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tion is applied to several Fourier metric coefficients of size N/4. In general, since multiplica-
ber of operations is found as a func- tions are much more expensive in terms of computer opera-
Lradix representation. Using these tions than are additions these latter two methods generallyware configurations are examined t t a a t
:radeoffs. A new, especially attractive offer considerable savigs. The object of this paper is to
resented as an example of the utility examine the CORDIC vector rotation method of Volder [6]
,d and modified CORDIC algorithms for the Fourier transform problem. This appears to be

attractive as a vector can be "rotated in the time of a
rray processor, computer arithmetic, single multiply using this technique. In addition, trigono-
orm (DFT), fast Fourier transform metric coefficients as distinct from the CORDIC constants
ion generation, real-time transform, are not needed in a CORDIc rotation procedure, so the

expense of generating, storing, and retrieving these coeffi-
cients is- avoided.

I. INTRODUCTION
THE basic discrete Fourier transform (DFT) [1] is

defined by
N-1

Ar = E BATrk
k=0

r = 01,2,) . -,N - 1 (1)

where
W = exp (-2irj/N)
j = (-1)'I1.

This transform may be viewed as a process of rotating the
vector Bk (real and imaginary components) by the angle
(27rrk/N) followed by a sum over all k for each r. A very
similar process occurs in the fast Fourier transform
(FFT) [1], [2], wherein the repeated application of the
following FFT butterfly operation results in the same
result as given in (1). The "decimation in frequency"
butterfly operation [3] is

C' = C + D

D= (C - D)W

where C and D are complex data points, w is defined as
above, and 1 is a function of the location of the butterfly
within the butterfly diagram, and the same sum and rota-
tion process is evident.
The vector rotation is generally accomplished by repre-

senting the vectors in terms of real and imaginary com-
ponents and performing four real multiplications and two
additions. Golub's method [4] can accomplish the same
result with only three real multiplications and five addi-
tions, while Buneman's method [5] requires a different
treatment but only three multiplications and three addi-
tions (see Appendix I). In addition, each of the above
methods requires a table of (or must generate) trigono-
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II. CORDIC TECHNIQUE
Consider the vector Xi = (x,y) to be rotated by the

angle a = 27rrk/N. Let a new vector Xi+, be obtained from
Xi by the process

Xi+1 = xi + yj2-i
,yi+l = y - xi2-i.

Then if
Ri = xi2 + yi2

Oi = tan-' (yi/Xi)

the result will be that the magnitude and angle of the new
vector

Xi+1 = ( xi+17yi+i)
will be

R+1 = Rj[1 + 2-2i]1/2

Oi+1 = i- tan-' (2-i).
Now to rotate X by an arbitrary angle a (between
i7r/2) to an accuracy of 1 bit in n bits, the following
procedure may be used. (Appendix II has a more general
algorithm.) Initialize

zi= -a.

Iterate n times

a= sgn (zi)

xi+, = xi + aiyi2-

Yi+l = yi - aixi2-i

zj+j = z- ai tan-l (2-i)

i= i + 1.

These iterations are composed of addition, subtraction,
shifting (multiplication by 2-i), and table look-up
(tan-' (2-i)) operations. Walther [7] discusses the con-
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Fig. 1. Serial CORDic DFT cnomputer configuratioii.

vergence, truncation errors, and a hardware implenmenta-
tion of this process. If the addition (or subtraction),
shifting, and table look-up are accomplished simul-
taneously, then the vector can be rotated in n addition
times or about the time necessary to accomplish a single
multiplication using the same technology.

III. APPLICATION TO DFT

The application of this technique to the DFT is now
evident. One rotation will be required for each combination
of input and output for N2 total'rotations. The real and
imaginary components of the input vector Bk are taken as

the initial values of xi and yi. The initial value of zi is
then set to 27rrk/N. The CORDIC iteration is performed n

times to produce n bits of precision and the resulting x

and y values are added tj the sum that will become A,
after N repetitions of this'frocess. The process is repeated
for each frequency component A,. We also note that the
resulting spectrum is scaled by a constant factor K
where

n-I

K = II (1 + 2-2i)12 1.6.
i=O

'The resulting spectrum can be normalized, if required,
by dividing by K. The CORDIC algorithm can also be used
for this division [71. Alternatively, a "compensating"
CORDIc algorithm [Appendix II] can be employed that
causes K to be unity.
A very low-cost Fourier transform computer can be

constructed to perform the DFT as described above. It
will be most useful for those cases of modest input data
rate, where only a few high resolution frequency samples
are required for the output. In this case, considerable
storage of trigonometric coefficients, unnecessary fre-
quency coefficients and buffers can be saved as compared
to an FFT approach. The hardware configuration for
such a system is shown in Fig. 1. It should be noted that
the only circuitry beyond that needed for the CORDIC
rotation is the storage required for the desired output fre-
quency coefficients. If the lowest cost approach (serial
data paths and arithmetic circuits) is assumed where fc
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TABLE I
COMPARISON OF ARITHMETIC OPERATIONS REQUIRED FOR BASE 2, BASE 4, BASE 8, AND BASE 16 ALGORITHMS

Noncom- Modified CORDIC Vector
pensated

Algorithm Required Computation for Rotationsa Compensated Rotationsa Operations Additions

Base 2 algorithm Evaluating (N/2)m, 0 0 0 mN
for N = 2m 2 term Fourier transforms
m = 0,,1..., Referencing mN (m/2 - 1)N ± 1 mN 0

= 1 Complete analysis mN (96m/192 - 1)N + 1 192mN/192 mN

Base 4 algorithm Evaluating (N/4) (m/2), 0 0 0 mN
for N = (22) /12, 4 term Fourier transforms
m/2 = 0,1,2,---, Referencing mN/2 (3m/8 - 1)N + 1 mN/2 0

1 = 2 Complete analysis mN/2 (72m/192 - 1)N + 1 96mN/192 mN

Base 8 algorithm Evaluating (N/8) (m/3), mN/3 mN/12 mN/12 13mN/12
for N = (23)m/3, 8 term Fourier transforms
m/3 = 0,112,.-, Referencing mN/3 (7m/24 - 1)N + 1 mN/3 0

I = 3 Complete analysis 2mN/3 (72m/192 - 1)N + 1 8OmN/192 13mN/12

Base 16 algorithm Evaluating (N/16)(m/4), mN/4 mN/8 3mN/16b l9mN/16
for N = (24)m/4 16 term Fourier transforms
m/4 = OY1,2~,-4- Referencing mN/4 (15m/64 - 1)N + 1 mN/4 0

I = 4 Complete analysis mN/2 (69m/192 - 1)N + 1 84mN/192 l9mN/16

Base 21 algorithm Evaluating (N/21)(m/i), mN(l - 1)/21 <72mN/192 -mN/I + mN/121 - mN+
for N = (21)mIl, 2' term Fourier transforms
m/i = 0,1,2,..., Referencing mrN/i [([2' - 1]/121)m - 1]N + 1 mN/I 0

I odd Complete analysis rNN(i + 1)/21 - mN+

Base 2' algorithm Evaluating (N/2')(m/i), mN(l -2)/21 <72mN/192 - mN/I + mN/121 - mN+
for N = (2') M1 21 term Fourier transforms
m/1 = 0,1,2,---, Referencing mN/i [([2 -1]/121)m - 1]N + 1 mN/I 0

1 even Complete analysis mN/2 mNN+

a Note: The number of vector (complex) additions is always mN for these cases.
b Note: The rotation by 7r/8 is accomplished by rotating by 7r/2 (trivial operation) and then two successive angle halvings, each of which

require a vector add and a vector multiply by a scalar.

is the data shift rate employed in the CORDIC circuit
(f20-MHz max for TTL logic), then the input bit rate
fi is limited as

fi < fcb/[nf(bf + (bi + 1) (bi + log2 br)]

where

bi the number of bits in each input sample,
bf the number of bits in each output frequency samnple,
i7f the number of frequency samples (complex).

Thus in a typical real-time application, we may want

bi = 9 bits per input time sample,
bf = 16 bits per output frequency element,
7f = 128 (complex output coefficients).

Then, fi < 1 X 104 bits/s, or less than 1000 input samples
per second could be accepted, independent of the trans-
form resolution (hence input transform length). If very

high frequency resolution is desired, additional bits may be
needed in the registers so that truncation errors will not
mask the differences between closely spaced frequency
elements.

Other hardware versions of the DFT algorithm are

possible including parallel arithmetic and pipelining of
either the serial or parallel configuration. A single fully
pipelined, parallel arithmetic, CORDIC module could rotate

about 2 X 107 vectors/s. Thus if M output frequency
samples were required, then the system could accept
2 X 107/M samples/s. This pipelined CORDIC DFT ap-
pears to be very useful in special applications, but is not
competitive with the FFT if a full Fourier transform is
required.

IV. APPLICATION TO FFT

The use of the FFT algorithm will always require as
much, and often considerably more storage than the
DFT approach. However, the FFT approach can produce
a very much larger data throughput with the same
CORDIC hardware. Many different FFT algorithms have
been reported and the CORDIC method of performing the
vector rotation can be used with nearly all of them.
Bergland [8] has calculated the saving of computational
effort that results when various radix FFT algorithms
are applied. It is also of considerable interest to determine
the number of vector rotations as produced by the CORDIC
method that are required to produce a given size FFT and
to determine this as a function of the radix of the FFT
algorithm employed. The number of rotations for both
the compensated CORDIC, the modified CORDIC (see
Appendix II) and the simpler noncompensated CORDIC
method are derived under the same assumptions employed
by Bergland [8] and are expressed in Table I. In every
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TABLE II
VECTOR ROTATIONS AND ADDITIONS REQUIRED IN PERFORMING BASE 2, BASE 4, BASE 8, AND BASE 16 FFT ALGORITHMS FOR N = 4096

(m = 12)

Number of Vector Number of Vector Modified CORDIC Vector
Noncompensated Compensated

Algorithm Rotations- Rotationsa Operations Additions

Base 2 (N = (2)11) 49 152 20 481 49 152 49 152
Base 4 (N = (22)6) 24 576 14 337 24 576 49 152
Base 8 (N = (23)4) 32 768 14 337 20 480 53 248
Base 16 (N = (24)3) 24 576 13 569 21 504 58 368

a Note: The number of vector additions for these cases is always mN = 49 152.

CORDIC MODULE CORDIC MODULE CORDIC MODULE CC
MODULE MODULE MODULE MO

Fig. 2. Fourier transform computer, radix-4 cascade for N = 1024.

ORDIC
ODULE

case compensation must occur. When the noncompensated
CORDIC algorithm is applied, compensation is achieved by
a dummy rotation of angle zero on those vectors that do
not need to be rotated.

It is apparent from Tables I and II that for the non-
compensated algorithm the base 4 case is optimal. The
compensated algorithm is very near to optimal for base 4
and base 8 but some slight improvement results if a base
greater than 8 is used. The modified algorithm uses a
vector multiply by a scalar within the base Fourier
transform and a noncompensated CORDIC vector rotation
for the referencing. It is optimal for base 8. It is now
apparent that a "mixed base" algorithm (such as the
"4 + 2" algorithm of Gentleman and Sande [9]) of base
"4 + 8" will be the best choice when CORDIC techniques
are employed.
High performance Fourier transform computers can be

constructed around the CORDIC iterations and the FFT
algorithm. As an example, Fig. 2 illustrates a novel
architecture that is well suited to the radix-4 uncom-
pensated CORDIC technique. Either the "decimation in
time" or the "decimation in frequency" base 4 algorithm
can be employed in this configuration. The "decimation
in time" algorithm is an attractive choice as the system can
be used to process a single channel (complex) of trans-
form length N, or 41 (1 = 0,1,2,.* *) independent channels
of transform length N/41 in parallel, without modifying
the configuration. This tradeoff is described by Groginsky
and Works [2] for the radix-2 Cooley-Tukey algorithm
and the exact same technique applies to the radix-4
algorithm. Gold and Bially [3] discuss the "decimation in
frequency" radix-4 algorithm but their hardware configura-
tion, although similar in appearance, is fundamentally
distinct from that presented here. The desired algorithm
is easily derived from the Cooley-Tukey algorithm but
can best be described by a procedure similar to that of
Gold and Bially [31]

Step 1: Arrange the input data into a two-dimensional
array (4 by N/4 for the radix-4 case).

Step 2: Multiply each element of the resulting matrix
by Wlpq.

Step 3: Perform a DFT (4 by 4) on each row indi-
vidually.

Step 4: Transform the resultant matrix columns. This is
accomplished by beginning at Step 1 and repeating the
procedure for each column individually and recursively.

Step 5: The entire procedure is followed until the result-
ing matrices become square and the last column is proc-
essed.

This procedure results in a flow diagram (Fig. 3)
similar to Fig. 3 of Gold and Bially [3] where the arrows
now represent the four-point "decimation in time" DFT

A' = AWO + BWk + CW2k+ DWIk

B' = AWO + jBWk - CW2k -jDW3k

C' = AWO - BWk + CW2k- DW3k

D= AWO -jBWk - CW2k+ jDW3k (2)
where p and q are the row and column indices, j = (-1) 1/2
and k is the algorithm-position dependent index above
each arrow, and the numbers refer to the nodes of the
corresponding "butterfly" diagram (not shown). We
now note that k may be derived from a simple binary
counter, incrementated at the serial word rate by masking
and bit reversal, so that various sections of the counter
represent the output frequency, channel number, and
rotation angle (in bit-reversed form). Thus the control
mechanism has the very simple form of Groginsky and
Works [10], wherein data (possibly multichannel as in
sonar and radar signal processing) are transformed in order
of arrival with no modification of the control or arithmetic
circuits when multichannel operation is desired.
The operation of the system is begun by forcing each
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n-l i2 AR 0

Fig. 3. 64-point FFT, radix-4 "decimationi in tinme" flow diagram.

DFT adder module to pass input data through until its
shift register is filled. That is, in the pass mode the module
produces:

Al = A

B' = B

C' = C

D' = D

until the shift register is filled. Then the module is put
into the add mode and th-e following DFT is produced:

A' = A + B + C + D

Bl = A +jB - D -jD

C'=A-B + C-D

D'= A -jB - C +jD

where the indicated complex operations are simple data
transpositions. After the last D vector is accepted, the
adder module reverts back to pass mode. The CORDIC
module rotates every complex vector it receives by the
angle k supplied in sign encoded form from the control
circuit. First the A' vectors are rotated while the B', C',
and D' vectors of the previous stage are reentered into the
shift register. The A' vectors are then followed by the B',
C', and D' vectors as the output of the CORDIC module is
passed to the next stage of processing. As in the DFT case

the output is scaled. It may be normalized by dividing each
output by K4.
The system of Fig. 2 might be described as a "radix-4,

FFT, CORDIC, cascade computer" and can be implemented
with either serial or parallel data paths and with either
combinational or pipelined arithmetic circuits. (Davidson
and Larson [11], [12] have a good discussion of pipelined
Fourier transform computers, and cost effective con-
figurations.) The least expensive version of this system
(serial TTL logic and MOS shift register storage) would
process about 104 input samples per second while a pipe-
lined parallel arithmetic version would process about 107
samples/second. In all cases the transform size is deter-
mined by the number of stages employed in the cascade.
Five stages for a transform size of 1024 complex points are
illustrated in Fig. 2.

V. VERY HIGH PERFORMANCE FFT
PROCESSORS

The CORDIC technique has its greatest advantage in a
FFT array configuration [13] (referred to by Larson and
Davidson [12] as a "FFT parallel pipelined cascade'').
This configuration can process about 107 transforms/second
[12], independent of the transform size. If the radix-4
algorithm using uncompensated CORDIC iterations
is applied, then from Table I, it is apparent that
(N/2) log2 (N) CORDIC modules are required to produce a
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transform of N complex points, where one-fourth of those
are "dummy" in the sense that they do not produce a
vector rotation, but only a vector scaling (for compensa-
tion). Since Buneman's method [5] requires three full
multiplications to perform the same rotation function as
well as additional additions, the COEDIc rotation technique
will always require less hardware to implement than any
of the other methods (one CORDIC module has about the
same part count as two full multipliers in the array case).
Larson and Davidson [12] have a very good discussion of
these types of FFT configurations for the radix-2 FFT
algorithms and their pipelining techniques may be directly
adapted to the "4 + 8" FFT CORDIc algorithm presented
above.

VI. CONCLUSIONS

It appears that the CORDIc Fourier transform techniques
are most useful at opposite ends of the computer power
spectrum. If a very low-cost and hence low-data rate
machine is needed, then the single CORDIC module with
serial arithmetic is very inexpensive. The absence of
trigonometric tables and auxiliary storage is often a great
advantage in this case. It is not clear however, that the
CORDIC method has any advantage for moderate data rates
where low-cost parallel multiply circuits can perform
vector rotations very inexpensively, and storage costs for
the trigonometric coefficients are neglectable. For high
performance systems, the CORDIC system is attractive be-
cause trigonometric coefficients need not be fetched from a
relatively slow store. In the very high performance systems
(array machines) the base-4 CORDIC method always re-
quires less hardware.

APPENDIX I
VECTOR ROTATION METHODS

Let the vector X = [x + y(-1) 1/2] be rotated by the
angle 0.

Standard Method:

x' = xcos0-ysin0

y = y cos 0 + x sinG.

Four multiplies and two additions are required.
Golub's Method:

x' = [(x + y)(cos0 - sin0) + xsin0 - ycos0]

y'= [ycos0 + xsin 0].

Three multiplies and five additions are required.
Buneman's Method:

x (1+cos0)(x-ytan0/2) -x

y' = (1+ cos0)(x-ytan0/2) tan0/2 + y.
Three multiplies and three additions are required as
(1 + cos 0) and tan 0/2 are stored constants.

APPENDIX II
COMAPENSATED CORDIC ALGORITHMS

Introduction
The CORDIC technique for rotating a vector expressed in

rectangular form as developed by Volder [6], has enjoyed
considerable success in arithmetic operations [7] and
special purpose function generation (as exemplified in the
Hewlett-Packard HP-35 calculator) [14]. The technique
is also very useful in Fourier transform computers although
the change of magnitude that occurs as the vector is
rotated often limits the advantages of the CORDIC tech-
nique. For example, if it is employed in calculating the
FFT "butterfly" [1], either an additional multiply,
divide, or CORDIC operation is required to normalize the
rotated vector to its original magnitude. Several methods
of avoiding this change in magnitude are herein developed.

CORDIC Technique
The CORDIC technique [6] is an iterative process similar

to ordinary nonrestoring arithmetic division. Let X be
the real component and Y be the imaginary component of
a vector to be rotated by an angle 0.
The initialization is the following:

if 0>0 then a = +1,
ifO<O then a= -1,

X1= +ay

Y, = -aX

01 = axr/2 - 0

K1 = 1.

Then for each iteration step i, i = 1,2,. *,N:

if O>0 thenai=+1,
if O <0 thenai=-1,

Xi+, = Xi + aiYi2-i+l

Yi+1 = Yi -aiXi2-i+l

0i+1 = 0,- a, tan-' (2-i+1)
K+1= Ki(l + 2-2i+2) 1/2

where

Xi the real component of the vector,
Yi the imaginary component of the vector,
Ki the magnitude of the vector,
Oi the angle of the vector,
i the iteration index.

To rotate the vector (X + jY) by the angle 0, the
iteration is performed N times where N is the number of
bits used to represent X, Y, and 0. Walther [7] has dis-
cussed the convergence and truncation errors of this
process.
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The primary difficulty in using this method is that the
magnitude of the vector Ki grows with each iteration step.
If a constant number of iterations (generally N) occur
each time, then the vector is always scaled by the same
factor (K).

Compensated CORDIC Method
The compensated CORDIC technique employs an iterative

process such that at each CORDIC iteration after the first
few iterations, the magnitude multiplier coefficient Ki
is forced by a simple correction to approach unity. The
result is that the magnitude approaches unity in the same
manner that the angle approaches zero; that is, it is always
within one significant bit of its correct value for that stage
of iteration (1 bit out of i bits at the ith step). Truncation,
if allowed, will cause some errors in the magnitude just
as it does in the angle calculation. However, the guard
digits usually employed for the angle [7] are also sufficient
for the magnitude correction.
The compensation and rotation can be accomplished by

a two-step process as the basic CORDIC rotation:

if Oi > 0 then ai = +1

if Oi <O then ai =-1,

Xi+11=0 Xi + YaiYi2-i+
Yi+i'= -Yi-aX2-i+l

Oi+1' = t- ai tan-' (2-i+1)

Ki+11 = Ki(1 + 2-2i+2) 112

followed by a magnitude correction:

if Ki.0 thenbi=-1,
if Ki<O thenbi=+1,
if i=1 thenbi=O,

Xi+, = Xi+,' + biXi+lf2-i+l
Yi+J = Yi+i' + biYi+1'2-i+
Oi+1 =-04+
Ki+1 = Ki+,'(1 + bi2-i+2 + bi22-2i+2)112

where fbi} = {O,-1,1,-1,1,1,1,-1,1,1,-1,1,1,1,-1,1,
-1,---1,-1,-1,-1,-1,1, 1} for its first 24 values. The same
results can also be obtained in a single iteration as

Xi+, = Xi + aiYi2-i+l + biXi2-i+l + aibiYi2-2i+2

Yi+i=Y- aiX2-i+l + biYi2-i+l - aibiXi2-2i+2.

These operations are considerably more complex than
the corresponding ones in the uncompensated case. This
may not be a serious disadvantage if serial arithmetic is
used since the arithmetic portion of most serial computers
is generally only a small fraction of the total system. In an
effort to simplify the above calculation however, the
following iteration may be considered:

Xi+, = Xi + aiYi2-i+l + biXi2-i+

Yi+j = Y- aiXi2-i+l + biYi2-i+1
This is somewhat less complex but the vector rotation angle
will change due to the truncation of the terms containing
2-2i+2. Thus convergence of the angle sequence toward zero
is no longer assured and must be reexamined.
The angle at any step is easily determined as

i tan-' Yi+J = tan-' Yx + aiYX2-i+l + biYi2-i+lJ
Gi+i = O-ia cnt-' [bi +.2i-1]

while the magnitude scaling factor becomes

Ki+12 = [K 2/ (X,2 + Y12) ][Xi+12 + Y,+12]
Kj+j = KiEl + a,22-2i+2 + bi2-i+2 + b 22-2i+211/2

In general, convergence of Oi toward zero requires [2] that
n-I

t2 < n-1 + E f9b
k=i+1

for all i < n where n is the total number of steps. Since
unity can be expanded as

n-1

1 = 2i-(n-1) + 2 2i-k
k= i+l

any i

then
x-i-

- 6i2i-(n-1) + 9Oi2i-k
k=i+l

and
n-I

Oi < On-liYn-I + E2 Ok'Yk
k-i+l

where
Yk (Oi/0k)21i-A.@

Then convergence will occur if Yi < 1 since

yk = (Oi/0 )2i-k

and k > i, then 'ah < 1 if

20j+1 . Oi for all i.

This is more restrictive than our original convergence
criteria, but will produce some useful results. Since

tan (20) = 2 tan /[1- tan' 0]

the restrictive convergence criteria can be written as

2 tan 0j+j 2 tan i{1 - tan2 Oi+,]

2(bi+1 + 2i)-1 > (bi + 2i-')-'[l - (bj1j + 2i)-2]

2(bi+1 + 2i) (bi + 2i-1) 2 (bj+j + 2i)2 - 1

(2bi- bi+1)2i + 2bibi+l - b+12 + 1 > 0.

For the special case bi = bi+,, then
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TABLE III
COMPENSATED CORDIC ALGORITHM CALCULATION

STEP SHIFT COMPENSATION VECTOR ANGLE MAGNITUDE MAGNITUDE
NUMBER FACTOR COEFICIENT ROTATION CONVERGENCE SCALING ERR(OR__

k -i+l b (RADIANS) EROR k+l (Kk 1)21
1 0 0 0.7853981634D 00 0.0000000000D 00 0.7071067812D 00 -0.2928931000E 00
2 1 0 0.4636476090D no o.OOOnOOOOOOO 00 0.7gn5694150D 00 -0.4188611000E 00
3 2 0 0.2449786631D 00 0.0000000000D 00 n.sl49003007D 00 -0.7403987000E 00
4 3 1 0.1106572212D 00 0.0000000000D 00 0.9224n45089D nO -0.6207638000E 00
5 4 1 0.5875582272D-01 o.oooonoooooD no 0.9817489230D 00 -0.2920172000E 00
6 5 0 0.3123983343D-01 n.noooon0oooD 00 n.q822281756D 00 -0.5686983000E 00
7 6 1 0.1538340178D-0l n.oonnnoooooD 00 0.9976935402D 00 -0.1476134000E 00
8 6 0 0.1562372862D-01 0.n0000000onD 00 0.9978153215D 00 -0.1398193000E 00
9 7 0 0.781234106nD-02 o.oooonooooon 00 n.0978457720D 00 -0.2757411000E 00

10 8 0 0.3906230132D-02 O.0000000n00D 00 0.9978533849D 00 -0.5495334000E 00
11 9 1 0.1949315270D-02 0.0000000000D 00 0.9998042168D 00 -0.1002409000E 00
12 10 0 0.9765621896D-03 O.Ooooooooo0 D on 0.9998046936D 00 -0.1999937000E 00
13 11 0 0.4882812112D-03 o.0OOOOOOOOO0 oo 0.9998048127D 00 -0.3997434000E 00
14 12 0 0.2441406201D-03 O.OOOOOOOOOOD 00 0.0998048425D 00 -0.7993649000E 00
15 13 1 0.1220554126D-03 0.0OOOOOOOD 00 0.9999268965D 00 -0.5988640000E 00
16 14 1 0.6103143111D-04 0.OOOOOOOOOOD 00 0.9999879290D 00 -0.197770600OE 00
17 15 0 0.3051757812D-04 0.1000Q00000D 00 0.9999879295D 00 -0.3955260000E 00
18 16 0 0.1525878906D-04 o.ooooo0OOOOD 00 0.9999879296D 00 -0.7910445000E 00
19 17 1 0.7629336324D-05 0.0000n000000 00 0.999955589D 00 -0.5820972000E 00
20 18 1 0.3814682714D-05 0.0000000nOD 00 n.9999993736D 00 -0.1641972000E 00
21 18 0 0.3814697266D-05 -0.2424571719D-12 0.9999993736D 00 -0.1641952000E 00
22 19 0 0.1907348633D-05 -0.2424710497D-12 0.9999993736D 00 -0.3283896000E 00
23 20 0 0.9536743164D-06 -0.2424727844D-12 0.9999993736D 00 -0.6567788000E 00
24 21 1 0.4768369308D-06 0.0000000000D 00 0.9999998505D 00 -0.3135579000E 00
25 22 0 0.2384185791D-06 -0.15099461240-13 0.9999998505D 00 -0.6271159000E 00
26 23 1 0.1192092753D-06 0.0000000000D 00 0.9999999697D 00 -0.2542319000E 00
27 24 0 0.5960464478D-07 -0.8886120162D-15 0.9999999697D 00 -O.5084638000E 00
28 25 1 0.2980232150D-07 0.0000000000D 00 0.9999999995D 00 -0.1692774000E-01
29 26 0 0.1490116119D-07 -0.4336800418D-18 0.9999999995D 00 -0.3385549000E-01
30 27 0 0.7450580597D-08 -0.4336800418D-18 0.9999999995D 00 -0.6771099000E-01
31 28 0 0.3725290298D-08 -0.4336808690D-18 0.9999999995D 00 -0.1354219000E 00
32 29 0 0.1862645149D-08 -0.4336808690D-18 0.9999999995D 00 -0.2708439000E 00
33 30 0 0.9313225746D-09 -0.4336808690D-18 0.9999999995D 00 -0.5416879000E 00
34 31 1 0.4656612871D-09 0.00000000000 00 n.1000000000D 01 -0.8337646000E-01

bi > -(2i+l)-1/2
Thus for the uncompensated case (bi = 0) convergence is
verified. Also convergence occurs if bi = 1 but not if
b = -1. Thus it appears unattractive to choose bi = -1
for any i. However, if the magnitude is to be forced to
unity, then bi cannot be constant at either 0 or + 1.
Further if bi = 0 and bj+j = 1 at any step i, then con-

vergence is not assured by the restricted criteria (although
bi = 1 and bi+1 = 0 are acceptable). Thus the series of bi's
can change from one to zero only once as i is incremented if
convergence is to occur or some iterations must be re-

peated so that convergence will occur. This repetition
of an iteration to ensure convergence is employed by
Walther [7] in the CORDIC calculation of the hyperbolic
functions. Clearly such repetitions must be employed here
and the number of such repetitions should be minimized.
The algorithm given below was found by a heuristic

search (computer program) that employed the general
convergence criteria as a boundary condition and at-
tempted to minimize the number of operations required to
assure both angle convergence to zero and magnitude
convergence to unity for each step.
Compensated CORDIC Algorithm

Initialization:

if >0 thena=+1/2,
if 6< O thena =-1/2,

X1= -ay
Y = +caX
O1= ar - 6

K1 = 1/2

i = 0.
Iteration:

k = 1,2, * *N + 2;

if = i+ 1i
if k = 8 or if k = 21,

N + 2 < 34

then i = i - 1,

if Ok2 0 then ak = +1,

ifO0 < 0 then ak =-1,

XA+1 = Xk + bkXk2-i+l + akYk2-i+l

Yk±+ = Yk + bkYi2-t+1 - akXk2i+l

0k+1 = Ok - ak cnt' [bk + 2i-1]

Kk+1 = Kk[E + 2-2i+2 + b422-2i+2 + bk2-i+2]12_ 1

where Ibk } is given in Table III. The net result is a vector
rotation by 6 without a significant change in the magnitude
of the vector.

Table III illustrates the performance of the algorithm
up to 32 significant bits for which two repetitions are
required.
As mentioned by Walther [7], to achieve a final ac-

curacy of 1 bit in N bits, an additional log2 N guard digits
should be employed in the arithmetic operations.

Modified CORDIC Method

Occasions arise when it would be convenient to multiply
the magnitude of the vector X + jY by a scalar constant.
This is easily accomplished by setting at = 0 in the above
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algorithm and encoding the scalar constant K in a suitable
form.
Thus the modified algorithm for 0 < K < 2 is the

following.
Initialization:

X2 = X

Y2= Y

K2 = 1

i = 2.
Iteration:

if (Ki-K) > 0 then bi = -1,

if (Ki-K) < 0 then bi = +1,

Xi+, = Xi + biXi2-i+'

Yi+i = Yj + biYi2-i+l

Ki+i = Ki(1 + 2-2+2 + bi2-i+2)

i = i + 1.

As in the compensating algorithm, the bi's for any given
constant K may be precalculated. This algorithm is pri-
marily useful for the special case of multiplying a vector
X + jY by a predetermined scalar. A more general vector
multiply algorithm could be easily developed from the
CORDIC scalar multiply algorithm [7], but would require
additional variables beyond these used here. One use of
the modified algorithm is in Fourier transform computers
where many multiplications of a vector by a fixed constant
are sometimes required.

Conclusions

Both the compensated and the modified CORDIc algo-
rithms are useful in special purpose applications such as
Fourier transform computers. The compensated algorithm
may be very useful in those computers that require
multiple operand addition capability for other reasons (to
calculate effective addresses for example). In these cases,
the additional hardware to implement the compensated
algorithm as opposed to the uncompensated algorithm
may be very valuable.
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