IEEE TRANSACTIONS ON COMPUTERS, VOL. C-24, NO. 11, NOVEMBER 1975

1049

More Efficient Radix-2 Algorithms for Some
Elementary Functions

P. W. BAKER

Abstract—de Lugish [1] has defined efficient algorithms in radix
2 for certain elementary functions such as Y[X, Y/X¥2, Y + InX,
Y-exp (X), etc. His technique requires a systematic 1-bit left shift
of a partially converged result, together with two 4-bit comparisons
to select a ternary digit for the next iteration. This selection of digits
reduces the average number of full precision additions to about 1/3
of those required in conventional schemes [3]. This paper develops
modified algorithms in radix 2 which are more efficient when the
time for a full precision addition is comparable to the time for a shift
and comparison. The modified procedure is developed for Y/X in
detail where more than a 40 percent decrease in execution time is
achieved for only a marginal increase in cost.

Index Terms—Digital arithmetic, elementary functions, iterative
algorithms, radix 2, variable left shift.

INTRODUCTION

E LUGISH [1] has defined efficient algorithms in
radix 2 for the functions ¥/X,Y/X'2 In X, exp (X),
the trigonometric functions, and the inverse trigonometric
functions. These algorithms are based on the continued
product normalization procedure which uses multipliers of
the form (1 + $:27*) so that multiplication is reduced to a
shift-add sequence. Chen [2] has also discussed a scheme
for the automatic computation of the first four mentioned
functions. He uses a bit counting technique which reduces
the number of shift-add sequences, on the average, to
about 7/2. More recently, Ercegovac [4] has used a
radix-16 approach to speed up the computation of recipro-
cals, logarithms, and exponentials. He estimates that the
radix-16 algorithms take about 3/4 of the time of the
corresponding de Lugish algorithms, but are less efficient
when cost is taken into account.

This paper develops radix-2 algorithms which use an
extension of de Lugish’s technique and which are more
efficient when the time for a full precision addition is com-
parable to the time for a shift and low precision com-
parison.

DE LUGISH’S METHOD

As a vehicle for discussion, we take the algorithm for
Y/X where Y and X are n-bit numbers, which is typical of
the whole class and which may be described as follows:

X0=X, Yo= Y, OSSX,Y< 1 (1)

Manuscript received April 29, 1974; revised April 29, 1975. This
work was supported by the Australian Research Grants Committee.

The author is with the Department of Computer Science, School
of Electrical Engineering, University of New South Wales, Ken-
sington, N. S. W., Australia.

Xin = Xo(1 + 8271, X, > 1, 0<k<n (2)

Yipg = Yie(1 4+ 527+ 1), Y, > Y/Xask —> . 3)
Instead of using (2), de Lugish substitutes
Ri= (Xi — 1)-2 (4)
Ry = 2Ri + s + siBi27* (5)
and selects s¢, ¥ > 1, according to the following:
1, if R < —3/8
s =4 —1, if Ry 2> 3/8, E>1 (6)
0, otherwise.
For k = 0,
2, if —1/2 < Ry < —1/4
S =

0, if —1/4 < Ry <0.

This method of selecting s yields a probability of 2/3 for
selecting sy = 0 (see [1]) and leads to the following
properties of Ry:

|Re| < 1,

fork >0

fork > 2. (7)

A hardware configuration to compute R; for k > 1
according to (5) is shown in Fig. 1. The transformation
from R, to R may be regarded as a separate initialization
process and will not be considered here. The evaluation of
Y, will take place in a similar unit controlled by the unit
shown in Fig. 1. Each iteration requires a single left shift of
R and two comparisons to determine the value of s If
sy = 0, the loop 1 is taken, bypassing both the variable
shifter and adder. The two comparisons may be performed
conveniently as shown by feeding the four high-order bits
of R into a small read-only memory (ROM). The output
will be needed to control the clocking pulses for register R.
If s = 0, a clocking pulse may occur after the settling
time of the components in loop 1. If sy = 1, the clock
pulse must wait for the extra delay through the com-
ponents of loop 2.

When the time for an addition is much greater than that
for a shift and compare, the above scheme will compute an
n-bit result in about n/3 addition times. This will be a
significant improvement over schemes which use n/2 [2]
or n [3] additions. However, it is possible to construct

11050
Rl
L ADDER l
ZRk + Sk I)
1 s, 2"'R
MINI- . Kok
ADDER K :
| 2:1 MULTIPLEXER — Je— Sk
Sy 2 kRk
T [vAR. SHIFTER J— &
ROM 2R
K
i — b
| rRREGISTER —
R,
[_3:T MULTIPLEXER Je—s,
LOOP 2 R, LOOP |
INITIAL LOADING
Fig. 1. R normalization configuration for de Lugish’s method.

adders using carry lookahead techniques to speed up
addition; if carry lookahead may occur over up to 8 bits
and over up to 8 groups of bits, then an addition of up to
64 bits precision may take place in only 10 gate delays.
Notwithstanding considerations of extra delays due to high
fan-out, this means that the delay for an addition will be
comparable to the delay of a small ROM.

In order to obtain a timing estimate for Fig. 1, we
assume that the various components have the following
delays in terms of gates, each gate (aND, oR, and Nor)
having an assigned delay of one unit: master-slave
register—4 gates; 2 (or 3) to 1 multiplexer (mplxr),
address to output—4 gates; 2: 1 mplxr, data in to output—
2 gates; 1 to n-bit variable shifter—7 gates, mini-adder—3
gates. We also assume that there will be an extra gate
delay for the address input to the 3:1 mplxr associated
with the initial loading of the R register. The timing esti-
mates for loops 1 and 2 of Fig. 1 are as follows.

Loop 1:

ROM 6
3:1 multiplexer 4
R register 4
extra 1
5¢

Total = 1

Loop 2:

ROM 6, variable shifter 7
(mini-adder 3), 2:1 mplxr 3
adder 10

3:1 mplxr 2

R register 4

Total = 26 gates.

Obsérve that in loop 2, the address input to the 3:1
mplxr settles before the data lines. Hence the 3:1 mplxr’s
contribution to the loop 2 delay is only 2 gates. The total

ates.

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 1975

delay in generating an n-bit result (n < 56) will be about
n/3+26 + 2n/3-15~ 18.66 n gates. Observe that more
than half the time is taken up by loop 1. An extension to
de Lugish’s scheme is now proposed which eliminates loop 1
but does not excessively increase the delay through loop 2.

MODIFIED CONFIGURATION

Instead of having a single bit shift in loop 1, we inspect
the m high-order bits of Rx (including the sign bit) to
obtain
" 1) a left-shift value j which lies between 0 and m — 1,
and

2) the value of ¢ € {—1,1}
which are used in the modified recursion equations!

Riyj:= 2Ry 4 or + arRi27*
Yk+j = Yk(l + de—k_j)

(8)
(9)
with the selection rule

1, if R, <0
o =

—1, if Ry > 0.

The practical choices for m, as will be shown, are 6, 7, or 8.

This modified scheme is shown in Fig. 2 where a ROM is
used to store j. This value of j is used to control a variable
left-shift network (from 0 to m — 1 bits) through which
R passes before it enters loop 2. For m = 6, the contents of
the ROM, whose address input is the. 6 high-order bits of
Ry, are shown in Table I where z denotes either 0 or 1.
Note that the sign of ¢ (0 for + and 1 for minus) is always
equal to the one’s complement of the leading bit (the sign
bit) of Rr. Hence oy is available as soon as the R register
has settled and need not be stored in the ROM. With
6 <m <8 the ROM word length will be 3 bits to
accommodate j in binary code.

ROM Lookup Table

The action to be taken for all the 2™ possible leading
bits of Ry will be discussed for the case m = 6 and with
reference to Table I. The contents of Table I, for 7 > 1,
may be justified from (6) as follows. Because of the
symmetry of Table I, only the case R; > 0 will be con-
sidered. For j = 1, the action taken is identical to that in
(6) and needs no explanation.

For

R < 3-27W, i=2
it is easily seen that, in de Lugish’s method,
Sk = sk-|:1 = eee = §q52 = 0.
Moreover, if
3.2t < R, < 3.2-GHD
then
1 Note that we have used the assignment operator (:=) t((;

avoid the contradictions that would arise in (8) and (9) when j =
and if the equality sign (=) were used.

BAKER: RADIX-2 ALGORITHMS FOR ELEMENTARY FUNCTIONS

Rk«-J
| ADDER |
2R +o
k R
[%2 Ry
MINI- L__
ADDER % [(2:7 MULTIPLEXER (b) J&— o,
J
1‘——lz Ry ?
J —{VAR. SHIFTER (a)
i -k
'R,
TJ
[VAR. SHIFTER (b) Je— Kk
ROM
i Fi
o, 'R REGISTER |

{ 2:1 MULTIPLEXER (a) |

I INITIAL LOADING

Fig. 2. Ry normalization configuration for modified method.

TABLE I

High-order

Number of bits j to
bits of Ry

be passed over

0.00000
0.00001
4]0.00010
0.00011
0.0010x
0.0011z

B [0.010zz
0.011zx

0.10zzx
C]0.11zxx
1.00zzz
1.01lzzx
B {1.100zzx
1.101zz
.1100z
.1101z
.11100
.11101

.11110
L11111

A

QU R O WN) N HOOM M D Ot

et ot ok ok

Note: z can be either 0 or 1.

Sk4j—1 = — 1.

So the unsuccessful trials on k to k + j — 2 (which yield
s, ete., = 0) can be avoided if R is shifted over j bits
with Sktj—1 = O = -1,

For the second entry in Table I, ; = 4 must be chosen
since Rx > 3-27% is possible. Similar arguments apply to
the first entry.

The choice of j = 0 for Ry = 0.11zxz--- or R; =
1.00zxz-++ may be justified as an attempt to produce
implicit minimal recoding when % >> 1. (By minimal re-
coding, we mean a recoding that will reduce the number of
sx # 0 and hence shift and add operations to a minimum.)

1051

TABLE II

1/4s)

m Theoretical Experimental

0.422 —
0.376 0.372
0.354 0.352
0.344 0.342
0.339 —

0.336 —

[=Ri=Ro JEN Forie)]

—

For example, if R; = 0.11111-- ., the resultant value is
Ry := 1.11111- -+ (2’s complement). The next iteration
will now produce a maximum shift of 5. If we chose j = 1
instead, the following calculation would result:

Riyr := L11111 ---

-1
0.11111

and the next and subsequent shift values would only be
j = linstead of j = 5.

A derivation of the bound on Ry proceeds as follows:
de Lugish [1] has shown that B; € [—%,1). By applying
(8) to the ranges of Ry corresponding to all the values of j
in Table I, it can be seen that the extreme values of Ry, ;
arise when j = 5 and

1) R, € ([0,275) or
2) Ry €[—275-0).

Using (8), the range [0,27%) maps onto [—1,—27)
and the range [—2-5 —0) maps onto [—2751). So Rs €
[—1,1). It can also be seen that R:,2 < k < 5, € (—¢,c)
where ¢ > 275 A proof by induction that B, € [—1,1),
k > 6 is now obvious. Hence, for the modified algorithm,

-1 < R <1, for all k. (10)

Average Number of Iterations

The average number of iterations N, is related to the
average shift number {s). If P, denotes the probability of
choosing s; = 0, then

(s) = =P
For an n-bit word, n — o,
n
Nav = T7-
(s

In the Appendix, an expression is derived for (s) as a
function of m, m > 5, assuming n = «. Theoretical
values of 1/(s) for m > 5 are given in Table II. These
values were verified by simulating 5000 trials on 60 bit
operands uniformly distributed over (3,1). These cor-
responding experimental estimates of 1/(s) are also re-
ported in Table II.

1052

Speed of Modified Scheme

In order to obtain a timing estimate for Fig. 2, we
employ the same assumptions used for Fig. 1. Since o, = 0
is not allowed, loop 1 of Fig. 1 may be eliminated, as shown
in Fig. 2. The delay for one iteration in Fig. 2 is made up of

ROM 6
variable shifter (a) 5
adder 10
2:1 mplxr (a) 2
R register 4

Total = 27 gates.

Note that the delay for the mini-adder is not included.
The mini-adder causes no extra delay because the carry
into the most significant adder block from the group carry
generate block is 5 gates; and the mini-adder only has a
delay of 3 gates. The variable shifter (a) is merely an
(m — 1) to 1 multiplexer whose delay from address to
output we assume to be 5 gates.

If an 8-bit ROM lookup is used, an n-bit result, on the
average, will be computed in about 9.29n gates. From
Table II, it can be seen that little is gained by consulting
more than 8 leading bits of Ry, but that a significant extra
number of iterations will be needed for m < 6.

The efficiency of the modified scheme is derived from the
fact that the normalization procedure allows updating of
the iteration counter k after an iteration. However, the
result evaluation, (9), requires k to be updated with j
before the current iteration can be completed. In order not
to lose speed, then the best procedure is to stagger the re-
sult calculation one step behind the normalization cal-
culation. If this is done, the generation of Y /X will require
an extra iteration, yielding a total delay of 9.29 (n + 3)
gates. For m = 6, the average delay is 10.15 (n + 3)
gates. Therefore, the modified scheme will generate ¥/X in
less than 60 percent of the time needed for de Lugish’s
scheme. The cost increase, which is about m gates due to
the 0 to m — 1 variable shifter, is less than 10 percent for a
parallel implementation. As well as making for faster
execution, the configuration in Fig. 2 will require simpler
control circuitry, since only one train of synchronous clock
pulses will be required for clocking the R register.

The timing estimates for the above-mentioned schemes
assume that the delay of the ROM is 6 gates, independent
of m. The speed of commercially available ROM’s tends to
decrease as their bit count increases, and so the timing
comparisons will tend to favor the modified scheme. Even
80, a comparison of the two schemes, assuming an imple-
mentation in TTL logic, yields a speed improvement in the
modified method of greater than 40 percent.

With a variable shift number j available at every itera-
tion, the counter, which is normally incremented by one,
will now require the capacity to be incremented by an
amount up to 7. The most convenient realization of this
counter is a 6-bit fast adder in a loop with a master—slave

IEEE TRANSACTIONS ON COMPUTERS, NOVEMBER 1975

register. This register can be clocked by the same pulse
which clocks the R register.

EXTENSION TO OTHER ELEMENTARY
FUNCTIONS

The above modification to the generation of Y/X may
be extended to other elementary functions. Some of these
will be discussed briefly.

1) The generation of ¥ + In X uses the same normali-
zation equation (8) and only requires (9) to be replaced
with

Yk+j =Y, —1In (1 + 0'152*(7"”')).

2) The generation of Y-X is straightforward, and the
same ROM can be used to select the shift value 7.

3) The generation of Y- exp (X) also uses the same
ROM to select 7, but complications arise because the
normalizing equation

Riyj := 2/R, — 284 In (1 4 0, 2= ®+9)

requires the counter to be incremented at the start of an
iteration.

4) The multiplicative square root algorithm is similar
to the Y/X algorithm and the same lookup table may be
used. The speed increase will not be as great as the Y /X
case, since the computational loop will contain two cas-
caded full precision adders (see [1]).

The additive algorithm for square root will require only
one full adder, but will need up to 5 ROM tables to cover
the initial condition range X € [},1) (see [1]).

DISCUSSION AND CONCLUSION

The timing comparison of the two schemes for Y/X are
based on the fastest practical Boolean realizations of the
various components. Significantly different results might
be obtained if a hardware unit were to be built using
commercially available logic.

These modified minimal recoding algorithms of de
Lugish will have at least two advantages over algorithms
that use Chen’s bit counting technique [27]. First, Chen’s
bit counting will be less efficient than the table method
presented herein. In Chen’s scheme, the number of bits to
be counted at the kth iteration is about & or more, which
may be time consuming for large k. Second, although the
average number of iterations in Chen’s scheme is about
n/2, the maximum possible value is n. In de Lugish’s
scheme, minimal recoding selection of s; should yield a
maximum of (n 4+ 1)/2. This derives from the fact that
with canonical recoding, each nonzero digit is separated by
at least one zero. We conjecture that this maximum holds
in the modified method for m > 6. This conjecture is
supported by the following reasoning. For the maximum
number of iterations to be achieved, the shifts per selec-
tion of ¢x must be a combination that results in an average
shift of 2 bits for each selection. If any one selection
yields, say, 7 = 5, with a next shift value of j = 0, then the

BAKER: RADIX-2 ALGORITHMS FOR ELEMENTARY FUNCTIONS

combined shift distance for the two selections is still
greater than 4.

Hence these modified de Lugish algorithms should offer
a speed improvement factor of at least 2 when worst case
computation time is important.

APPENDIX

CALCULATION OF AVERAGE
SHIFT VALUE (s)

Given a table with 2" entries, let P (%) be the probability
that the ¢th entry will be accessed and let j(7) be the shift
value corresponding to that ith entry. Then the shift
average is

() = X P(3)-j(7).

=1

(11)

In order to determine (s) then, expressions for P(7) must
be obtained. These expressions will be derived for the case
n = . As a prelude to the general development, we dis-
cuss the case for m = 6 with reference to Table I.

For the limiting case n = o, and as k — n, the third
term on the right in (8) may be ignored, yielding

Riyi = 2Ry + o, (12)

Considering all the table entries, excluding the first and
last two, it can be seen that Ri,;, as computed by (12), will
be in one of two ranges:

range A: 0 < | Ruy; | < 22
range B: 272 < | Ryy;| < 271

k— .

(13)
The result will be in range A when
Ry = £0.00-.-01122---

0 to 3 zeros
or
Ry = +0.00---0100zz- - -
and in range B when
R. = +£0.00---0101zz- - -

For the second and second last entry, the result will be
in range A if R, = 3-0.000011zz--- and in range B if
R = +0.000010zz- - -. Considering now the first and last
entries, it can be seen that if Ry = 4-0.000000zz- - -, then
Riyj will liein

range C: 271 < | Riy;| < 1. (14)

Ranges A, B, and C are marked in Table I. If the less
significant bit patterns of each entry are equally likely,
then each A entry will have the same access probability
P4, each B entry a probability Ps, and each C entry a
probability Pe¢. In order to determine expressions for these
probabilities, we proceed as follows.

1053

Consider the repeated use of (12) for k¥ < n. Since
n = o, the number of table accesses, which we denote by
Ny, will also be «. If we let N4, Np, and N¢ be the number
of times entries in the ranges A, B, and C are accessed,
then

Ny = N4+ Np + Ne.

Now, for a general table of 2™ entries, the number of B
entries = the number of A entries = 22, and the num-
ber of C entries = 271, For tables where m > 5, the
following expressions may be obtained for Np and N¢:

Np = 2N7+ {274 Pc + 27 5.Pp + P4+ (25 4 272)}

(15)
N¢ = Ps-Nr. (16)
From the definition of probability, we get
Pp = Np/(Nrp-277?) (17)
and
P¢ = N¢/(Nrp-2m1) (18)
= Py-27mH, (19)

But, since the probabilities of all the table entries must
add up to 1, we get

P4y + Pp + 2P¢ = 212, (20)
So from (15)—(19) we get
Pg = a(m)Ps (21)
where
a(m) = 272 4 1 (22)
From (19)—(21) we get
Py = 27m2.(1 4 a(m) + 2—m+2)—1, (23)

A detailed examination of an m-bit table shows that the
following expression for {s), which is an explicit version of
(11), holds for m > 5:

(8) = 2:Pa-{(m — 1) 4+ 2(m — 2) + B(m) + 24}

+ 2-Pp-{3-2m74} + 2-Po- {272} (24)
where
B(5) =0
and
m—>5
B(m) = 3 8-271.(m —2—1), m>5. (25
=1

This expression for (s), with P4, Ps, and P¢ evaluated
using (22), (23), (21), and (19) was used to give the
results in Table II for 5 < m < 10. As m — o, (s) —>3,
as in de Lugish’s method.

1054

ACKNOWLEDGMENT

The author would like to thank his colleagues for their
assistance during the preparation of this paper. The author
is particularly indebted to the referees, whose detailed
critiques were responsible for significant improvements in
the manuscript.

REFERENCES

[1] B. G. de Lugish, “A class of algorithms for automatic evaluation
of certain elementary functions in a binary computer,” Ph.D.
ii)%sgrtation, Dep. Comput. Sci., Univ. Illinois, Urbana, June

[2] T. C. Chen, ‘“Automatic computation of exponentials, logarithms,
ratios and square roots,” IBM J. Res. Develop., vol. 16, pp.
380-388, July 1972.

[3] W. H. Specker, “A class of algorithms for In z, exp z, sin =,
cos z, tan™! z and cot™! z,”” IEEE Trans. Electron. Comput.
(Short Notes), vol. EC-14, pp. 85-86, Feb. 1965.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-24, No. 11, NOVEMBER 1975

[4] M. D. Ercegovac, “Radix-16 evaluation of certain elementary
functions,” IEEE Trans. Comput., vol. C-22, pp. 561-566,
June 1973.

P. W. Baker was born in Melbourne, Vic.,
Australia, on July 24, 1946. He received the
B.E. degree from the University of New
South Wales, Kensington, N.S.W., Australia,
in 1971, and has recently completed research
work for the Ph.D. degree in computer
science.

Since October 1974 he has held the position
of Lecturer in the Department of Computer
Science, University of New South Wales.
His research interests include computer
hardware, computer arithmetic, and differential equations.

Equational Realizations of Switching Functions

FRANK M. BROWN

Abstract—Equational logic is an approach to combinational
synthesis based on the equation f(x) = 1 rather than on the function
f(x). The central problem of equational logic is to find a system of
equations g:(x) = hi(x) (i = 1,2,--+,k), of the simplest possible
form, that has the same solutions as f(x) = 1. Given such a k-equa-
tion system, f(x) may be realized as the output of a k-wide digital
comparator whose inputs are the 2k ¢’s and A’s constituting the sys-
tem.

This paper continues the investigation of equational logic begun in
[5], where it was shown that the equivalence of the equation f(x) = 1
to a system of equations is intimately tied to the existence of a
bilinear representation for f(x). The concept of a bilinear representa-
tion is employed in the present paper to develop two approaches to
equational synthesis, namely, separation of arguments and equation
solving.

Index Terms—Boolean equations, Boolean matrices, combina-
tional logic, digital comparators, functional decomposition.

I. INTRODUCTION

COMBINATIONAL circuit realizing a switching
function f(x) may be thought of as a solution verifier
for the Boolean equation

flx) = 1. (1)

The circuit’s output has the value 1, that is, if and only
if the input vector x is a solution for (1).
Suppose (1) is equivalent to (i.e., has the same solu-

Manuscript received September 5, 1974; revised March 15, 1975.
The author is with the Department of Electrical Engineering,
University of Kentucky, Lexington, Ky. 40506.

tions as) a k-equation system of the form

g1(x) = hi(x)

(2)

gr(x) = he(x).

Then f(x) may be realized by the structure shown in
Fig. 1. The unit labeled “="" is a k-wide digital com-
parator (conveniently implemented with k open-collector
EXCLUSIVE-NOR gates); the unit labeled ‘“‘function gen-
erator,” which produces the ¢’s and /s of (2), is a multiple-
output combinational circuit.

We shall refer to the structure of Fig. 1 as an equational
realization of f(x). Suppose, for example, that it is desired
to realize the function

f= BCE + ABD + ABD + ACE + ADE
+ BCDE + ACDE + BCDE + ABCDE,

which is expressed in simplified sum-of-products form.
The two-equation system

AB+ CD = BE + AE

ABC = CDE (3)

is equivalent to the equation f = 1, but clearly has simpler

form. An equational realization of f, corresponding to the
system (3), is shown in Fig. 2.

For simplicity, the cost of an equational realization will

