 10 12 14

Step 2 ki 2 3 10 11
Se kO 4 5 12 13

B) Ordering of Array X by Exchange x(kl) --x(k2)

Scrambled 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
array

After 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
one step

After 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
two steps

= 0, 1,**, (Ni+1- 1). If k1+ l is expressed as

k1 1 =jN±+k (17a)

then one can show that

ki1 = 2ki +j (17b)

where j = 0, 1. Multiplication of (17b) by NX and use of IX
yields

IX(k1+ I) = IX(ki + I) + IX(k1+l)

IX(k1+ 1 +N.)=IX(k.+ 1) NX. (18)

The corresponding algorithm is in cards 10 to 16. The size of
the additional array IX is relatively small. For example, ifN=
215 = 32 768, then the size of IX is 27 = 128.

Subroutine UNSBIN(X,M)

This subroutine, listed in Appendix II, performs bit-reversal
unscrambling of a complex array X of sizeN = 2M in steps of
one pair of bits each. Again X(KP1) and X(KP2) are exchanged
forKP2>KPI whereKPl = k1 + 1, KP2 = k2+ I and k1 and
k2 are given by (13). Table II illustrates binary unscrambling
for N=24 = 16. Referring to (13),M2 = l;M = 0, 1, 2,.
([M12]-1) and M3 = M-2-2M1.

In UNSBIN, MlP-Ml+ 1,N1=2M1, N3 = 2M3,N1T=
N1 +N,NlP -N1 + l,NM=N1 - 1,NS = 2(M-Ml),
NSH = NS/2, and INC = KP2 -KP1 = NSH - N1. The
unscrambling is performed in M1PMX = [M/2] steps. Note
that the same increment is used for the entire step, i.e., for
(N/4) pairs of exchanges. For each step, exchanges take place
for w2 = 1 and W4- 0 and are defined by

INC = NPH -NI

L1=N1P+w5NS, forw5=0,1, ,N1M

L2=Ll±w3NIT, forw3 =0,1, ,(N3-1)

KPl = L2 + wl,
KP2 = KP1 + INC.

for w =0, 1, ,NIM

An interesting remark is that in each step NG groups of size
NS are unscrambled identically and that the exchanges involve
pack of elements of size NP, where NG = NP = 2M 1.

Subroutine UNSDRM

Subroutine UNSDRM, listed in Appendix III, is an
adaptation of UNSBIN for unscrambling large arrays stored on
a drum (or a disk), with a minimum number of drum-to-core
transfers. In this program the array XDR, which must be
unscrambled, is stored in the drum file IDRUM. The array X
of dimension NCOR = 2MCOR represents the available core
storage, M > MCOR. The subroutine DRUM(KDR, NB,
X(KX), IDRUM, IWR) is used to write on or read from the
drum, by selecting the last argument as 1 or 2. The first two
arguments define the location on the drum KDR and the
number of elements to be written or read, NB. Then, NB
elements are transferred from X to XDR or XDR to X in such
a manner that X(KX) corresponds to XDR(KDR). The
unscrambling is performed in [M/2] steps. Let MCORH =
NCOR/2 and let IB1 be the distance between the pair of
elements to be exchanged. To minimize the number of
transfers, one must distinguish between far pairs for which IB1
>NCORH and near pairs for which IB1 NCORH.

The unscrambling of the array XDRM with respect to far
pairs is performed one step at a time, group after group,
NCORH pairs at a time. That is, NCORH elements of the first
half of a group in XDRM are read into the first half of X,
NCORH,elements of the second half of the group at distance
IB1 are read into the second half of X. Then, the even
elements of the first half of X and the odd elements of the
second half of X are exchanged. Finally, the two halves of X
are written on the drum.

The unscrambling of the array XDRM with respect to the
near pairs requires only T=N/NCOR round-trip transfers. When
IB1 becomes equal to NCORH, NCOR points are transferred

5

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

TABLE III

OPERATIONS/STORAGE FOR UNSCRAMBLING N = 2M,MAf =

Subprograms
Operations Reference [1] Reference [21 UNSBIN UNSONE
or Storage

Multiplication M- 1 4N[(M -2)2M4 + 1]

even: 2M + 'i-N N ee:N+3-,NAddition/Subtraction Vvn 2U N-N 4N4(M -2)2M)++ 1] -(M' + 2)a 3dN+odd: 2M+ TN- j,y'f2W 4 odd: N+j~2W

even: Vii even: 3(N.- -.3N even: (N-V/odd: 3(N-,/N odd: (N-1V N 4 odd: 3 (N- /KN)

Table Look-Ups N
even: N- N

odd: N-V/N

Tests N

Auxiliary Storage 3M N v

aApproximation

to the core, and the unscrambling is completed on these
NCOR elements. Then, the next NCOR elements are

unscrambled. Repetition of this procedure T times completes
the unscrambling.

VI. COMPARISON OF FOUR UNSCRAMBLING SUBPROGRAMS

The subprograms UNSONE and UNSBIN and two
subprograms described in [1] and [21 are compared in a

number of operations, in storage required, and in computer
time.

In Table III are shown the number of operations and
storage required to unscramble an array X of size N. Note that
the number of transfers is three times the number of
exchanges. Insignificant operations (such as required for the
initialization of the subprograms), are not included in this
table.

Inspection of Table III leads to the following conclusions.
The subprogram [2] requires the largest number of operations
and storage of an auxiliary array of size N. UNSBIN and the
subprogram of [11 have comparable performance, the first
being faster for small arrays, the latter being faster for large
arrays. UNSONE has the least number of operations (no tests,
a minimum of exchanges) and requires little auxiliary storage.

These conclusions have been confirmed by runs on the
Univac-1108 Executive 8 System. In summarizing the
characteristics of the four unscrambling subprograms, the
following may be noted.

1) Over the range of array sizes studied, the running time
of UNSONE does not exceed 35 percent of the running time
of its nearest competitor (UNSBIN or subprogram of [1]).
UNSONE can be easily adapted to unscrambling other than
radix-2.

2) UNSBIN is markedly the most compact (25 cards) and

can be used with peripheral storage devices to unscramble
arrays too large for the core.

3) The subprogram of [1] follows most directly from the
bit-reversal formula, is easily coded into Fortran, and possibly
exemplifies the approach most often used.

4) The subprogram of [2] is more general than the other
three in that it is not restricted to arrays of dimensionN = 2m,
but suffers from the disadvantage of low running speed and
the necessity of utilizing extra storage of magnitude N.

VII. CONCLUSIONS

Bit reversal of an array X of dimension N can be performed
by exchanging the elements x(k) and x(k) for k > k, where k is
the address obtained by bit reversal of k. Bit reversal of an
address is interpreted as an exchange of groups of bits
symmetric with respect to a pivot. A formula based on the
simultaneous exchange of all the symmetric bits is developed
to compute k from k. Implementation of this formula results
in an efficient program for the one-step bit reversal of X.A
more general formula is presented for the exchange of two
symmetric groups of bits. It is useful for unscrambling in steps
where x(k) is moved to location k, via a series of intermediate
locations. As an illustration, when the general formula is used
for binary unscrambling, where bit reversal is performed in
steps, then each step corresponds to the symmetric exchange
of two bits. Binary unscrambling is ideal for unscrambling
large arrays contained in external storage, because it minimizes
the number of transfers between core and peripheral device.
Computer programs for one-step and binary unscrambling are
presented and compared to others described in the literature.
The one-step unscrambling program requires fewer operations
and is markedly faster than any other known to the authors.
Fortran listings are included for reference.

6

POLGE et al.: FAST COMPUTATIONAL ALGORITHMS 7

APPENDIX I

1 SURROUTINE UNSUNtIX,*r)
2 LOMPLEX Xt1),XS
3 C DIMENSION 12b FOR iX ALLUWS TO UNSCRAMBLE ARRAYS OF SIZE UJP TO 327bR
4 uIMENSION IX(128)
S IF(M.EG.1) RETURN
6 M1=M/2
7 MX=(M+1)/2
8 tNl=2**W1
9 NX=2**MX

10 IX(1)=O
11 NI=l
12 UO 3 I-1iMl
13 UD 2 J1=N1
14 iX(J)=IX(J)+lx(J)
15 2 1X(J+NI)-IX(J)+NX
16 3 NI=NI+Nl
17 lUMX=N1-1
18 If (M1.NL.NX) 80 To in
19 DO 11 KU=DL,UKDX
20 KVMN=KU+1
21 DO 11 KV=KVMN,1q1
22 KP1=IX(KU)+KV
23 SP2=IX(KV)+KU
24 XS=X(KP1)
25 X(KP1)X=(KP2)
26 11 X(KP2)=XS
27 RETURN
28 10 UO 12 Kt=JItVUMX
29 VMN=KL+1
30 DO 12 KV=KVMNPN1
31 KPI1=X(KU)+KV
32 NP2=IX(KV)+KU
33 XS=X(KPl)
34 A(KP1)=X(KP2)
35 A1KP2)=XS
36 KFI=KPItN1
37 iP2=KP2+Nl
38 XS=X(KP1)
39 X(KP1)=X (KPP)
40 12 X(KP2):XS
41 RETURN
42 END

APPENDIX II

1 SUBROUTINE (.INSbIN(xo,MI)
2 COMPLEX X(j),Xb
3 N=2**M
4 mlPMX=M/2
5 N81T=l
6 NSH=N
7 DO 1 MIP=1eMlPMX
8 il:4N1T
9 lI1P=N1+l

10 lN1M=N1-l
11 N1T=N1T+NIT
12 INS=NSH
13 NSH=NSP/e
14 INC=NSH-N1
15 DO 1 Ll:NNlPp1,4NS
16 L2MX=L1+INC
17 uC 1 L2=L1lLeMX,IN1t
18 KPIMX=L2+N1M
19 DO 1 KPl=Le,KP1MX
20 KP2=KP1+INC
21 XS=X (KP1)
22 A(KP1)=X KP2)
23 1 X(KP2)=Xb
24 kETUIRN
25 tND

APPENDIX III

1* S(JUbRUtIT119E DNSURMt(A,VtdRMCURIRUIJ)
2* CORiPLEX X(1)eXS
3* N=2**k
4* N?=M/2
5* NCUH=2**MCUp

t,CvHH=NCUR/2
7* NCDRhP=NCOHH I

8* I Ae= 1
q* Ii1=N

10* WDiFF=V--iCOH

8 IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1974

IT* lklPMx=MD)IF
i2* IF (VUIF.k7T.1V2 M lHSX=tt2
13* L NESTE() D(LOUPb 1 LKhtLSPONP TO IP2 *bT. NCOR OP I81 .GT. NCORH
14* kAPHAY XUR IN uRUM Il TKANSFURt'EU IN MlPFMX STEPS OF ONE-PAIR OF BITS
ib* DO 1 FlP=l1MlPmx
Ih* IA1=IA2
1 7* IAiPl=1I^+I
sk# ~~IAlMl=lAl-i

±4* lAi1=D2+iA2
4U# le=pIHd

el* WIhM=lHl-l
e3* INC=NCOKH-IAJ
,4* L NCURF .bL. IAI

,5* tc t,41EN tr HH.A.E.IAI.INc.LO.O.EACHANG, LOWER WITH UPPFR HALF OF ARRAY X
eh* IF (1NC.LO.O) UC IU 6
,7* KhSHLOL .LL. K(DI .LT. KSHLft+IRI

1,) 2 KSHLOLI,I',1ue
eYs hK1UI?PY=KSHLO+CP1+,I
)O0 O 2 IDiH=fSHLUC,hi±DHMX,NCURH
,1* K2UR=KIDh+ib1
32* CALL M'1UtM (KlflH,NLURH,A(I).1UR1t)M2)
J3* CALL DHUM (K2011tNLUPH.X(NCURHP),lDOIIM,2)
34* DO 3 L2=lAiPl,NCOhH,IA2
Jb* KPlMx=L2+M1,1l
,J6f,* DO 3 KV`l=L4vKPIVX
37* KPe=KF1+LNL
,8* XS=X(KPI-)
J3* X(KsP)=X(KP2)
411* 3 X(KP2)=XS
41* CALL MHLI', (K1lDKN,NURH,X(1)VIURUMVI)
42* 2 CALL DRtJM (K2flH,NLURH,X(NCURHP),IDHIIM.1)
43* GO T, 1
44* 1, CO 7 FS6LOi=,h.liu
4b* LIbRRN=KSBLOC+iA1
4b* KlLDRU X=KSBILOC+IRPM1d.
47* 00 7 LIUK=LIURV1,rEIVHMX.NC0R
48* L2UR=LlD+1H1-ilA1
49* CALL D1HUM tLIDH,NLPFH,tX(1)#ICRUW,2)
bU* CALL ORuM (L2H,N1LURHPX(NCURHP),IlNIjN,2)
!,I* CALL PRUPM (L2fhlN,1uRH,X(i),IURUWtl)
b2* 7 CALL nRD1M (LlDk,N,1URH,X(hC0RHP).IoHtlp,l)
:,3* 1 CONT1NUE
:,4* IF(MIPMX.EU.M2) HL1CHN
b5* SFTS 01- hrCo PUI1-1TS AhL 8RlAI6T IN X ANU EACH SET IS UNSCRAMtLED

VIV-PAN=WMIFMX+1
b 7# IA2S=IA2
,H IHIS=lbl
b9* CO 4 KIl)D=lNN,NCUK
00* IA2=lA2S
UT*# IH1=l['15
c,2* CALL PHUt1-(KlDR#NLu1,X(l),IURLM,P)
.3#*DC b t lP=MIPMN,1vPd
t04* IA1=i Ae
V:5* IAlFl=IAl+1
Ub* IAIM.I=IAi-i
t,7* IA4=1A2+1Ad
to8* Ible=IFI.

U* IN1=L.=I-IAl
11* 00DO Btl=1AIP.NC0hPI82
t2* L2mX=1t +MN
1J* DO 5 L2=L1,L2M)X1lA
14* KPlMX=L2+IA1M1
lb* ro 5 11Fl=Le,KPIVx
16t KPe=KP'1+INL
/7* XS=X(PF1)

X(K'I)=X(KP?)
19# S X('Pk)=Xb
00* 4 CALL DhUCM(tISDP,Nt"uoh.X(1)vIDRLM,I)
01# REtitUN

REFERENCES Robert J. Polge (M'64) was born in Anduze,
France, on March 11, 1928. He received the

11] W.M. Gentleman and G. Sande, "Fast Fourier transforms for fun Bachelor of Science degree and License es
and profit," in 1966 Fall Joint Computer Conf., AFIPS Conf Sciences from the University of Montpellier,
Proc.,vol. 29. Washington, D.C.: Spartan, 1966, pp. 563-578. France, in 1946 and 1950, respectively; the

[2] D.K. Kahaner, "Matrix description of the fast Fourier transform," diploma of Ingenieur E.S.E. from the Ecole

IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 442450, Dec. Superieure d'Electricite de Paris, France, in
1970. 1952; and the M.S. and Ph.D. degrees from

[31 J.W. Cooley and J.W. Tukey, "An algorithm for the machine Carnegie-Mellon University, Pittsburgh, Pa., in
calculation of complex Fourier seriers," Math. Comput., vol. 90, 1961 and 1963, respectively.
pp. 297-301, 1965. U In 1953 he joined the Societe Andre

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-23, NO.1, JANUARY 1974

Citroen, Paris, as a Research Engineer working with the control of
machine tools. In 1956 he joined the Societe Sciaky, Paris, as Head of
the Electronics Laboratory, to design and develop circuits for welding
machines. He spent 1959 and 1960 with the Compagnie Generale de
Telegraphie sans Fil (CSF), as Head of the Technology Department.
From 1961 to 1963 he was a Teaching Assistant at Carnegie-Mellon
University. In 1963 joined the University of Alabama, Huntsville, as an
Assistant Professor of Electrical Engineering; he became Professor in
1967. He teaches and conducts research in the area of communications
and data processing.

Dr. Polge is a member of the Societe Francaise des Electriciens and
Sigma Xi.

B.K. Bhagavan was born in Mysore, India, on
February 15, 1947. He received the B.E. degree
in electrical engineering from the Bangalore
University, Bangalore, India, in 1967, the M.E.
degree in electrical power engineering from the
Indian Institute of Science, Bangalore, in 1969,
and the Ph.D. degree from Southem Methodist
University, Dallas, Tex., in 1971.

Presently he is a Research Associate with
the Research Insitute of the University of
Alabama, Hunstsville. His current interests

include optimal control, digital processing of image data, and simula-
tion and analysis of radar systems.

James M. Carswell was born in Bishop, Calff.,
on January 19, 1922.

His major field of interest is mechanical
engineering, although he has had considerable
experience in electrical engineering. For the last
15 years his work has included trajectory
analysis; in particular, digital simulation of six-
degree-of freedom trajectories, Monte Carlo
analysis of trajectory variables, and special
problems in flight mechanics. Until June 1973
he was with the University of Alabama, Hunts-

ville. Currently he is with North American Aviation, Downey, Calif.

Floating-Point Arithmetic Algorithms in the

Symmetric Residue Number System
EISUKE KINOSHITA, HIDEO KOSAKO, MEMBER, IEEE, AND YOSHIAKI KOJIMA, SENIOR MEMBER, IEEE

Abstract-The residue number system is an integer number system
and is inconvenient to represent numbers with fractional parts. In the
symmetric residue system, a new representation of floating-point
numbers and arithmetic algorithms for its addition, subtraction,
multiplication, and division are proposed. A floating-point number is
expressed as an integer multiplied by a product of the moduli. The
proposed system assumes existence of necessary conversion procedures
before and after the computation.

Index Terms-Cyclic mixed-radix system, exponent part,
floating-point arithmetic algorithms, floating-point representation,
mantissa, normalized form, number of precision n, symmetric residue
number system.

Manuscript received September 10, 1971; revised August 4, 1973.
The authors are with the Department of Electronics, University of

Osaka Prefecture, Osaka, Japan.

I. INTRODUCTION

THE residue number system is an integer number system.
At present, the techniques known make it inconvenient

to represent fractional quantities. It is to be desired that
numbers with fractional parts can be handled as easily as
integers in the residue number systems.
A few studies on the floating-point arithmetic in the residue

system have been published [11, [21. In these reports a power
of 2 or 10 is used as an exponent.

This paper deals with floating-point arithmetic with an
exponent which is a product of moduli in the symmetric
residue number system. This number system has the following
advantages: 1) finding the additive inverse of a residue digit is
fairly easy, 2) sign detection by mixed-radix conversion is

