
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970

tient. If m bits are used from the reciprocal the table re-
quires 2m entries and establishes m bits of quotient.

Since the table doubles in size for each additional bit of
accuracy required in the initial quotient guess, small changes
in the convergence rate per iteration may reflect substantial
changes in the size of the starting table. Notice in almost all
schemes the error is biased, hence it (or part of it) can be
subtracted from the quotient, slightly reducing the average
error. Referring back to Fig. 1, since we are approaching
the root from the left side uniformly, we may predict ahead
part of the distance for the next iteration. While this is at-
tractive, the error bias may serve a useful function when
left in the iterant. In certain cases it will serve to protect the
integrity of integers (i.e., integer quotients will be preserved
in their usual representation).

CONCLUSION
The problem of finding complexity or efficiency bounds

for division is much more difficult than for add or multiply
because of the multiplicity of approaches. The best known
techniques require two basic arithmetic operations (add or
multiply) to double the precision of the quotient. Even rela-
tively small improvements in the convergence rate of a
scheme can result in considerable hardware savings in the
area ofa starting table. The development of these techniques
remains an open problem as does the application of non-
Newtonian higher order iterations.

REFERENCES
[1] C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans.

Electronic Computers, vol. EC-13, pp. 14-17, February 1964.
[2] S. F. Anderson, J. G. Earle, R. Et. Goldschmidt, and D. M. Powers,

"IBM System/360 Model 91: floating-point execution unit," IBM J.
Res. Develop., vol. 11, pp. 34-53, January 1967.

[3] R. E. Goldschmidt, "Applications of division by convergence,"
M.S. thesis, Dept. of Electrical Engineering, Massachusetts Insti-
tute of Technology, Cambridge, Mass., June 1964.

[4] M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, vol.
54, pp. 1901-1909, December 1966.

[5] H. H. Laughlin, "Large-number division by calculating machine,"
Am. Math. Monthly, vol. 37, pp. 287-293,1930.

[6] D. E. Knuth, "Seminumerical algorithms," in The Art of Computer
Programming, vol. 2. Reading, Mass.: Addison-Wesley, 1969,
p. 215.

[7] M. Lehman, D. Senzig, and J. Lee, "Serial arithmetic techniques,"
1965 Fall Joint Computer Conf., AFIPS Proc., vol. 27. Washington,
D. C.: Spartan, 1965, pp. 715-725.

[8] E. V. Krishnamurthy, "On optimal iterative schemes for high-speed
division," IEEE Trans. Computers, vol. C-19, p. 227-231, March
1970.

[9] J. F. Traub, Iterative Methodsfor the Solution ofEquations. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1964.

[10] R. K. Richards, Arithmetic Operations in Digital Computers. New
York: Van Nostrand Rheinhold, 1955.

[11] M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of Pro-
grams for an Electronic Digital Computer. Cambridge, Mass.:
Addison-Wesley, 1951.

[12] R. J. Fieg, "Analysis of a computer divide algorithm," unpublished
communication.

[13] P. Rabinowitz, "Multiple precision division," Commun. ACM, vol. 4,
p. 98, February 1961.

[14] K. Kunz, Numerical Analysis. New York: McGraw-Hill, 1957.
[15] D. Ferrari, "A division method using a parallel multiplier," IEEE

Trans. Electronic Computers, vol. EC-16, pp. 224-226, April 1967.

High-Speed Computer Multiplication Using

a Multiple-Bit Decoding Algorithm

H. LING, MEMBER, IEEE

Abstract-This paper presents a method of performing the binary
multiplication beyond the scheme of multiple ADD and SHIFT. The
binary multiplication algorithm will be discussed first, followed by
block decoding method, logic implementation, hardware considera-
tion, and two examples which are at the end of the discussion.

Index Terms-Block decoding technique, fast multiplication,
high-speed computer logic, high-speed multiplication, parallel multi-
plication.

Manuscript received May 20, 1969; revised December 12, 1969, and
February 22, 1970.

The author is with the Information Sciences Department, IBM Re-
search Laboratory, San Jose, Calif.

INTRODUCTION
O NE problem which the computer field has been con-

cerned with for many years is how to improve the
process of binary multiplication beyond the tech-

nique of repetitive ADD and SHIFT.
Some methods have been proposed, all of which have

some disadvantages. It was pointed out by Lamdan and
Aspinall [1], for example, that the realization of simultane-
ous multipliers necessitates a large number of components.
Recently, carry save adders have generally been used to in-
crease the speed of multiplication. However, due to the re-

706

LING: HIGH-SPEED COMPUTER MULTIPLICATION

quirement of a large amount of hardware support [2], it is
applicable only to a larger machine such as the 360/91.
The author [3] proposed a decomposition scheme to per-

form multiplication in 1966. This paper presents the detailed
binary multiplication algorithm based upon a multiple-bit
decoding technique. The sum (I) and difference (J) of the
factors are assumed to have been computed in advance. A
combinational logic module S is defined which has the
transfer function

x2
S(x) x - 2'

if the set of n inputs is interpreted as a binary fraction x. If n
is large enough to accommodate the entire length of
I (or J), the product is obtained in three additions, as
demonstrated by (20). If the number of bits exceeds n, then
copies of S may be applied to segments of I and J in parallel
and the results summed to form the complete product. In
particular, if the total length of the product is n 2k bits,
then a total of 1+2k additions are required.

THEORY

Let A and B be two fractions whose product is being
sought (we note that with proper scaling A, B can be integers
or even general floating-point numbers).

Lemma 1: For 6 = 0 or 1, f(5) =3.
Lemma 2: f(x + y) = f(x) + f(y) + xy.

Lemma 3: f(ny) = n2f(y) - yf(n - 1).

From (4) f(y) can be rewritten as

f(y) = (l/4)y + (1/4)f(2y).

(2)

(3)
(4)

(5)
Taking a binary fraction

k

X = E Xn2 n

n= 1

where xn=0 or 1, applying (2), (3), and (5) systematically, we
have

f (x) = (O.xlX2X3 ... Xn)
n n-k+1

Z (1/4k)(I + 2Xk) Z x + k - 12'
k= 1

where I>x.(1/2),x,=1.

Equation (6) can be rewritten as follows:

f(x) = D(x) + 2L(x)
= 3D(x) - 20(x).

where'

D(x)=(1/2)x - B(x)

L(x)= 0.0 0 (xlxl) (xlx2) (xlx3) (xlx4) ... (XlX)
+0.0 0 0 0 (X2X2) (X2X3) (X2Xn)

+0.0 0 0 0 ... (XnXn).
O(X)= 0.0 0 (X'lXl) (X'lX2) (X'1X3) (X'1X4) ... (XlXn)

+0.0 0 0 0 (X'2X2) (X'2X3) (X'2Xn)

+0.0 0 0 0 +

B(x)=0.0 OXl0X20X30X4 * * 1n X,°x

If both I and J are binary integers,

(6)

(7)
(8)

(9)

(10)

(1 1)

(12)

AB = 2[f(I) f(J) - (I - J)/2] (1)

with

I =(A+ B)/2
J = (A-B)/2

f(x) = (1/2)x(x + 1).

It should be noted that the time required to square a

number will be equal to half of that required in the general
multiplication case due to J= 0. The purpose of this section
is to decompose f(I), f(J) into efficiently manageable form.
The following lemmas are presented:

I = 2n(i i2i3 ' * * in)= 2 i

J = 2'(0 jI1j2j3 *..) = 2"j,

the product AB can be rewritten as

AB = 2{f[2ni] - f[2mj] - (I - J)/2}.

(13)

(14)

(15)

By substituting (4) into (15), the product AB becomes

' Parenthesized terms represent bits expressed as logical AND functions,
with x' representing logical complement of x.

Then

707

(xn' \)

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

AB =2 j22,f(i) - (2 - 2) - 22mf(j)

2
2 2 }

or simply

AB = 2{22nf(i) - 22mf(j)-2n(-) + 2m(4)}

By substituting (8) into (17), the product AB becomes

AB = 2{22n[3D(i) - 20(i)] - 22m[3D(j) - 20(j)]

2n 2m

Using (9) and regrouping AB, we finally obtain

AB = 2{2nI - 2mJ - 22n[3B(i) + 20(i)]
+22m[3B(j) + 20(j)]}.

Let S(x) = 3B(x) + 20(x); (19) can be rewritten as

(16)

(17)

(18)

(19)

AB = 2{2 I - 2mJ - 22n[S(i)] + 22m[S(j)]}. (20)

If both A and B are n digit numbers, it is obvious that S(i)
will be 2n digits in length. The number of terms collected
from S(i) and S(j) will affect the accuracy of the multiplica-
tion, and how to collect all the terms from S(i) and S(j) will
depend on the choice of multiple-bit decoding rules.

LOGIC IMPLEMENTATION
As discussed above, n is an arbitrary integer. In order to

consider the multiple-bit decoding technique, n has to be a

reasonable number. Let n=8 (the reason will be discussed
in a later section). The state table of S is generated by
evaluatingS(x) = x- x2/2 for all 128 8-bit positive normal-
ized binary fractions. If inputs are 0 1ii2j3 ... i8 and out-

puts are 0 OSOS1S2 S15, the logical relations may be
readily determined. For example,

so = il, S1 = i,

S2= i i2i3 +ili2i4i5ifif + ilili4i5fifi
+ ili'2i4i'5i6i'7 + ili'24i'5i'6i8-

(+means logic OR.) The completed decision is listed in
TableI. Equation (20) and Table I show that the multiplica-
tion of two 8-bit numbers can be completed with three
consecutive additions with some hardware support (the
implementation of s). Any number larger than 8 bits, say

16 bits, can be decomposed into two 8-bit blocks; the pro-

cedure then follows in an obvious manner.

HARDWARE CONSIDERATION

The last phase of design is to implement the final solution
as obtained by the decision maker as listed in TableI.

Fan-in and fan-out are always the basic problems facing
switching circuit designers (especially when passive ele-
ments are used such as diodes). Large numbers of fan-in and

TABLE I

THE LOGIC IMPLEMENTATION OF S

S~~~~~~~~~S SSf'so 1 2 S3 -4

il il il i2i' 'l "2'3i4 1i2i3'34'
ili, if if ifif i1i/2if3'f4'8 il "2i3'4"5

ilit2i4isi6i8 ilit2i3i4i5 ~~~ili, if if if i
ilti1 ii iIli, if i5i8 l23iii

ili I iIiIi6 8 ili' '3'5'8 il " i4i5 6 8
il i'2"4"5'6'7 i1it2 i35i6 "8
i1i2"3"Si6"7 111t2i3 51617 8

ili'23i4"5'78

ili'2i3i4"56'7

'5 '6 '7 '8

i 1i'2i3i4'5 6 i1i2i3i4"5'6 il 6 i4i66 "8 'I6i'34i5i6 "8
il/2'24'5i6 7 11i21t3141718 i1i3i4i6"7"8- ili3i4i'5i6"8
11i2'3'51617 '113'4"5'7'8 il"2'4'6'7"8 'l"3'4'5i7

ili'2it3i4i5'6 ilit2i3'4"6'7 ili2'4"6i7'8 ili3'4'i'i7i'8
ili2it3i4i6i8 ~~~ ~ ~ii34578 i '2i3 '4'7'f1 ili45678i l i i 4 i i il i t3 5 '7 '8 i1 i2 i'1 3 i idiii

ili i2if3468 iiiii
ililt45'' l2i4i56 78 il1i3i4"5i6i7 8

ili 3i if i7'8 'li2i3i4"'5'8 ilit i3i '6'7'8 ilit23'6i8
112 3f41518 1 6 '4'5 "66 8 ili'2'3'4'5'7"8 'l"2'3.5 "6'8

i1i i'3i4'5'8 il34S6 7 8 iii356 78 il23 68

ili, i i5i it if ilit2i3i4"56"78 ilt2it3i45'67"8 ilt2i34'i5'6'78ili i2i3i5' iIi7i il i2i3i4'6"7"8 il i'26i'356'78 il i2i34"5'67'8
i1i'2i'3i4i6i7i8 '1i2i34i56i7i8 il'1" 3i4i5i6i8 ili2i'3i4i5'7i8
ili2it3i4i5i7i8 2il 4't3i466 8 i1i '34i5 6 78 i1l23i4i5"67"

il1t2i3i4i5'7'8 il1'2"3'34"'s7"8 ili'2i3i5i6'7'8 il123"4'5"6'7
ili,i'"5''8 I" "3i4iS567'8 il"' 5"''li2i3'4"6i7i8
ilii'3'4"5'6'8 ili Ii4i i'6'7'8 il2 35678

112'34"'5"6'78 1112"4 5 "66 i8
il123i4i'56'7'8 i1i2it3i5'6"7'8

ili2i3'4'5'/6i8 i12i3i45i6i78

ilitSi6i7i8 il~'1i'2i'3'6"i il6'1i'2" i4i77'8
ili4i5i7i8 i~~~li2t3i4657 6 il1S2638 ilii7i8

914511 15101 11568 1612
I 1 if4511if if if 1 ifi fi1if ii i

ili3i i if ..iliIi i ii6'8' 678

ili3i i iI. .ili4iii
i113i4'5 '718 'l"4'f5'6'7
11i3'4'5'678 'l"4'5 "6'7

ili Ii4i5ifi7'8 i1i4i5i6"7

13 <14 15

i'i'i7i'8 i Ii8 i'i'8

708

LING: HIGH-SPEED COMPUTER MULTIPLICATION

fan-out not only deteriorate the input waveform, but also
affect the circuit delay. Since the advent of integrated cir-
cuits, an active device is no more costly than a passive one.
The waveform deterioration has been removed somewhat,
but the overall rise time and delay time per stage still affects
the choice of the maximum number of fan-in and fan-out
elements. The author has obtained 25 ns per stage using
2N976 with 8 fan-in and 3 fan-out operating at current
switching mode. Today, a 1-ns per stage integrated chip is
available and 0.5 ns per stage is obtainable in laboratory
scale. A further increase in the number of fan-in and fan-out
elements is possible. Of course, the limitation of the state-of-
the-art plays an important role in deciding the maximum
number of fan-in and fan-out elements.

which is 37513 in decimal.

Example 2: Let A=59881, B=41377. These numbers are
contained in registers A and B; in binary, they show as
follows:

Register A = 1110100111101001
Register B = 1010000110100001.

In order to hold the product of 16 bits by 16 bits, the
length of the accumulator should be 32 bits. After com-
pleting step 2 (three consecutive additions) the accumulator
holds the product of A1-8 B1_8 and Ag916 Bg916. The
register A and register B hold the product of A1-8 B9 -16
and Ag_16 B1- 16. These now show as

A18 B1-8 A9g16 B9-16
Accumulator 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1

* - A1-8 B9-16 -

RegisterA 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1

- Ag-16 B1-8-
Register B 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1.

The product of 16 bits by 16 bits can now be obtained with a total of five additions. The product is

1 00 1 00 1 1 1 0 1 0 1 1 1 0 1 0 1 00 1 00 1 000 1 00 1

which is 2477696137 in decimal.

DESCRIPTION

In order to explain the operating procedure step by step,
an example is given.

Example 1: Let A = 233, B= 161. In binary, these numbers
are shown as

A = 11101001
B= 10100001.

From (1), (13), and (14), I and J assume the following values:

I = 28(0.11000101)
J = 26(0.1001).

Step 1: Substituting I and J into Table I, S0, Sl, S2, * S15
are logically formed. S(i) and S(j) are shown as follows:

S(i) = 0.01111001001100111
S(j) = 0.01100111100000000.

Step 2: Complete the multiplication (8 bits by 8 bits) with
three consecutive additions:

AB= 2[1100010100000000
- 100100000000
- 111100100110011.1
+ 11001111000.0]

1001001010001001

CONCLUSION
Using this algorithm to perform the multiplication re-

quires minimum circuit delay (only one shift operation in
forming I and J). No arithmetic operation is needed to ob-
tain the bit pattern of S(i) and S(j). The logic equations (all
the S's listed in Table I) are not in the most simple form be-
cause the existence of redundant elements in S's may reduce
the total number of required chips. Factoring out the term
i1 i4, common to some S's, will eliminate the number of fan-
ins, but one additional level is created.
The use of this method to perform multiplication for any

8-bit machine requires three additions, a 16-bit machine re-
quires five additions, and a 32-bit machine requires seven
additions.

ACKNOWLEDGMENT

The author wishes to thank Dr. T. C. Chen for his con-
tinued helpful criticism and R. Shively for his revisions and
suggestions.

REFERENCES
[1] T. Lamdan and D. Aspinall, "Some aspects of the design of a simul-

taneous multiplier for a parallel binary digital computer," 1965 Proc.
IFIP Cong., vol. 2. Washington, D. C.: Spartan, 1966, pp. 440-446.

[2] S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
"Floating-point execution unit," IBM J. Res. Develop., vol. 11, no. 1,
pp. 35-53, 1967.

[3] H. Ling, "A short note on binary multiplication," IBM Res. Note NC
626, May 1966.

709

