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The Quasi-Serial Multiplier

EARL E. SWARTZLANDER, JR.

Abstract—A novel technique for digital multiplication is presented
that represents a considerable departure from conventional (i.e., add
and shift or fully parallel) multiplication algorithms. The quasi-serial
multiplier generates the bits of the product sequentially from least sig-
nificant to most significant. Each bit is computed by “counting” the
number of ones in the corresponding column of the bit-product matrix
and adding the previous carrys. This single operation yields both the
product bit and the carrys for the next column. The quasi-serial multi-
plier requires 2n of these count and add operations to determine the
product of two n-bit numbers.

Realization of this new multiplier requires only one unconventional
operation—counting the number of ones in the columns of the bit-
product matrix. Consequently attention is focused on the practical
implementation of ones counters, circuits that indicate how many of
their inputs are in the logic ONE state. A new approach to counter
implementation is presented that uses quasi-digital (i.e., current sum-
ming) processing.

Index Terms—Current summing counters, digital multipliers, fast mul-
tipliers, full-adder counters, multiplier speed-simplicity comparison,
parallel counters, quasi-serial multiplier.

INTRODUCTION

CIENTIFIC and engineering applications of digital com-

puters often involve considerable multiplication, e.g.,
eigenvalue computation, matrix inversion, fast Fourier trans-
formation, etc. It is especially important for designers of
special-purpose digital computers to be cognizant of multipli-
cation algorithms that are potentially more efficient (e.g., in
terms of speed and/or simplicity of implementation) than
those that are presently being used.

The most obvious way to multiply two positive binary num-
bers is to sequentially inspect the bits of the multiplier from
least significant to most significant. If a given bit is a 1, the
multiplicand is added to the most significant half of a double-
length accumulator; if it is a 0, the addition is not performed.
The contents of the accumuldtor are shifted one bit to the
right as each bit of the multiplier is inspected. When all bits of
the multiplier have been considered, the accumulator contains
the product. This is a basic form of the well-known add and
shift multiplication scheme.

In 1946, Burkset al. [1] developed a variation of this scheme
for multiplying numbers of either sign (with negative numbers
expressed in two’s complement form). Their algorithm re-
quires correction of the product if either (or both) the multi-
plier or multiplicand is negative. About five years later Booth
[2] presented a similar algorithm that does not require any
correction steps.

Since then many clever approaches have been devised to

Manuscript received March 17, 1971; revised October 16, 1972.
The author is with Hughes Aircraft Company, Culver City, Calif.
90230.

*n-1 2 20
L by by
25-1% 215 2%
20101 215 200y
2a-1Pnr 0 21Pao1 2Paon
P2n-1 Pan-2 © Py Pn-1 . Py Po

Fig. 1. The bit-product matrix.

speed the multiplication process; most either involve reducing
the number of cycles required by the add and shift scheme by
making available multiples of the multiplicand and shifting
over groups of bits [3] or else involve parallel multipliers
[4]-[7]. The matrix of bit products (i.e., 4b;; on Fig. 1) is
generated in a single step with a large array of logic AND gates.
This matrix is reduced to an equivalent two-row matrix with a
network of full-adder circuits. The two-row matrix is summed
with a fast (e.g., carry-lookahead) adder to generate the prod-
uct. Although parallel multipliers are fast, they do require
considerable hardware that precludes their use for many ap-
plications. In this paper attention is focused on the quasi-serial
multiplication scheme that is potentially faster than add and
shift multipliers, but much simpler than parallel multipliers.

In the following analysis, the sign and magnitude number
system is used exclusively. An n-bit' number 4 is defined by

A=(-1)% "f a2 )

i=0

where ¢, the sign bit is 0 for 4 > 0 and is 1 for 4 < 0. The
sign of the product of any two numbers 4 and B may be com-
puted independently of the magnitude computation by

()

where @ denotes modulo 2 addition (i.e., the EXCLUSIVE-OR
logic function).

Op =0, ®0p

DERIVATION OF THE ALGORITHM

The magnitude of the product of any two n-bit numbers 4
and B is given by

n-1 . n—1 .
l4-Bl=3Y a2 3 b2 ®3)
i=0 j=o0

or

IThe sign bit is not included when the bits comprising a number are
counted.
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Equation (4) is the basis for the previously described add and
shift algorithm as may be verified by inspection of Fig. 1.
After the jth bit of the multiplier has been inspected the ac-
cumulator contains the sum of the first j rows of partial
products.

Alternatively the product may be viewed in terms of the
sums of the columns of the bit-product matrix.

2n-2 i .
IA . Bl = Z (Z akbi-k) 2l
i=0 \k=0
a,b;=0, fori<Qori>n-1. 5)
Define
i
§= > axbik (6)

k=0

where §; is the sum of the entries in the ith column of the
partial-product matrix that is shown in Fig. 1. Thus

2 .
l4-Bl="Y s2'.

i=0

Q)

Since for columns 1 through 27 - 3, s; may exceed 1, a simple
recursion is used to form P, a 2n-bit binary number that is
equal in value to the product. Let

Po = %o =0

Pi=(si+6’i—1)m0d2} )
fori=1,2,---,2n- 1.
G=(st+c-, - p)2 ®)
This recursion sums the s; term defined by (6), and thus re-
duces the sum for each column of the bit-product matrix to a
product bit p; and a carry term ¢;. The product may be written
in terms of the product magnitude bits and the sign bit from
(8) and (2)

2n—1 .
A-B=(-1)% Z pi2t. )
i=0
IMPLEMENTATION

The algorithm defined by (2), (6), and (8) may be directly
implemented with a 2n - 1 stage shift register, an n-bit holding
register, n-logic AND gates, an n-input counter,? a small [i.e.,
Entier® (logy(2n - 1)) bit] add and shift register, and an
EXCLUSIVEOR logic gate. Fig. 2 is a block diagram of the
multiplier. To initiate the multiplication, the multiplicand is
entered into the top n bits of the large shift register and the
multiplier is stored in the n-bit storage register. During the
first cycle, if the least significant bit of the multiplicand and
the least significant multiplier bit are both logic ONEs, one of

21n this paper, a counter is a circuit that indicates how many of the
inputs are in the logic ONE state.
3Entier (X) is the largest integer n such that n < X.
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Fig. 2. Block diagram of the quasi-serial multiplier.
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Product is: 0!10100010Z

19x22 = 41810

Fig. 3. Steps in the computation of 19 X 22 with the quasi-serial
multiplier.

the AND gates generates a ONE , which is counted by the counter,
added to the contents of the add and shift register (hereafter
called the carry register), and the least significant bit of the
count is shifted out as the first (i.e., least significant) bit of the
product. The multiplicand is shifted down by one bit causing
the second column of the bit-product array to be generated by
the AND gates. The number of ONEs is determined by the
counter, added to the carry register contents, and the least
significant bit is shifted into the product register. When a total
of 2n of these cycles have been performed the complete prod-
uct is in the product register.
~ The execution of the jth cycle yields s; [defined by (6)] as
the output of the ones counter, and ¢; [from (8)] as the con-
tents of the carry register. An example that demonstrates this
procedure is shown in Fig. 3. The problem 19 X 22 is solved
with this quasi-serial algorithm.

Under certain conditions, the quasi-serial multiplier may be
simplified somewhat. If the multiplier number will be avail-
able for the duration of the multiplication, its n-stage storage
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register may be deleted. Similarly, if the multiplicand is avail-
able sequentially at a compatible clock rate it may be loaded
into an n-stage shift register instead of the 2n - 1 stage register
that is shown in Fig. 2. If the product is to be processed
serially, the output shift register can be eliminated.

The delay for each cycle is the sum of the gate delay, the
counter delay, the addition delay of the carry register, and the
shift delay. If the carry register is implemented with a 1 +
Entier (log,(2n - 1)) stage carry-lookahead adder, the delay is

(10

where Toount is the delay of an n-input counter and Tg;¢; is the
delay of a shift register. If a full-adder counter (see Foster and
Stockton [8] for details of counter implementation with full
adders) is used, its delay is approximately

Tmult = 2”(Tgate + Tcount + T ca t Tshift)

Teount = Taaq(Entier (logy (n)) + Entier (logz(n- 1)))  (11)

where T,4q is the delay of a full adder.
Assuming that the delay of a carry-lookahead adder is nearly
equal to the delay of an adder module (i.e., a full or half adder)

Thur = 2”(Tyw + Taniee + Taqa(1 + Entier (log, (1))
+ Entier (logz(n - 1)))). (12)

From (12) it is evident that the counter delay dominates the
multiplier delay. A potentially much faster counter is described
in the Appendix.

The delay of the multiplier with the quasi-digital (i.e., cur-
rent summing) counter described in the Appendix is given by
substituting T.oyunt from (23) into (10)

Tmult = 2"(2Tgate + Tsettling + Tcomp + Tcla + Tshift)' (13)
Assuming
Tcla ~T comp ~ 3Tgate
and
Tsettling ~ Tshift ~ gate

(14)

Tt = 20n Ty

COMPARISON WITH OTHER MULTIPLIERS

Table I summarizes the complexity of the two forms of the
quasi-serial multiplier, two forms of the basic add and shift
multiplier, and the fully parallel multiplier. For comparison
purposes, an analog comparator is assumed to be equivalent to
a logic gate in complexity.

Evidently the add and shift multiplier with a ripple-carry
adder is the least complex of the multipliers characterized in
Table I. Since it requires an n-stage carry-lookahead adder, the
other add and shift multiplier is somewhat more complex than
the quasi-serial multipliers. The fully parallel multiplier is
certainly the most complex of all.

The delays of the two quasi-serial schemes have been derived
in the previous section, i.e., (12) and (14). The delays of the
ripple-carry adder and the carry-lookahead adder forms of the
add and shift multiplier are given by 7, and T, respectively
(see e.g., Flores [9])
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TABLE 1
MULTIPLIER COMPLEXITY
Method Gates Full Adders Register Stages Cla Adder Stages
Quasi=Serial
with adder
array counter n n 5n + I_,o::gZ (2n) I.;ogZ (2n)
Quasi-Serial
with current
summing
counter 3n 5n + Log, (2n) Log, (2n)
Add and Shift
with ripple-
carry adder n n 4n
Add and shift
with carry=-
lookahead
adder n 4n n
Fully 2
parallel n (n-1)(n-2) 4n 2n-1
TABLE II
MULTIPLIER DELAYS
Type of Multiplier
Quasi-Serial Add and Shift
Word Current Summing | Ripple-Carry
Length | Adder Ctr. Ctr. Accumulator |CLA Acc. | Parallel
5 140 100 80 20 10
10 400 200 310 40 16
15 600 300 690 60 19
20 920 400 1220 80 22
25 1150 500 1900 100 25
30 1560 600 2730 120 25
35 2030 700 3710 140 28
40 2320 800 4840 160 28
45 2610 900 6120 180 28
50 2900 1000 7550 200 31
55 3190 1100 9130 220 31
60 3480 1200 10860 240 31
65 4160 1300 12740 260 34
70 4480 1400 14770 280 34
75 4800 1500 16950 300 34
80 5120 1600 19280 320 34

T, = n(Tsnie + nT3qq) (15)
T = n(Tinige *+ Tada)- (16)

The delay of the parallel multipliers is given by the approxi-
mate relation [10]

Toure = gate T T,q4 Entier (2 logy (1) - 2) + Ty,

an

The number of gate delays of the various multipliers are tab-
ulated for word lengths between 5 and 80 in Table II. It is
assumed that Ty, = Thaq = 3Tgate and that Tyniey = Tgate for
the purpose of the table.

From Table II it appears that either of the quasi-serial multi-
pliers is faster than the ripple-carry accumulator form of the
add and shift multiplier for word lengths in excess of 15.
Although neither of the quasi-serial multipliers is as fast as the
add and shift multiplier implemented with a carry-lookahead
accumulator, the complexity of carry-lookahead adders be-
comes excessive for large word lengths.

CONCLUSIONS

This paper describes the quasi-serial multiplication algorithm
and compares it to both the wellknown add and shift algo-
rithm and to Dadda’s fully parallel multiplication algorithm.
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Two forms of the quasi-serial algorithm are described that may
be considered as defining new points on the speed-simplicity
spectrum of digital multipliers. It appears that the quasi-serial
multipliers are roughly comparable to add and shift multipliers
in both speed and simplicity.

Although pipelining has not been discussed it should be clear
that any of the multipliers described herein can be operated in
a pipelining mode to achieve greater throughput (at some sac-
rifice in initial delay).

The major component of the quasi-serial multiplier is a par-
allel ones counter that generates the count of how many of its
inputs are in the logic ONE state. As counters are improved in
speed, the speed of the quasi-serial multiplier will increase.
Toward this goal a current summing counter is described in the
Appendix that appears to have great potential for high-speed
operation.

APPENDIX
CURRENT SUMMING COUNTERS

The counters described in this Appendix use analog current
summing to generate a voltage that is proportional to the
count. The voltage is digitized with an analog-to-digital con-
verter to yield the “count” of how many inputs are active.*

The design of a current summing counter is illustrated by
Fig. 4 which is the circuit of a seven-input counter. Each input
that is either grounded (logic ZERO) or at the same voltage as
the logic supply (logic ONE) passes into a network of N resis-
tors. The voltage at the common node of the resistor network,
V, is approximated by

Vo = Veet * k/N (18)
where Vs is the voltage of the logic supply, k is the number
of inputs in the logic ONE state, and NV is the total number of
inputs to the network. This relation is only approximate since
the resistors and input voltage levels may deviate slightly from
their nominal values. This voltage is applied to the inverting
inputs of N analog comparators. The voltage applied to the
positive input of the ith (from the bottom of Fig. 4) compara-
tor is

(19)

The outputs of the ith comparator are two lines ¢; and ¢; that
are a function of the input voltages. If

Vi = Veet(2i = 1)/2N.

Voi>Vy, ci=landc¢;=0
Vpi =V, undefined
Voi<Vp ¢;=0andc;=1. (20)
From (18) and (19) it is apparent that
Vpi <Vp, fori<k (21a)
and
Vi >V, fori>k. (21b)

4Current summing counters are similar in function to quantizers de-
scribed in [11].
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Fig. 4. Seven-input current summing counter.

Thus

¢i=0andc;=1, for0<i<k (22a)

and

ci=land¢;=0, fork<i<n. (22b)

The n pairs of comparator outputs are decoded with a simple
logic network that generates the binary count of the number
of active inputs. Since it is attractive to use emitter coupled
logic (ECL) to realize the comparator [12], the encoding net-
work is implemented with logical NOR gates and the implied
OR logic function. The use of ECL is especially attractive
from speed considerations. It is possible to effect the com-
parison and encoding in less than 5 ns with Motorola MECL
III circuit elements.
Denoting the delay of the quasi-digital counter by T.ount

(23)

where Tgiing is the delay of the resistor network (and the
delay of logic buffers that may be required to achieve accurate
logic levels) and Teomp is the delay of the comparator. Since
Teomp and Tiyee are invariant with the size of the counter, the
only variation in counter delay as the size is increased is due to
variations in the settling time of the input network. The set-
tling time is due to stray capacitance that causes the voltage
that is applied to the comparators to settle exponentially to
the correct value. The effective time constant of the resistor
network is 7

Tcount = settling + Tcomp + Tgate

T =Ry, Coray /N (24)
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where R,, is the value of each of the N-input resistors and
Citray is the stray capacitance at the resistor node. The maxi-
mum error in the voltage V,, as a function of time is

€n = Vier exp (-1/7). (25)

There is yet another error in the voltage V,,, which is due to
errors in the resistor network. If all resistors are within a cer-
tain tolerance say €, the total error in the node voltage does
not exceed €,/R,. The voltages at each of the nodes of the
reference-voltage divider are subject to a similar error of €,/R,.

The comparators will all have correct input voltage levels
when

Vref/2N> € T |Voffset| + Vref(lex/Rx| + |€y/Ry I) (26)
Assuming that all resistors have tolerance AR such that
AR = le. /Rl = ley/Ryl. 27)

Solving (26) for €, and using (24) and (25)
Teettling = (“Ry Citray log (1/2N - 2AR - |Vosrsetl/ Vier))/N. (28)
Obviously the counter will operate if and only if
1/2N > 2AR + |Vofrsetl/ Vet

As N is increased, the accuracy of the resistors must be in-
creased until Vier =~ 2NV |Vosreetl at which point, the circuit be-
comes inoperative. For NV < 100 the offset voltage may be
considered negligible and

AR < 1/4N. (29)

As the resistor accuracy is improved, the settling delay im-
proves in accord with (28).

The implementation of an N-input current summing counter
requires: 2V resistors that satisfy (29); V comparators; NV two-
input logic gates; and N-input buffers.

Current summing counters do not appear to be feasible for
values of N that are much in excess of 100 since such counters
require high-accuracy resistors (and buffers), and may involve
considerable settling time. It is certainly possible to construct
larger counters by summing the outputs of smaller counters
with full adders. The basic idea is similar to constructing digi-
tal counters from full-adder modules (i.e., three-input counters)
as described by Foster and Stockton [8].
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