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Analysis of Rounding Methods in Floating-Point Arithmetic
DAVID J. KUCK, MEMBER, IEEE, DOUGLASS S. PARKER, JR., AND AHMED H. SAMEH

Abstract-The error properties of floating-point arithmetic
using various rounding methods (including ROM rounding, a new

scheme) are analyzed. Guard digits are explained, and the rounding
schemes' effectiveness are evaluated and compared.

Index Terms-Floating-point arithmetic, guard digits, ROM
rounding, rounding methods.

I. INTRODUCTION
EXISTING computer arithmetic units use various

methods to reduce floating-point numbers to shorter
precision approximations. The standard methods in use

are 1) ordinary Truncation (or "chopping"); 2) ordinary
Rounding. Other methods have been proposed for their
cost-effectiveness or for their error-resistance properties,
e.g., 3) Jamming (equivalent to truncation except that the
lowest order bit of the result mantissa is forced to a 1); 4)
R*-rounding (equivalent to rounding, except when the
digits to be rounded away have bit values 10 000 - - -, in
which case Jamming is used).

This paper addresses the problem of analyzing the
arithmetic behavior of these and other methods when used
in floating-point computation. The paper is an outgrowth
of a recent study [6] comparing these methods withROM
rounding, an attractive alternative both from a standpoint
of cost and error resistance. With ROM rounding the (say)
7 low-order bits of the significant part of the mantissa and
the highest bit to be rounded away, together form an 8-bit
input ("address") to a ROM or PLA. The output of the
ROM/PLA is the 7-bit rounded value of these bits, except
in the threshold case when all 7 low bits of the significant
part of the mantissa are 1-the case in which rounding
overflow might occur-rounding is not performed. This
is illustrated in Fig. 1.
Note that ROM rounding provides the advantages of

rounding (255 times out of 256 for the 8-bit scheme just
mentioned) without the timing or hardware overhead of
the traditional additional Rounding adder stage. It is also
an inexpensive scheme to implement in modern tech-
nologies. Thus, from an engineering standpoint, ROM
rounding is an appealing way to build rounded arithmetic
into floating-point units where timing and/or gate limi-
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tations already exist in the design. If R (x) denotes the
ROM-rounded value of the number x, then we have the
relationships R (x) < R(y) iff x < y, and R(-x) = -R (x)
if floating-point numbers are represented in the usual
sign/magnitude format. However, although the method
passes these two elementary tests, we must point out that
the "glitch" caused by the threshold case is mathematically
unpleasant. As a result, we cannot recommend ROM
rounding to the designer of a highest quality arithmetic
unit because it will fail, in a few cases, to satisfy arithmetic
identities like the ones provable for pure Rounding [13, sec.
4.2.2]. Nevertheless it seems to perform well and should
be useful in machines where pure Rounding or R*-
rounding is not feasible. It could certainly be an im-
provement over some of the methods developed to avoid
rounding carry-out on most existing computers; very very
few machines implement- rounding correctly.

It should be noted that an extra bit could be read from
the ROM to distinguish the 1 ... 1 (threshold) case from
all others. In this one case, the adder could be used for
standard Rounding. We could therefore achieve Rounding
at high speed in most cases (255 times out of 256 for the
scheme just mentioned), and at ordinary Rounding speed
in one case. Similarly, by using a sticky bit (see below) we
could achieve fast R*-rounding via a ROM. Of course,
handling the 1 ... 1 case would cause additional logic de-
sign complexities over ROM-rounding, as previously de-
fined and discussed throughout the paper.
Whereas previously we were concerned with examining

the effectiveness of ROM-rounding, this paper will con-
centrate more on the evaluation of any given rounding
method's expected performance in floating-point com-
putation. Generally speaking, a rounding method will
perform well if the magnitude of its rounding errors are
small and if it is unbiased, i.e., does not favor errors of any
particular sign. (The latter condition is complicated, as will
be shown in Section IV.) This paper examines the methods
under consideration with respect to three indicators of
rounding scheme effectiveness, viz., 1) average relative
representation error (ARRE); 2) rounding scheme bias; 3)
statistical tests in actual computation. The first two of
these are "static" performance metrics while the third is
"dynamic;" logically, static indicators should predict dy-
namic error performance to some degree.

II. REPRESENTATION ERROR

A theoretical metric of rounding scheme effectiveness
is the ARRE incurred by the scheme in representing real
numbers in floating-point format. McKeeman [8] and later
Cody [2] used this metric for comparison between base 2,
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4, and 16 arithmetic systems. They defined the ARRE of
a t-digit, base A, sign-magnitude system using rounding
by

ARRE(t4)= ( )(t) (2.1)
4xlxn 41n3

where (1/x In ,B), the reciprocal density, has been used
because of the logarithmic law (of leading digits in float-
ing-point computation, see e.g., [11]) and

average (IRound(x,t)-xl)

4x x

is used as an approximation to the absolute value of the

relative error

I 5(x)l = Round(x,,t)-x

Here Round(x,t) is the value of x rounded to t radix-fl

digits. With this in mind, we can redefine for any rounding
scheme R(x,t)

ARRE(t,O) = S; 16(X)1 x (2.2)
x ln 13'

This quantity was evaluated for each of the five rounding

schemes (via a 20 000-point Monte Carlo integration) using
A - 16 and various values of t. The results agreed excel-
lently with the theoretical values for Truncation and
Rounding.
Tsao [11] gives the probability densities for 6 as

PTruncation(e = 60)

Ia-1(3- 1)/ln A,

{(½1_t-1)/1n1,

PRounding(( = 60)

It-1(2 - 1)/lnA,
( _

t-1)I/n A,

_*-t<(60_ 0

-#IB-t < l8O < _:-t

lbol - 3-t/2

O-t/2< 1601< 1-ti

(9 -q2

Changing these to reflect I6I and integrating we expect

ARRE(t AdTruncation 2-1 ln d
2 In 1

ARRE(t,13Rounding 4 ln

(2.5)

(2.6)

Note that Rounding is optimal for ARRE since Roun-
ding(x,t) is always as close to x as possible in a t-digit
system.
The Monte Carlo results coincided well with (2.5) and

(2.6), showing that ARRE[Rounding] ARRE[R*]
ARRE[8-bit ROM] and ARRE[Truncation] = ARRE-
[Jamming], so that ARRE effectively dichotomizes the
methods under consideration. The 8-bit ROM got ARRE
values only marginally worse (third significant digit) than
Rounding. This is reasonable not only because the two are
identical 255 times out of 256, but also because the one case

in which they differ (inputs to the ROM are all 1) has the
lowest individual relative error. Clearly, rounding with a

smaller ROM length will give a larger ARRE value.
Note that because of the glitch in ROM-rounding,

however, the worst case relative error bounds dichotomize
the methods differently: WCB[rounding] = WCB[R*-
rounding] = 01-1t, and WCB[ROM-rounding] =

WCB[Truncation] = WCB[Jamming] = fl1lt. For this
reason, we cannot recommend ROM-rounding to the nu-

merical analyst interested in a priori error bounds. The
point is, though, that the worst case bound is rarely
reached, particularly when the ROM length grows large.

III. GUARD DIGITS
' t'LI7 Before we can approach the subject of bias, an under-

standing of guard digits is needed. Guard digits are tem-
porary low-order registers in the floating-point adder
hardware that hold (at least some of) the digits of the
aligned operand when they are shifted right. As long as

alignment shift distance does not exceed the number of
guard digits, a single-precision adder will give the same

/2. results obtainable with an infinitely long accumulator
rounded down to single precision. In fact, given a few guard

(2.4) bits it has been shown ([4]) that Wilkinson's "double-

Long Result:
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precision accumulator bounds" on roundoff errors 6 [12]

_l-1t <~ 0 for Truncation

_ - fllt _ 5 _ - ll-t for Rounding
22

almost hold for a single-precision unit. Note that without
guard digits the difference 1.000 - 0.9999 (or any similar
computation) cannot be carried out without serious loss
of accuracy and huge relative error.
We can state exactly when guard digits are useful:
A) Addition (like operand signs): One guard rounding

bit is necessary and sufficient, since other guard bits could
never affect the sum (except when R*-rounding is
used).

B) Subtraction (unlike operand signs): With Trunca-
tion, arbitrarily many guard digits could be necessary be-
cause alignment shifts can be arbitrarily large, and if any
shift occurs some "borrowing" must occur out of the low-
order digit. With Rounding, however, it can be shown that
a guard digit and a guard-rounding bit are adequate, be-
cause any borrowing caused by alignment is offset by the
final round. We discuss this in depth below.

It is difficult to make general statements about the use
of guard digits in multiplication since the requirements
obviously vary according to the way the multiplier works.
If the multiplier simply adds up partial products in a
straightforward manner, the comments previously made
for addition will hold. Other schemes may have more
complicated guard-digit requirements. Note that it is not
clear how to implement R*-rounding without forming a
full double-length product; however, we will show later
that R*-rounding is of questionable use in multiplica-
tion.
The problem introduced by subtraction for Truncation

may be eliminated by use of a sticky bit (or trap bit). The
sticky bit is a guard bit which remains at a 1 value if a 1 is
shifted into or through it during alignment. It removes the
borrowing problem and makes it easy to show that one
guard digit, followed by a guard-rounding bit or sticky bit
with Rounding or Truncation, respectively, are sufficient
for accurate subtraction. Thus one guard digit and another
guard bit of some'kind are sufficient for the operations in
the single-precision unit to obtain the same results as an
infinitely long accumulator rounded to single precision.
This observation permits us to bypass infinite guard-digit
analyses like that in [4].
We can now clarify the use of guard digits in subtraction.

Note that in subtraction, one of three possible things can
occur: either 1) there is no alignment shift, in which case
the result of the subtraction is the exact difference of the
two operands and no guard digits are needed; 2) an align-
ment shift of one digit occurs; or 3) an alignment shift or
more than one digit occurs. In the second or third cases,
some "borrowing" must be done, possibly causing a can-
cellation of high-order digits; this would necessitate a
realigning left shift of the intermediate difference (and the

guard digits). Surprisingly, one guard digit and one
guard-rounding bit or one sticky bit with Rounding or
Truncation, respectively, are sufficient for correct com-
putation in either of these two cases. This is obvious in case
2), where an alignment shift of only one digit occurs. In case
3), one can easily verify that because there are two or more
alignment shifts, only the highest order digit can be can-
celled out; i.e., at most one left realignment shift can occur.
Thus one guard digit is basically sufficient. In the case of
Truncation, a sticky bit is also necessary: since arbitrarily
large alignment shifts can occur, we naively need arbi-
trarily many guard digits for correct handling of borrowing.
Fortunately, the sticky bit can be used instead. In the case
of rounding, the rounding bit is necessary for the case
where a left realignment shift occurs. Here, however, the
sticky bit is not needed because rounding will offset
(cancel) any borrowing engendered by a sticky bit. Thus,
as stated, one guard digit and a guard-rounding bit are
sufficient to produce "infinitely long accumulator" re-
sults.
We should point out that the sticky bit can be used in

both addition and subtraction for the implementation of
R*-rounding. We omit the details here, but it is clear that
the sticky bit is an ideal way to monitor the case in which
the bits to be rounded away are exactly 1000 ...

It is interesting to know how often, on the average, guard
digits would be used if we were to build a machine that
used several guard digits instead of a sticky bit. Statistics
on alignment shifts may be found in [10, p. 39]. From this
we can obtain Table I, giving probabilities that alignment
shifts of -k digits will occur. The table shows us that even
without a sticky bit, 4 guard bits will give us infinitely long
accumulator results 70 percent of the time, and 8 guard bits
82 percent of the time. Unfortunately, the remaining 18
percent requires arbitrarily many guard digits, as we ob-
served earlier.
As a final comment on guard digits, we would like to

observe that seemingly higher accuracy could easily be
obtained if the guard digits were retained in the result
register for use in further computation until the result was
to be stored in memory (at which time the guard bits would
be rounded away). Just from the standpoint of Wilkinson's
bounds, retention of g guard bits causes a factor of 2-X
decrease in accumulated error. The main arguments
against this sort of implementation seem to be that few
people will understand it and that it produces extremely
compiler-dependent results (storing temporaries becomes
critical), but in the hands of an intelligent programmer this
feature could be useful (see [17]).

IV. ROUNDING-SCHEME BIAS

While ARRE measures the average magnitude of
roundoff errors, we are also concerned with measuring the
tendency of a rounding scheme to favor errors of a partic-
ular sign. Generally speaking, we would like roundoff errors
incurred in floating-point addition and multiplication to
be unbiased; i.e., have an average value of zero. For mul-
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TABLE I
Floating-Point Addition and Subtraction: Cumulative Probability that Alignment Shift of .k Digits Occurs

Radix

k

0

2

3

4

5

6

7

8

2

.3264

4

.3824

8

.4577

16

.4732

.4475 .5678 .6554 .7334 4 Guard bits

.5336 .6961 .7746 .8327 8 Guard bits

.6008 .7948 .8372

- .6725 -.8252

.7113

.7552

.8034

~.8163-

tiplication this usually1 means that the rounding method
used R (x,t) must be unbiased since, if we are working with
t digits

fl(a - b) = R(a - b,t) (4.1)

i.e., the only error is made during rounding. For addition
with g guard digits, however, we have

fl(a + b) = R(renormalize(a + align(b,t + g),t + g),t)
so we must study alignment roundoff to completely un-
derstand bias. The importance of implementing guard
digits as in Section III is that it guarantees

fl(a + b) = R(a + b,t) (4.2)

so that roundoff errors in addition are just the errors made
in rounding, and that roundoff bias in addition is exclu-
sively due to the rounding method used. Because of its
desirable arithmetic properties and its simplification of
our analysis (eliminating in one stroke all concern with the
number of guard digits used and the properties of align-
ment roundoff) we will henceforth assume the Section III
guard-digit recommendation holds in all operations.
We can now concentrate on the analysis of rounding

scheme bias, by measuring the average relative error 3 in-
curred by a rounding scheme in floating-point computa-
tion. For an unbiased scheme 3 will be zero; for slightly
biased schemes like Rounding 3 will be small; and for
schemes like Truncation where errors are always of the
same sign, 6 is approximately the ARRE for that scheme.
We formalize this in the following pages.

Ify is the random variable assigning to the mantissas in
[1/f,1) a probability of occurrence as a result of some
computation with t -digit floating-point operands, then 6
is the expected value

= E [Ryvt) - Yj. (4.3)

1 An exception being, for example, double-precision multiplication on
the IBM 360/75, which truncates partial products and, therefore, creates
error before rounding. Many double-precision units violate the as-
sumption that all error is incurred in rounding.

We know from [4], [11], and elsewhere thaty must be more
or less logarithmically distributed if (4.3) is to be realistic
for floating-point computation. Brent [1] points out that
the logarithmic law is only an approximation, but is a
considerably better approximation to the distribution of
mantissas than the assumption of uniformity. Note that
y will be of finite precision, since it is the result variable
of finite precision calculation (this will be discussed more
fully later in this section), but its general logarithmic dis-
tribution is enough to guarantee for reasonable t that the
numerator and denominator of (4.3) are virtually uncor-
related. Thus we can make the simplification

6 = E[R(y,t) - y] * E[l/y]. (4.4)

We call the first factor on the right-hand side of (4.4) the
rounding bias of the scheme R. The second factor is the
average reciprocal mantissa value; using the log distribu-
tion we can obtain its theoretical estimate

E[l/yJ= = (4.5)

All we need now to estimate 3 is an approximation to the
rounding bias. We begin with the radix 2 case: Let M(t +
s) be the set of all normalized binary mantissas of length
t + s, which are to be represented in M(t); i.e., rounded to
t bits. For any rounding scheme R(x,t) mapping M(t + s)
into M(t) we can define

R(x,t)-x
average biasbase 2(R,t,s) = xGM(t+s) (4.6)

where I XI is the number of elements in the set X. From
(4.6) we can derive the following list:

average bias (Truncation,t,s) = 2-t(2-s - 1),
2

1
average bias (Jamming,t,s) = 2 2-t(2-s),

2

average bias (Rounding,t,s) =
1
-t(-2

s 0O

s _O

s >O
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average bias (R*,t,s) = 0, s _>O

average bias (ROM(l),t,s) = - 2-t(2-s-21-i),
2

s >O

(4.7)
where 1 is the ROM length in bits; 1 < t + 1. The main
argument to be lodged against (4.6) is that it does not take
the logarithmic law into account. However, Field demon-
strates [3, Appendix A] that when the radix involved is 2,
the uniform and logarithmic distributions on M(t + s) are
almost equal. The agreement is good enough that (4.6)
should be accurate in predicting bias for radix 2. The
question that arises is how to extend (4.6) for arbitrary
radix (, since as the radix increases the effects of the log-
arithmic law become more and more pronounced.
The extension may be achieved for any radix A = 2 n as

follows. Since normalized t-digit radix-: mantissas are also
(nt)-digit radix-2 mantissas having 0 to n - 1 leading
zeroes, we can write

average biasbase O(R,t,s)
n-I

= E (qc)average biasbase 2(R,nt,ns - k)
k=O

where qk is the probability that any mantissa has exactly
k leading zeroes. In effect, we break up the analysis on
[1/,1) into analysis on [1/3,2/3),[2/fl,4/f), * ,[1/2,1).
Field's result allows us to compute the bias on any of these
subintervals (it is translation independent), while the q,
allow for the log weighting of the logarithmic law. In
fact,

qk= Pr(2k-1 <X < 2k
x selected randomly from all mantissas)

2-k dx
,2-k-1 x ln

=1/n, n=log2f
so

average biasbase 3(R,t,s)
n-i /1
=E (-) average biasbase 2(R,nt,ns -k). (4.8)
k=o n

Thus we can compile Table II for any radix A = 2n. Here
s and t refer to the number of radix-: digits being used,
whereas I is the ROM length in bits (1 < I < tin + 1).
As a way of testing this, we note that (2.2) and (4.4)

imply

ARRE(t ,A)Truncation

= average biasbase 3(Truncation,t,o) | (fiji). (4.9)

Using (2.5) and Table II, we see that equality does, in fact,
hold. This is in one sense a stroke of luck, since our average
bias is only an approximation to the rounding bias E[R (y,t)
- y]. However, it is apparently a good approximation.
We can now turn to the analysis of a for floating-point

TABLE II
Average Bias

Rounding Scheme R Average Bias (R,t,s) with base.. norinalized arithmetic

R* 0 s > 0

Rounding 6 t s (S-1)/21og61 s > 0

Jamming 0-t-s ( 9-1)/21og26 s _ 0

ROM(Z) Ct-s (0-1)/21o026 -t 2-Z s > 0

Truncation 6-t-s (-1)/210g26 - 6 /2 S > 0

multiplication. If M(f,) denotes the set of all normalized
t-digit radix-: mantissas, then given any two operands in
M(O,t) their product will be in M(O,t + t). Thus the result
variable y in the bias E[R(y,t) - y] for floating-point
multiplication ranges "logarithmically" over M(,B,t + t),
and we can use (4.4), (4.5), and Table II with s = t to
compute the average multiplicative roundoff error 6. This
is done in Table III for each of the schemes under consid-
eration.
We point out that although R*-rounding has an average

roundoff 0, it is expensive to implement since it requires
knowing the values of all of the lower t digits of the prod-
uct. These almost never have bit values 1000 ... ; it would
seem that the effort required to check for these bit values
is not worth going through, and that ordinary rounding
could be used just as effectively.
We now consider the analysis of floating-point addition

(and subtraction). Addition is much more complicated
than multiplication because the sum of two numbers with
mantissas in M(/,t) can be in M(3,t + s) for any s _ 0. The
value of s is dependent on the difference of the exponents
associated with the numbers (i.e., the alignment-shift
value) and the number of renormalization shifts required
by carry-out or cancellation. To evaluate E [R (y,t) - y] as
in (4.6), where y is the result of an addition, we must know
the probability that a given value of s will occur. Specifi-
cally, if P> is the (radix-dependent) probability that the
result variable y is in M(fl,t + s), then

00

E[R(y,t) - y] , Ps - average bias(R,t,s). (4.10)
s=O

Noting that average bias (R,t,0) = 0 for all schemes here
except R = jamming, if we define

00

Pa= E PS
s=l

PT= E Psf-s
s=l

then we can use Table II, (4.5), and (4.10) to get the average
addition roundoff errors in Table IV.

Naturally, the numerical values for the probabilities Ps
will depend on the application under consideration; i.e.,
since the PS values rely on alignment and renormalization
shift probabilities, the values of PS (and hence of 6) are
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TABLE III
Multiplication Rounding-Error Performance

Average Multiplicative
Rank Scheme Roundoff 6

1 R* 0

2 Rounding, Jamming B 2t (1026

-t 2-QO
3 ROM(£) W-t2 -1

4 Truncation 2 6na

dependent on how often addition/subtraction operands
have exponents close to, or far away from, each other. Thus
error performance will vary from one type of program to
another, and knowledge of shift probabilities is not suffi-
cient to predict this variation.
We can make some general statements for radix-2 ad-

dition, however. From examining over a million floating
additions drawn from twelve problems, Sweeney compiled
statistics on alignment shifts [10]. These results have al-
ready been presented in Table I and show that most of the
additions in the representative programs had exponent
differences near zero, especially as the radix became large.
Unfortunately, Sweeney did not include data on the con-

ditional distribution of renormalization shifts. This has
been done for radix-2 by Field [3] and allows us to compute
the probability that y is in M(2,t + s) via the relation-
ship

def

Ps = Pr(yeM(2,t+s))
alignment right\

E Pr~

k=-l shift = s + k/

. Pr/renorm left align right
~shift=k shift=s +k!

(4.11)

We can tabulate the values of Ps for radix-2 defined in
(4.11). Table V is computed directly from [10, table 3] and
[3, table 1]; the "average" reflects Sweeney's result that
52.73 percent of his additions involved unlike signs, while
47.27 percent involved like signs.

In Table IV, ROM rounding is ranked above rounding
on the assumption that 1 is large enough to ensure can-

cellation in the factor involving P, and PT. If we use the
average values ofPS in Table V, we discover Po z 0.031, P,

0.896, P7 - 0.135, so that choosing the ROM length 1

4 gives 6 > (0.017) X 2-t. This is considerably better than
the (0.097) X 2-t result for Rounding. Unfortunately, it is
difficult to estimate the optimal ROM length 1 for a larger
radix because detailed statistics, like those for radix-2 in
[3] and [10], are, to our knowledge, currently unavail-
able.

TABLE IV
Addition Roundoff Performance

Rank Scheme Average Addition Roundoff 6

1 R* 0

2 ROM(£) 9t(n - 1 ) 19) PT - 2 PO)

3 Rounding B 2 P2 9n 2 126 T

-t 12
4 Jamming 8 (8- ) (P +p)2 9n~2 1Tog286 0' T

o-t(5 - 1) (a - 1) P -1P)
5 Truncation £na (21 og28 T - 2 a)

TABLE V
PS for Radix-2 Addition (In Percent)

s PS(like signs)*100 Ps(unlike signs)*100 Ps(average)*100

0 0.000 5.898 3.110
1 30.268 6.391 17.678
2 16.414 7.031 11.466
3 8.085 6.460 7.228
4 6.860 8.549 7.750

5 9.685 6.536 8.025
6 6.335 4.265 5.244
7 4.030 3.606 3.806
8 0.971 1.248 1.117
9 1.271 1.194 1.230

10 1.989 1.705 1.840

11 1.335 1.365 1.351

12 1.756 1.346 1.540

13 0.826 0.796 0.810

14 0.254 0.683 0.480

15 0.762 0.417 0.580

16 0.212 0.360 0.290

17 0.212 0.398 0.310
18 0.592 0.417 0.500

19 0.106 0.512 0.320

20 0.127 0.379 0.260
21 0.296 0.493 0.400

22 0.254 0.341 0.300
23 0.148 0.322 0.240
24 0.127 0.360 0.250
25 0.106 0.398 0. 260

It should be emphasized that Sweeney's alignment-shift
statistics were averaged over twelve problems and a million
addition operations, and that by selecting a rouunding
scheme on the basis of Table V we are not guaranteeing
good error performance for a specific application, but
rather are choosing a scheme that should perform well
"over the years." Kent [5] points out that, although
Sweeney's averages hold over a collection of programs, they
will not, in general, hold for any specific program. There-
fore, while we are predicting roundoff performance over
many programs, we cannot say a priori how a given
rounding method will behave on a given program. Indeed,
programs can be written to force any known rounding
scheme to give worst case bound results.
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Fig. 2. Mixed-sign summation error growth.

V. STATISTICAL ANALYSIS OF ROUNDING METHODS

A number of papers appearing in 1973 ([1], [7], [9]) at-
tempted to discriminate between floating-point systems,
which used various radices and rounding schemes, by
applying varied sets of data to a given problem, and sta-
tistically measuring the resultant roundoff errors. Except
in [1], the problems typically consisted just of repeated
arithmetic operations. For reasons cited in [6], we followed
this line of testing and presented each of the rounding
methods under consideration with several serial summa-
tion problems. The limited applicability of these tests to
general computation was realized at the time; they were

taken merely as indicators of the average tenacity of the
rounding schemes against error, and reflectors of some of
the facets of accumulated error not detectable with metrics
of local roundoff error like ARRE and average bias.
What was not appreciated in [6] is that serial summation

almost always produces exponent differences substantially
larger than the averages obtained by Sweeney. The large
exponent differences and alignment rounding tended to
make the partial results satisfy the uniformity constraints
of the (then logarithmic-law-oblivious) average bias defi-
nition well, so the final results gave results very close to the
predicted ones.

Realizing the failings of [6], we designed a problem we
felt was poorly conditioned enough to test roundoff per-

formance, but at the same time representative of general
floating-point computation: repeated serial summation of
mixed-sign operands (50 percent of the summands nega-

tive). The summation was carried out over 400 sets of 512

random summands, whose mantissas were generated from
a logarithmic distribution. Alignment shifts were forced
to conform to the averages listed by Sweeney, and we felt
the mixed-sign approach of the problem coincided well
with Sweeney's statistics that 52.73 percent of his tabu-
lated additions involved unlike signs, while 47.27 percent
involved like signs. The actual summation was carried out
in six-digit hexadecimal arithmetic because we were in-
terested in higher radix performance, and for reasons of
convenience. The resulting error growths for each rounding
method tested, plotted as a function of the number of
summands, are shown in Fig. 2. They give a spectrum of
performance coinciding well with the results predicted by
the static measures ARRE and average bias. Fig. 2 also
seems to indicate that as the radix grows the optimal ROM
length grows (here only 1 = 2, 5, and 9 were checked).
However, this statement will require more verification
before it can be accepted as true.
Note also the results seem to say that, on the average,

rounding gives results only two bits better than truncation
(i.e., 1/2 unit of hexadecimal significance better). This
agrees well with [1]. It would be easy to pick a problem that
discriminated against Truncation: for example, consider
serial summation of positive numbers, which gives Trun-
cation six bit worse results [6]. However, it is impossible
to generalize from such specific problems what average
roundoff performance will be.

This last statement points out the difficulty with con-

structing any single problem to test roundoff performance.
The problem should be realistic but at the same time give
results representative of all floating-point computation.

256 512
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Sweeney's exponent difference distributions make the
representativeness requirement exceedingly difficult to
obtain. But the representativeness requirement is im-
portant: mixed-sign summations with Sweeney's align-
ment shifts as in Fig. 2 gave quite different results than
mixed-sign summations without these shifts, as analyzed
in [6, fig. 6]. Notice that the experiment here does not
represent any realistic computation, in that there is
probably some correlation between the average number
of operations per datum and alignment shift distance in
any real computation. Apparently, the only way to test
roundoff performance empirically is to compare results of
many standard programs run with the same data but
employing different radices, word lengths, and rounding
methods.

VI. CONCLUSIONS

We have presented a theoretical development of two
static metrics of rounding scheme performance, ARRE and
average bias, and have shown how they may be used to get
dynamic estimates for average roundoff errors in any given
floating-point system. The analysis here has displayed the
difficulties introduced by both the logarithmic law of
leading digits and the distribution of exponent differences
in floating-point addition, and has shown why any further
rounding method analysis must take these factors into
consideration.

All ofthis analysis indicates that ROM(l)-rounding, with
a suitably large ROM length 1, is a viable rounding scheme
in radix-2 and apparently (Fig. 2) for radices as big as 16.
It also shows how any other new rounding scheme could
be analyzed. However, the difficulties of testing this theory
empirically are currently too great for us to do it properly:
a study at least as extensive as those in [51 and [10 is
warranted.
Late note: Work of related interest ([14]-[16]) by R.

Goodman and A. Feldstein has appeared recently.
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