
High-Speed Double-Precision Computation
of Reciprocal, Division, Square Root,

and Inverse Square Root
José-Alejandro Piñeiro, Student Member, IEEE, and Javier Dı́az Bruguera, Member, IEEE

Abstract—A new method for the high-speed computation of double-precision floating-point reciprocal, division, square root, and

inverse square root operations is presented in this paper. This method employs a second-degree minimax polynomial approximation to

obtain an accurate initial estimate of the reciprocal and the inverse square root values, and then performs a modified Goldschmidt

iteration. The high accuracy of the initial approximation allows us to obtain double-precision results by computing a single Goldschmidt

iteration, significantly reducing the latency of the algorithm. Two unfolded architectures are proposed: the first one computing only

reciprocal and division operations, and the second one also including the computation of square root and inverse square root. The

execution times and area costs for both architectures are estimated, and a comparison with other multiplicative-based methods is

presented. The results of this comparison show the achievement of a lower latency than these methods, with similar hardware

requirements.

Index Terms—Computer arithmetic, Goldschmidt iteration, table-based methods, double-precision operations, division, square root,

inverse square root.

æ

1 INTRODUCTION

RECIPROCAL, division, square root, and inverse square root
are important operations for several applications such

as digital signal processing, multimedia, computer gra-
phics, and scientific computing [7], [12], [18], [22]. Although
they are less frequent than the two basic arithmetic
operations, the poor performance of many processors when
computing these operations can make their overall execu-
tion time comparable to the time spent performing addition
and multiplication [16].

For a low precision computation of these functions, it is
possible to employ direct table look-up, bipartite tables [2],

[21] (table look-up and addition), or low-degree polynomial
or rational approximations [11], [15], [23], [24], but the area

requirements become prohibitive for table-based methods

when performing high precision computations (such as the
53-bit accuracy double-precision floating-point format).

Iterative algorithms are employed for these calculations. On

one hand, digit-recurrence methods [4], [8], such as the SRT
algorithm, result in small units, but their linear convergence

sometimes leads to long latencies and makes them inadequate
methods for these computations. High-radix digit-recurrence

methods [13] result in faster but bigger designs. On the other

hand, multiplicative-based methods [3], [6], [7], such as the
Newton-Raphson and Goldschmidt algorithms, have quad-

ratic convergence, which leads to faster execution times,

usually at the expense of greater hardware requirements.

These methods employ an initial table-based low-precision
approximation (seed value) of the final result to reduce the
number of iterations to be performed, thus reducing the
overall latency of the algorithm.

A new multiplicative-based method is proposed in this
paper. Our method combines an efficient second-degree
minimax polynomial approximation [20] to obtain the seed
values and a modified Goldschmidt iteration to provide
double-precision floating-point results. The high accuracy
(about 30-bits of precision) of the second-degree approx-
imation allows the computation of a single iteration,
significantly reducing the overall latency of the standard
Goldschmidt algorithm. On the other hand, the modifica-
tion performed in the iteration allows an important
reduction on the hardware requirements. We have chosen
this algorithm instead of Newton-Raphson due to its higher
intrinsic parallelism, which leads to lower execution times.

The second-degree minimax polynomial approximation
[20] consists of three look-up tables storingC0,C1, andC2, the
coefficients of a second-degree polynomial. This approxima-
tion combines the speed of linear approximations and the
reduced area of the second-degree interpolations. The look-
up tables are addressed with the upper part of the significand
input, X1 (having a wordlength of m1 ¼ 9 bits), and the
evaluation of the quadratic polynomial is carried out by a
specialized squaring unit and a multioperand adder. When
obtaining the initial approximation for several different
functions, only the look-up tables storing the coefficients
must be replicated because the squaring unit and multi-
operand adder can be shared for the different computations.

Since there are two different implementations of the
Goldschmidt algorithm for division and square root
functions, we propose two architectures in this paper. The
first one deals only with the computation of reciprocal and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002 1377

. The authors are with the Departamento de Electrónica e Computación,
Universidade de Santiago de Compostela, 15782 Santiago de Compostela,
Spain. E-mail: {alex, bruguera}@dec.usc.es.

Manuscript received 20 Apr. 2001; revised 25 Jan. 2002; accepted 21 Mar.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114026.

0018-9340/02/$17.00 ß 2002 IEEE

division operations, with a very low latency and reasonable

hardware requirements. The second proposed architecture

also deals with the computation of square root and inverse

square root, with an increased latency (but still a fast

execution time compared with previous methods) and

about the same amount of hardware as the first scheme. The

modification performed in the Goldschmidt iteration for

computing square root and inverse square root allows the

reutilization of the logic blocks employed in the first

architecture, saving an important amount of area.
The rest of this paper is structured as follows: In Section 2,

a brief description of the algorithm is presented, including

an overview of the second-degree minimax approxima-

tion; the two unfolded architectures are proposed and

implementation details are explained in Section 3; esti-

mates of the execution time and hardware requirements

for our proposed architectures are presented and a

comparison with some previous multiplicative-based

methods is outlined in Section 4; finally, the main

contributions made in this work are summarized in

Section 5.

2 ALGORITHM

The method proposed in this paper deals with the

computation of the reciprocal function (1=X), division

(Y =X), square root (
ffiffiffiffiffi
X
p

), and inverse square root (1=
ffiffiffiffiffi
X
p

)

for input operands in the IEEE double-precision floating-

point format. With this format, a floating-point number M

is represented using a sign bit sm, an 11-bit biased exponent

em, and a 53-bit significand X. If M is a normalized number,

it represents the following value:

M ¼ ðÿ1Þsm � ð1þ fmÞ � 2emÿ1023;

where X ¼ 1þ fm, 1 � X < 2, and fm is the fractional part

of the normalized number (the 52-bit stored word).
The computation of these functions is performed only for

the input significand, Z ¼ fðXÞ, since the sign and

exponent treatment is straightforward and can be per-

formed in parallel.
Our method consists of the following steps:

. Computing an initial approximation Rf � fðX̂XÞ,
with X̂X a truncated version of the input operand,
accurate to 30 bits for the reciprocal and to 29 bits for
the inverse square root,1 by employing a second-
degree minimax polynomial approximation.

. Performing a modified Goldschmidt iteration, em-
ploying Rf as a seed, to produce the final double-
precision result Z ¼ fðXÞ.

In the next subsection, we briefly describe the second-

degree minimax approximation employed (a detailed

description can be found in [20]). After this description,

the modified Goldschmidt algorithm for the computation of

reciprocation/division and also the one for the computation

of square root/inverse square root will be presented.

2.1 Second-Degree Minimax Polynomial
Approximation

A new method for the computation of powering function

(Xp), in a single-precision floating-point format, by means

of a second-degree minimax polynomial approximation

with table look-up and multioperand accumulation, has

been proposed in [20]. This algorithm allows an important

reduction in the total area regarding linear approximations,

with no delay increase. It combines the speed of first-degree

approximation methods [23] and the reduced size of

second-degree interpolation algorithms [1], [10].

Since reciprocal and inverse square root functions are

specific cases of powering, this second-degree approxima-

tion can be effectively employed to obtain accurate initial

estimates for both functions. These estimates are the seed

values required for the modified Goldschmidt algorithms

(Rd ¼ 1=X̂X will be the 30-bit seed value for division and

reciprocal computation, while Rs ¼ 1=
ffiffiffiffiffî
XX

p
will be the 29-bit

initial value employed for the square root and inverse

square root computation).
Since the minimax approximation is known to be the

optimal polynomial approximation of a function [15], we

take advantange of its high accuracy to significantly reduce

the wordlengths of the coefficients to be employed,

reducing the size of the required look-up tables.
As shown in Fig. 1, the n-bit binary input significand X is

split into an upper part X1, a middle part X2, and a lower

part X3.

1378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

1. These values will be justified in Sections 2.2 and 2.3, where the error
computation for the Goldschmidt algorithm is explained.

Fig. 1. Block diagram of the second-degree minimax approximation Rf .

X1 ¼ ½1:x1x2 . . .xm1
�

X2 ¼ ½:xm1þ1 . . .xm2
� � 2ÿm1

X3 ¼ ½:xm2þ1 . . .xn� � 2ÿm2 :

An approximation to Xp in the range X1 � X <

X1 þ 2ÿm1 can be performed evaluating the expression

Xp � C0 þ C1X2 þ C2X
2
2 ; ð1Þ

where the coefficientsC0,C1, andC2 are obtained employing
the computer algebra system Maple [25], which performs
minimax approximations using the Remez algorithm. X3 is
not involved in any of these computations, having no effect on
the value of the initial approximation Rf .

The values of these coefficients depend only on the value
of X1, the m1 most significant bits of X, and on the
parameter p. Therefore, C0, C1, and C2 can be stored in look-
up tables of 2m1 input values.2

Apart from the table look-up, the quadratic polynomial
(1) has to be efficiently evaluated. There are two main
problems to be overcome: the squaring (X2

2) and the two
multiplications plus two additions to be computed. Rather
than having a multiplier to compute the squaring function,
some important properties can be used to significantly
reduce the amount of area of the resulting unit and its
associated delay. The techniques employed to obtain this
area and delay reduction are considering the leading zeros
of X2, rearranging the matrix of partial products, and
truncating this matrix within the error bounds. These
strategies allow the achievement of lower delays and of a
total area slightly over half of the area of the corresponding
multiplier unit [20]. For the computation of the quadratic
polynomial, we propose employing a unified multioperand
accumulation tree. The inputs of this adder are the partial
products of both C1X2 and C2X

2
2 , plus the coefficient C0.

Signed-digit radix 4 (SD-4) representation [14] of the multi-
plier operands is employed to reduce the number of partial
products to be accumulated.

2.1.1 Error Computation

The precision of the initial estimates obtained by computing
the second-degree minimax approximation can be calcu-
lated taking into account the two main error sources: the
error in the minimax approximation itself (�approx) and the
error due to the employment of finite arithmetic in the
computation of the quadratic polynomial. The error in the
initial approximation is:

�Rf
� �approx þ �C0

þ �C1
X2 þ �C2

X2
2

þ jC1jmax�X2
þ jC2jmax�X2

2
:

Since the error due to the finite wordlength of the
coefficients is obtained as a result of the Maple program
implementing our method [20]:

�0approx ¼ �approx þ �C0
þ �C1

X2 þ �C2
X2

2 ;

therefore:

�Rf
� �0approx þ jC1jmax�X2

þ jC2jmax�X2
2
:

The minimum value of m1 that allows the achievement
of the target precision (�Rd

< 2ÿ30 and �Rs
< 2ÿ29) is m1 ¼ 9

for both cases. Once this value has been set, the minimax
approximation is computed by employing Maple, minimiz-
ing the wordlengths of the coefficients C0, C1, and C2 within
the error bounds.

The wordlength of the coefficients is 30, 20, and 12 bits,
respectively, when computing the reciprocal approxima-
tion, while 29, 18, and 10 bits when computing the inverse
square root. Therefore, the bus sizes have to be set to 30, 20,
and 12 bits. The size of the tables to be employed for the
reciprocal computation is 29 � ð30þ 20þ 12Þ ¼ 31Kb, i.e.,
less than 4KB. For the inverse square root computation,
since the input operand X is in the range 1 � X < 4, two
sets of tables are needed, resulting in a table size of
2� 29 � ð29þ 18þ 10Þ ¼ 57Kb, i.e., about 7KB. The total
table size is therefore of 31þ 57 ¼ 88Kb, i.e., 11KB.

The target precision in the worst case (reciprocal
approximation, with jC1jmax ¼ jC2jmax ¼ 1) sets a minimum
value both of m2 and of the position j where the squaring
operation X2

2 is truncated [20]. These values are m2 ¼ 33,
which makes X2 to have a wordlength of m2 ÿm1 ¼ 24 bits
and j ¼ 34, which means that no bits of X after the position
with weight 2ÿ25 are required for the squaring computation.
The wordlength of X2

2 will therefore be 16 bits.
In spite of the fact that the wordlengths of the coefficients

C1 and C2 are shorter than those of X2 and X2
2 , respectively,

we employ these values as multipliers in the partial product
generation for various reasons: The most important one is
that the assimilation of X2

2 from CS to binary representation
can be avoided and substituted by a CS to SD-4 recoding; it
is also interesting that the recoding of X2 from binary to
SD-4 representation can be performed in parallel with the
squaring operation and the table look-up, introducing no
extra delay in the critical path. The size of the fused
accumulation tree remains the same, regardless of which
values are employed as multipliers and which ones as
multiplicands.

The total number of partial products to be accumulated
is 21 (eight from the C2X

2
2 product, 12 from C1X2, plus the

independent coefficient C0), which causes the multioperand
adder tree to have four levels of carry-save adders, as
shown in Fig. 1, with a total delay of

taccum tree ¼ tpp gen þ t3:2 CSA þ 3� t4:2 CSA;

with tpp gen the delay of the partial product generation stage.
The result is provided in CS representation.

2.2 Modified Reciprocal/Division Goldschmidt
Algorithm

Assume two n-bit inputs Y and X satisfying 1 � Y ;X < 2.
The Goldschmidt algorithm [3] for computing the division
operation (Z ¼ Y =X) consists of finding a sequence
K1; K2; K3; . . . such that

ri ¼ XK1K2 . . .Ki ! 1

and, therefore,

PI~NNEIRO AND BRUGUERA: HIGH-SPEED DOUBLE-PRECISION COMPUTATION OF RECIPROCAL, DIVISION, SQUARE ROOT, AND INVERSE... 1379

2. m1 ¼ 9 and m2 ¼ 33 in this case, as will be shown in the error
computation section.

zi ¼ YK1K2 . . .Ki ! Y =X:

The reciprocal (Z ¼ 1=X) can be computed as a specific

case of division:

zi ¼ K1K2 . . .Ki ! 1=X:

The high accuracy (30 bits) of the first factor K1 ¼ Rd,

obtained by employing the second-degree minimax approx-

imation, guarantees that a single Goldschmidt iteration

suffices to obtain double-precision results. This is due to the

fact that the error �i on the iteration i follows the quadratic

relation [3]:

�i ¼ XY �2iÿ1

for the division operation.
Our method for computing reciprocal and division

operations consists of a reorganization of the steps to be

performed in the traditional Goldschmidt algorithm and

can be summarized as follows:

. Obtaining a seed value Rd ¼ K1 by performing a
second-degree minimax approximation of the reci-
procal (1=X̂X). Since Rd has an accuracy of 30 bits,
�Rd

< 2ÿ30.
. Computing Gd ¼ RdY . For the division computation,

z1 ¼ Gd, while z1 ¼ Rd when computing the recipro-
cal operation.

. Computing Vd ¼ 1ÿRdX. This value is guaranteed
to be bounded by jVdj � 2ÿ29. Note that Gd and Vd
can be computed in parallel.

. Computing Z ¼ z2 ¼ z1K2. Since K2 ¼ 1þ Vd, Z ¼
Gdð1þ VdÞ ¼ Gd þGdVd for division and Z ¼ Rdð1þ
VdÞ ¼ Rd þRdVd when computing the reciprocal.

After performing the last computation, the maximum

absolute error �Z is proportional to �2Rd
, but also includes the

error (�comp) due to the employment of finite arithmetic in

the computation of the steps of our method:

�Z ¼ XY �2Rd
þ �comp: ð2Þ

Let �Gt, �V t, and �Zt be the errors introduced by

employing units with wordlength t. The value of t has to

be set so that double-precision results accurate to 1 ulp are

guaranteed. The value of �comp is:

�comp ¼ �Gt þRdY �V t þ Y �V t�Rd
þX�Gt�Rd

þ �V t�Gt þ �Zt:
ð3Þ

Since the range of the results for the division operation is

0:5 < Z < 2, the error in the final result must be bounded by:

�Z ¼ XY �2Rd
þ �Gt þRdY �V t þ Y �V t�Rd

þX�Gt�Rd

þ �V t�Gt þ �Zt < 2ÿ54:
ð4Þ

Assuming that Z is obtained in the last step after

performing rounding to the nearest of the final result

(�Zt � 2ÿ55), the target precision can only be met, according

to (4), if �Gt � 2ÿ57 and �V t � 2ÿ57, with �Rd
< 2ÿ30:

�Z ¼ XY �2Rd
þ �Gt þRdY �V t þ Y �V t�Rd

þX�Gt�Rd

þ �V t�Gt þ �Zt
< 2ÿ58 þ 2ÿ57 þ 2ÿ56 þ 2ÿ86 þ 2ÿ86 þ 2ÿ114 þ 2ÿ55 < 2ÿ54:

The bounds on �Gt and �V t can be met by employing
truncation on the multipliers which carry out with Gd and
Vd computation if a t ¼ 57-bit wordlength is employed.
Another alternative is employing rounding to nearest and a
t ¼ 56-bit wordlength, which guarantees the same bound
on the errors.

2.3 Modified Square Root/Inverse Square Root
Goldschmidt Algorithm

Assume an n-bit input operand X satisfying 1 � X < 2. In
this case, a sequence K1; K2; K3; . . . should be found such
that

zi ¼ K1K2 . . .Ki ! 1=
ffiffiffiffiffi
X
p

and, therefore,

zi ¼ XK1K2 . . .Ki !
ffiffiffiffiffi
X
p

:

We follow the same strategy in this case as that
employed for the reciprocal/division computation: provid-
ing an accurate initial approximation obtained by perform-
ing a second-degree minimax approximation and then
performing a single Goldschmidt iteration to obtain the
double-precision results Z ¼

ffiffiffiffiffi
X
p

or Z ¼ 1=
ffiffiffiffiffi
X
p

. This is
possible due to the quadratic convergence of the Gold-
schmidt algorithm [3]:

�i ¼ 3
ffiffiffiffiffi
X
p

�2iÿ1 þX�3iÿ1

� �
=2

for inverse square root computation and

�i ¼ 3X
ffiffiffiffiffi
X
p

�2iÿ1 þX2�3iÿ1

� �
=2

for square root computation.
In the traditional Goldschmidt algorithm for square

root/inverse square root computation, both the seed value
K1 ¼ 1=

ffiffiffiffiffî
XX

p
and its square 1=X̂X are required. Two look-up

tables can be employed to obtain these values, but these
tables must be designed so that each table look-up value
1=X̂X corresponds at full target precision to the square of the
table look-up value K1 (this constraint can only be met by
direct table look-up, excluding the possibility of employing
table-based methods). Another way of obtaining these
values is employing a table-driven method for K1 (which
results in a very important area reduction regarding direct
table look-up) and then computing the squaring operation
Rd ¼ ðK1Þ2.

Instead of employing a look-up table or a specialized
squaring unit, we have arranged the sequence of computa-
tions to be performed so that the hardware employed for
the reciprocal/division computation can be reutilized for
the square root/inverse square root computation.

Summarizing, our method consists of performing the
following steps:

. Obtaining Rs ¼ K1 by performing a second-degree

minimax approximation of the inverse square root

1380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

(1
ffiffiffiffiffî
XX

p
). Since Rs has an accuracy of 29 bits,

�Rs
< 2ÿ29.

. Computing Gs ¼ RsX. For the square root computa-
tion, z1 ¼ Gs, while, for the inverse square root,
z1 ¼ Rs.

. Computing Vs ¼ 1ÿRsGs. This value is guaranteed
to be bounded by jVsj � 2ÿ28. In this case, Gs and Vs
obviously cannot be computed in parallel since Gs is
employed in the computation of Vs. The employment
of Gs in Vs computation allows us to save an
important amount of area since neither a squaring
unit nor another set of initial look-up tables are
necessary to obtain 1=X̂X.

. Computing Z ¼ z2 ¼ ð1þ Vs
2 Þz1. For the square root

computation, this becomes

Z ¼ Gsð1þ Vs=2Þ ¼ Gs þGsVs=2;

while, for the inverse square root, we have

Z ¼ Rsð1þ Vs=2Þ ¼ Rs þRsVs=2:

The worst case in the error computation corresponds to
the inverse square root operation. Since the output range for
this function is 0:5 < Z � 1, the maximum absolute error �Z
is bounded in this case by:

�Z ¼
3
ffiffiffiffiffi
X
p

�2Rs

2
þ
X�3

Rs

2
þ �Gt

2X
þ �V t

2
ffiffiffiffiffi
X
p �Rs

�V t
2
þ
�Gt�

2
Rs

2

þ �Rs
�Gtffiffiffiffiffi
X
p þ �Zt < 2ÿ54:

ð5Þ

In this expression, the effect of employing a finite
wordlength datapath has already been taken into account.
Since the values of �Zt � 2ÿ55, �Gt � 2ÿ57, and �V t � 2ÿ57

have been set by the error bounds in the division and
reciprocal computation, the only bound to be determined
here is �Rs

. According to (5), a maximum absolute error in
the initial approximation of �Rs

< 2ÿ29 suffices for guaran-
tees the achievement of double-precision results with an
error of less than 1 ulp for the four functions to be
computed.

�Z ¼
3
ffiffiffiffiffi
X
p

�2Rs

2
þ
X�3

Rs

2
þ �Gt

2X
þ �V t

2
ffiffiffiffiffi
X
p þ �Rs

�V t
2
þ
�Gt�

2
Rs

2

þ �Rs
�Gtffiffiffiffiffi
X
p þ �Zt

< 2ÿ57 þ 2ÿ87 þ 2ÿ58 þ 2ÿ58 þ 2ÿ87 þ 2ÿ116 þ 2ÿ86 þ 2ÿ55

< 2ÿ54:

3 ARCHITECTURE

In this section, we propose an unfolded architecture for the
computation of reciprocal and division operations and
another unfolded architecture for the computation of all four
functions: reciprocal, division, square root, and inverse
square root. The design of both architectures is based on the
method and error analysis presented in the previous section.

Pipelining could be applied to both methods, resulting
in the corresponding pipelined architectures. Furthermore,
both methods could also be implemented in a pipelined

multiplier-based processor, such as the AMD-K7 or
similar [17].

The final results produced are guaranteed to be accurate to
1 ulp. As happens to other multiplicative-based methods, it is
not possible to directly obtain exactly rounded results
without an important overhead (an error less than 2ÿ2n or
2ÿ3n should be provided, for n-bit operands, depending on
the function to be computed). Another alternative is to
produce a result accurate to 1 ulp (as we guarantee) and
determine the exactly rounded value by computing the
corresponding remainder. This strategy is employed by the
AMD-K7 [17], computing rem ¼ X � Z ÿ Y for the division
operation and rem ¼ Z � Z ÿX for the square root. The
sign of rem, together with the information on the rounding
mode to be employed, determines the rounding direction
and guarantees the computation of exactly rounded IEEE
double-precision results.

3.1 Reciprocal/Division Unit

The steps to be performed for computing division and
reciprocal operations can be summarized as:

Rd ¼ 2nd degree approxð1=XÞ
Gd ¼ RdY

Vd ¼ 1ÿRdX

Z ¼ Gf þGfV ;

where Gd and Vd can be computed in parallel and Gf ¼ Gd

when computing division operation, while Gf ¼ Rd when
computing the reciprocal 1=X.

Fig. 2 shows the block diagram of the unit implementing
this algorithm. The m1 ¼ 9 most significant bits of the input
operand X are employed to address the second-degree
approximation look-up tables. The squaring operation is
performed in parallel with the table look-up and all partial
products of polynomial (1) are accumulated with a multi-
operand adder, whose output Rd is in CS representation.

The 30-bit operand Rd is employed as a multiplier in the
computation of both Gd and Vd. Therefore, a CS to SD-4
recoding unit is required. When computing the reciprocal
operation, Rd is also employed as an addend and multi-
plicand in the computation of Z, so its two’s-complement
representation is needed. This assimilation to nonredun-
dant representation is carried out by a CPA in parallel with
the CS to SD recoding operation and the computation of Gd

and Vd.
The computation of Gd is carried out by a 30� 53 bit

multiplier unit with SD representation for the multiplier
operand and two’s-complement rounded to nearest output.
Nonredundant representation is used because Gd is going
to be employed as addend and multiplicand in the
multiply-add unit which computes Z. The computation of
Vd is carried out by a 30� 53 bit multiply-complement unit,
also with an SD representation for the multiplier and a
two’s-complement output. Since jVdj � 2ÿ29, it has at least
29 leading zeros (or ones), only one of them needed as sign
bit. Therefore, Vd has only 56ÿ 28 ¼ 28 significant bits and
an important amount of area can be reduced by omitting the
29 most significant columns of the multiplication matrix.
Besides, the short wordlength of Vd allows the employment
of a smaller multiply-add unit for the computation of Z.

PI~NNEIRO AND BRUGUERA: HIGH-SPEED DOUBLE-PRECISION COMPUTATION OF RECIPROCAL, DIVISION, SQUARE ROOT, AND INVERSE... 1381

A 56-bit 2:1 multiplexer is employed to select between Gd

and Rd. When computing division, Gf should be chosen as
Gd, so the control signal ct1 has to be set to the appropriate
value (ct1 ¼ 0), while ct1 ¼ 1 sets Gf ¼ Rd and the
computed operation is Z ¼ 1=X.

The computation of Z is carried out by a 28� 56þ 56 bit
multiply-add unit with two’s complement inputs and
output. The recoding from nonredundant representation
to SD-4 is performed internally in this unit. The output of
this unit is the 53-bit final result Z ¼ Y =X, when computing
division, or Z ¼ 1=X, when computing the reciprocal
operation.

There are two main paths in this architecture since Gd

and Vd are computed in parallel. Anyway, as both units are
30� 53 bit multipliers, the critical path consists of the
second-degree approximation look-up tables, the fused
accumulation tree with CS result, the CS to SD recoding
unit, a 30� 53 bit multiplier (Gd computation), a 2:1
multiplexer, and a 28� 56þ 56 bit multiply-add unit
(Z computation).

3.2 Reciprocal/Division/Square Root/Inverse
Square Root Unit

The steps to be performed for computing the square root or
the inverse square root operation with our method can be
summarized as:

Rs ¼ 2nd degree approxð1=
ffiffiffiffiffi
X
p
Þ

Gs ¼ RsX

Vs ¼ 1ÿRsGs

Z ¼ Gf þGfVs=2;

where Gs and Vs obviously cannot be computed in parallel

and Gf ¼ Gs when computing the square root operation,

while Gf ¼ Rs when computing the inverse square root

1=
ffiffiffiffiffi
X
p

.
The modified Goldschmidt iteration for square root and

inverse square root computation has been designed so that

it involves similar steps as the ones required in the

reciprocal and division computation. The logic blocks

employed in the previously proposed architecture can thus

be reutilized in a complete architecture computing the four

operations. A diagram block of this architecture (i.e., the

architecture that deals with the computation of reciprocal,

division, square root, and inverse square root operations) is

shown in Fig. 3, together with a summary of the control

signals encoding for an appropriate behavior of the unit.

Table 1 shows the operations performed in each logic block,

depending on the function to be computed.

The second-degree approximation of the inverse square

root (Rs ¼ 1=
ffiffiffiffiffî
XX

p
) can be computed with the same hard-

ware as that employed for the reciprocal approximation

(Rd ¼ 1=X̂X) by only inserting a new set of look-up tables for

the coefficients, due to the fact that the squaring operation

and the accumulation tree do not depend on the function to

compute and, therefore, can be shared for both computa-

tions. A set of multiplexers must also be inserted at the

inputs of the multioperand adder to select between the

reciprocal and inverse square root approximation coeffi-

cients. The output of the accumulation tree is the

1382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

Fig. 2. Reciprocal/division unit architecture.

SD representation of Rf ¼ Rd or Rf ¼ Rs depending on the

control signal ct0.
The computation of Gs requires a 30� 53 bit multi-

plication, as the one in the reciprocal/division architecture.
Since Rf is selected by ct0 and G ¼ RfH, another multi-
plexer controlled by ct0 is needed to select between H ¼ Y
and H ¼ X as multiplicand operand. The output result is a
56-bit rounded to the nearest value in nonredundant
representation.

A 30� 56 bit multiply-complement unit is required for
the computation of V . For the computation of square root/
inverse square root, Vs ¼ 1ÿRsGs, while, for reciprocal/
division computation, we had Vd ¼ 1ÿRdX. Since Rf ¼ Rd

or Rf ¼ Rs is already selected at the output of the
accumulation tree, it is possible to use the same control
signal ct0 to select between W ¼ X and W ¼ Gs as
multiplicand operand for this unit, as shown in Table 1.

The final 28� 56þ 56 bit multiply-add operation re-

quired for the computation of Z is Z ¼ Gf þGfVs=2 for the

square root/inverse square root computation, while we had

Z ¼ Gf þGfVd for reciprocal/division computation. Since

the computation of V is on the critical path of the new

architecture, the best solution is inserting multiplexers

which select between Gf and Gf=2 as the multiplicand

and addend operand. Gf takes the value of Rf or G,

depending on the control signal ct1, and the input operand

to the unit is selected between Gf or Gf=2, depending on

the control signal ct0. Therefore, as shown in Fig. 3 and

Table 1, the combination of the control signals ct0 and ct1

allows the computation of Z ¼ 1=X, Z ¼ Y =X, Z ¼
ffiffiffiffiffi
X
p

, or

Z ¼ 1=
ffiffiffiffiffi
X
p

.
The critical path of this architecture consists of the

second-degree approximation look-up tables, a multiplexer

to select between reciprocal and inverse square root

approximation coefficients, the fused accumulation tree

with CS result, the CS to SD recoding unit, a 30� 53 bit

multiplier (G computation), a 30� 56 bit multiplier-com-

plement unit (V computation), and a 28� 56þ 56 bit

multiplier-add unit (Z computation). The execution time

of this unit is slower than the one for reciprocal/division

architecture since the computation of V is now included in

the critical path, but the hardware requirements remain

similar due to the reutilization of the main logic blocks for

the new computations.

PI~NNEIRO AND BRUGUERA: HIGH-SPEED DOUBLE-PRECISION COMPUTATION OF RECIPROCAL, DIVISION, SQUARE ROOT, AND INVERSE... 1383

Fig. 3. Reciprocal/division/aquare root/inverse aquare root unit.

TABLE 1
Computations Performed in the Complete Unit Depending on

the Operation

4 EXECUTION TIME AND AREA COST ESTIMATES

AND COMPARISON

In this section, estimates of the execution time and the area

costs of the proposed architectures are presented and a

comparison with some of the most efficient previous

multiplicative-based methods for the computation of

reciprocal, division, square root, and inverse square root

operations is outlined. These estimates are based on a rough

model for the cost and delay of the main logic blocks

employed, taken from [5], [26]. In this model, the unit

employed for the delay estimates is � , the delay of a

complex gate, such as a full-adder, while the area cost

estimates are expressed as a multiple of fa, the area of one

full-adder. The interconnections between logic blocks are

not included in this model. A detailed explanation of the

assumptions made can be found in [19].

Table 2 shows the delay and area estimates for the main

blocks employed in our design and the architectures to be

compared. These logic blocks are conventional multipliers,

look-up tables, the multioperand adder, and the specialized

squaring unit employed in our minimax approximation,

recoding units, multiplexers, and SD adders and multi-

pliers. The conventional multipliers are supposed to

employ SD-4 recoding [14] of the multiplier operand, a

Wallace accumulation tree, and a final CPA assimilation

stage, when needed. The delay estimates for the look-up

tables are taken from a previous model [5] and have been

validated by synthesis results obtained from implementa-

tion using a family of standard gates from the AMS 0:35�m

CMOS library. These logic blocks are usually the most

difficult ones to model since they cannot be easily described

in terms of full-adders.

The actual execution times and hardware requirements

of the compared methods depend both on the technology

employed and on the actual implementation, but, since all

the schemes employ similar logic blocks,3 the relative

values may express a general trend among the different

designs and make a good first-order approximation to the

actual execution times and area cost values.

4.1 Execution Time Estimates

Recalling that the critical path of the unit for reciprocal/

division computation consists of the initial 9-input bit look-

up table, the fused accumulation tree with CS output, a CS

to SD recoding unit, a 30� 53 bit multiplier (Gd computa-

tion), a 2:1 multiplexer, and a 28� 56þ 56 bit multiply-add

unit (Z computation), the execution time can be estimated

as 34:5� , as shown in Fig. 4.
The critical path for the complete unit includes an extra

multiplexer to select between the reciprocal and inverse
square root initial approximations and another 30� 56 bit
multiplication (V computation). Summarizing, this critical
path consists of the initial look-up table, a 2:1 multiplexer,
the fused accumulation tree with CS output, a CS to SD
recoding unit, two 30� 56 bit multipliers, another 2:1
multiplexer, and a 28� 56þ 56 bit multiply-add unit and,
therefore, its execution time can be estimated as 45� , as
shown in Fig. 4.

4.2 Area Cost Estimates

Recalling the size of the look-up tables and the combina-
tional logic blocks employed in the architecture implement-
ing our method for the computation of all four functions
(reciprocal/division/square root/inverse square root), we
can summarize its hardware requirements as two 9-input
bit sets of look-up tables (initial approximation), a specia-
lized squaring unit, a fused accumulation tree, two 30� 56
bit multipliers, and a 28� 56þ 56 bit multiply-add unit.
One of the 30� 56 bit multipliers (the multiply-complement
unit employed for V computation) can have an important
area reduction (about 30 percent) by taking advantage of the
bound jV j � 2ÿ28. This property allows the elimination of
the 28 most significant colums of the multiplication matrix.

According to the estimates given in Table 2, the total area
required by our method can be estimated as around
7; 345fa, with a contribution of 3; 080fa from the 11KB
look-up tables and of 4; 265fa from the combinational logic
blocks employed, as shown in Fig. 5.

4.3 Comparison with Other Methods

Table 3 shows the execution time and area cost estimates
for the following methods: Newton-Raphson traditional
algorithm (NR), Wong and Goto (WG) [26], Ito, Takagi,
and Yajima (ITY) [9], Ercegovac, Muller, Lang, and
Tisserand (EMLT) [5], and AMD-K7 implementation
(AMD) [17], together with the estimates for our archi-
tectures. All these methods provide results accurate to 1
ulp. For obtaining exactly rounded results, a remainder
should be computed.4 Fig. 4 details the execution time

1384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

TABLE 2
Area and Delay Estimates for the Main Logic Blocks Employed

in the Compared Architectures (Explained in [19])

3. All compared methods employ a similar number of tables and
multipliers of similar sizes. Therefore, comparison results are relatively
technology-independent, and the impact of considering interconnections
between blocks can be neglected.

4. The AMD-K7 actual implementation includes this remainder
computation and final rounding stage. For comparison reasons, the
estimates shown here do not include both features and a nonpipelined
(unfolded) architecture is considered.

estimates for these methods, while Fig. 5 gives an

explanation of the area cost ones.

In the NR algorithm that we are considering for

comparison, bipartite tables [2] are employed to obtain a

seed value and then two NR iterations are performed. The

WG method employs a polynomial approximation com-

bined with table look-up to obtain double-precision results.

The ITY method employs a linear approximation to obtain

the initial value and a single iteration of a third-degree

convergent algorithm is performed, involving three 56� 56

bit multiplications. In ELMT, small multipliers (15� 15 and

15� 45 bit multipliers) are employed, after an initial

reduction stage, to compute the functions. The main

drawback of this method is the size of the required look-

up tables, which makes its hardware requirements prohi-

bitive (its area cost is about three times bigger than the other

ones). The AMD-K7 method is an implementation of the

traditional Goldschmidt algorithm: It employs bipartite

tables to obtain the initial approximation and then

computes two Goldschmidt iterations to calculate the

double-precision results. A detailed description of any of

these methods can be found in [19].

Hardware reutilization is a strategy employed for some

of the previous methods (NR, WG, ITY, and AMD), and can

also be employed for our algorithm, allowing a significant

reduction in the total area at the expense of increasing the

PI~NNEIRO AND BRUGUERA: HIGH-SPEED DOUBLE-PRECISION COMPUTATION OF RECIPROCAL, DIVISION, SQUARE ROOT, AND INVERSE... 1385

Fig. 4. Execution time estimates for the compared methods.

control logic. G, V , and Z computations can be carried out

by a single 30� 56þ 56 bit multiply-add unit if the inputs

of this unit are correctly selected by a set of extra control

signals. Thus, if this multiplier computes the generic

operation A�Bþ C:

G ¼ RfH;

V ¼ 1ÿRfW;

Z ¼ Gf þGfV

can be computed, making A ¼ Rf , B ¼ H, and C ¼ 0 for G

computation, A ¼ ÿRf , B ¼W , and C ¼ 1 for V computa-

tion, and A ¼ V , B ¼ Gf , and C ¼ Gf for Z computation.

This strategy leads to a reduced total area of about 5; 030fa

(3; 080fa for the look-up tables, 600fa for the accumulation

tree and the squaring unit of the minimax approximation,

and 1; 350fa for the reused 30� 56þ 56 multiply-add unit),

as shown in Fig. 5.
Our method presents a speed-up of about 25 percent

over the previous methods when computing the reciprocal

function. The speed-up increases to about 40 percent when

computing division, due to the fact that most methods

require an extra multiplication for division computation,

while our method and WG provide the division result with

the same execution time as for the reciprocal computation.

Our execution times for square root and inverse square root

1386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

Fig. 5. Area estimates for the compared methods.

TABLE 3
Execution Times and Area Cost Estimates

for the Compared Methods

computation are also faster than the previous ones (with the
only exception of ELMT, but the area requirements of this
method are prohibitive). AMD is the method with lower
hardware requirements (taking into account that it employs
an existing multiplier, as NR and ITY). However, our
method has a similar area cost, especially if we employ a
single multiply-add unit to compute G, V , and Z.

As has been said, the actual speed-ups and area ratios
depend on the technology employed and the implementa-
tion, but the estimated values presented here are reliable
approximations since all compared methods employ similar
logic blocks and look-up tables of similar sizes (except for
ELMT). This means that the speed-ups obtained come
directly from the reduction on the latency achieved by
performing a single Goldschmidt iteration.

5 CONCLUSION

A new method for the efficient computation of double-
precision floating-point reciprocal, division, square root,
and inverse square root functions has been presented in this
paper. This method employs a second-degree minimax
polynomial approximation, with table look-up, a specia-
lized squaring unit, and a multioperand adder, to obtain an
accurate (around 30 bits) initial approximation Rf of the
reciprocal and the inverse square root values. The specia-
lized squaring unit and the accumulation tree are shared for
the computations of the reciprocal (Rd) and inverse square
root (Rs) initial approximations. The size of the employed
look-up tables is 11KB.

After obtaining Rf , a modified Goldschmidt iteration is
performed to obtain the double-precision result. A single
iteration is required, due to the high accuracy of the initial
approximation, which significantly reduces the latency of
the algorithm. The modified Goldschmidt iterations for
computing reciprocal/division and for computing square
root/inverse square root have been combined to allow the
design of a single architecture efficiently computing the
four operations. A faster architecture computing only
reciprocal and division has also been proposed.

A rough model for the delay and area cost of the main
logic blocks employed has been outlined and the execution
time and area costs for both architectures have been
estimated: 34:5� for reciprocal/division computation and
45� for square root/inverse square root computation. The
total amount of area required for the complete architecture
is about 5; 030fa when employing hardware reutilization
strategies.

For comparison purposes, other efficient methods for the
computation of these functions have been described and
their execution times and area costs have also been
estimated. Comparison results show that our method
achieves an important speed-up over previous methods,
with similar hardware requirements.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Jean-Michel Muller for his
fundamental contribution to the development of the
second-degree minimax approximation method. This work
was supported by the Secretarı́a Xeral de Investigación e

Desenvolvemento de Galicia (Spain) under contract

PGIDT99PXI20602B.

REFERENCES

[1] J. Cao and B. Wei, “High-Performance Hardware for Function
Generation,” Proc. 13th Symp. Computer Arithmetic, pp. 184-188,
1997.

[2] D. DasSarma and D.W. Matula, “Faithful Bipartite ROM Recipro-
cal Tables,” Proc. 12th Symp. Computer Arithmetic, pp. 17-28, 1995.

[3] M.D. Ercegovac, L. Imbert, D.W. Matula, J.M. Muller, and G. Wei,
“Improving Goldschmidt Division, Square Root and SquareRoot
Reciprocal,” IEEE Trans. Computers, vol. 49, no. 7, pp. 759-763, July
2000.

[4] M.D. Ercegovac and T. Lang, Division and Square Root: Digit
Recurrence Algorithms and Implementations. Kluwer Academic,
1994.

[5] M.D. Ercegovac, T. Lang, J.M. Muller, and A. Tisserand,
“Reciprocation, Square Root, Inverse Square Root, and Some
Elementary Functions Using Small Multipliers,” IEEE Trans.
Computers, vol. 49, no. 7, pp. 628-637, July 2000.

[6] P.M. Farmwald, “High Bandwidth Evaluation of Elementary
Functions,” Proc. Fifth IEEE Symp. Computer Arithmetic, pp. 139-
142, 1981.

[7] M.J. Flynn, “On Division by Functional Iteration,” IEEE Trans.
Computers, vol. 19, pp. 702-706, 1970.

[8] D. Harris, S. Oberman, and M. Horowitz, “SRT Division
Architectures and Implementations,” Proc. IEEE 13th Int’l Symp.
Computer Arithmetic (ARITH13), pp. 18-25, 1997.

[9] M. Ito, N. Takagi, and S. Yajima, “Efficient Initial Approximation
and Fast Converging Methods for Division and Square Root,”
Proc. 12th Symp. Computer Arithmetic (ARITH12), pp. 2-9, 1995.

[10] V.K. Jain, S.A. Wadecar, and L. Lin, “A Universal Nonlinear
Component and its Application to WSI,” IEEE Trans. Components,
Hybrids, and Manufacturing Technology, vol. 16, no. 7, pp. 656-664,
1993.

[11] I. Koren, “Evaluating Elementary Functions in a Numerical
Coprocessor Based on Rational Approximations,” IEEE Trans.
Computers, vol. 39, pp. 1030-1037, 1990.

[12] H. Kwan, R.L. Nelson, and E.E. Swartzlander Jr., “Cascaded
Implementation of an Iterative Inverse-Square Root Algorithm
with Overflow Lookahead,” Proc. 12th Symp. Computer Arithmetic,
pp. 114-123, 1995.

[13] T. Lang and P. Montuschi, “Very-High Radix Square Root with
Prescaling and Rounding and a Combined Division/Square Root
Unit,” IEEE Trans. Computers, vol. 48, no. 8, pp. 827-841, Aug. 1999.

[14] C.N. Lyu and D.W. Matula, “Redundant Binary Booth Recoding,”
Proc. 12th Symp. Computer Arithmetic, pp. 50-57, 1995.

[15] J.M. Muller, Elementary Functions. Algorithms and Implementation.
Birkhauser, 1997.

[16] S. Oberman and M.J. Flynn, “Implementing Division and Other
Floating Point Operations: A System Perspective,” Scientific
Computing and Validated Numerics, pp. 18-24, 1996.

[17] S.F. Oberman, “Floating Point Division and Square Root Algo-
rithms and Implementation in the AMD-K7 Microprocessor,”
Proc. 14th Symp. Computer Arithmetic (ARITH14), pp. 106-115, Apr.
1999.

[18] S.F. Oberman and M.J. Flynn, “Design Issues in Division and
Other Floating Point Operations,” IEEE Trans. Computers, vol. 46,
no. 2, pp. 154-161, Feb. 1997.

[19] J.A. Piñeiro and J.D. Bruguera, “High-Speed Double-Precision
Computation of Reciprocal, Division, Square Root and Inverse
Square Root,” technical report, http://www.ac.usc.es, 2001.

[20] J.A. Piñeiro, J.D. Bruguera, and J.M. Muller, “Faithful Powering
Computation Using Table Look-Up and a Fused Accumulation
Tree,” Proc. IEEE 15th Int’l Symp. Computer Arithmetic (ARITH15),
pp. 40-47, 2001.

[21] M.J. Schulte and J.E. Stine, “Symmetric Bipartite Tables for
Accurate Function Approximation” Proc. 13th Symp. Computer
Arithmetic (ARITH13), pp. 175-183, 1997.

[22] P. Soderquist and M. Leeser, “Area and Performance Tradeoffs in
Floating Point Divide and Square Root Implementations,” ACM
Computer Surveys, pp. 518-564, 1996.

[23] N. Takagi, “Powering by a Table Look-Up and a Multiplication
with Operand Modification,” IEEE Trans. Computers, vol. 47,
no. 11, pp. 1216-1222, Nov. 1998.

PI~NNEIRO AND BRUGUERA: HIGH-SPEED DOUBLE-PRECISION COMPUTATION OF RECIPROCAL, DIVISION, SQUARE ROOT, AND INVERSE... 1387

[24] P.T.P. Tang, “Table Look-Up Algorithms for Elementary Func-
tions and their Error Analysis,” Argonne Nat’l Laboratory Report,
MCS-P194-1190, Jan. 1991.

[25] Waterloo Maple Inc., Maple V Programming Guide, 1998.
[26] W.F. Wong and E. Goto, “Fast Hardware-Based Algorithms for

Elementary Function Computations,” IEEE Trans. Computers,
vol. 43, no. 3, pp. 278-294, Mar. 1994.

José-Alejandro Piñeiro received the BSc
degree in 1998 and the MSc degree in 1999,
both in physics (electronics) from the University
of Santiago de Compostela, Spain. He is
currently a PhD candidate in the Department of
Electronic and Computer Engineering at the
University of Santiago de Compostela. His
research interests are in the areas of computer
arithmetic, VLSI design, and computer graphics.
He is a student member of the IEEE and the

IEEE Computer Society.

Javier Dı́az Bruguera received the BSc
degree in physics and the PhD degree from
the University of Santiago de Compostela,
Spain, in 1984 and 1989, respectively. Cur-
rently, he is a professor in the Department of
Electronic and Computer Engineering at the
University of Santiago de Compostela. His
research interests are in the areas of
computer arithmetic, VLSI design for signal
and image processing, and parallel architec-

tures. He is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 12, DECEMBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

