
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970

On Division by Functional Iteration
MICHAEL J. FLYNN, MEMBER, IEEE

Abstract-In order to avoid the time delays associated with
linearly convergent division based on subtraction, other iterative
schemes can be used. These are based on 1) series expansion of the
reciprocal, 2) multiplicative sequence, or 3) additive sequence con-
vergent to the quotient. These latter techniques are based on finding
the root of an arbitrary function at either the quotient or reciprocal
value. A Newton-Raphson iteration or root finding iteration can be
used.

The most useful techniques are quadratically convergent (i.e.,
errori+,=O (errori)2). These techniques generally require two arith-
metic operations (add or multiply) to double the precision of the
quotient.

Index Terms- Error bias, iterative division, Newton-Raphson
division, quadratic convergence, series division.

INTRODUCTION
V\yyITH the advent of very-high-speed algorithms for

performing multiplication and addition, the per-
formance of the divide algorithm has become in-

creasingly anomalous. The primary difficulty with the con-
ventional subtractive divide is its linear rate of convergence
with respect to the divisor and required testing of the re-
mainder sign at the end of each iteration. This latter require-
ment effectively prevents overlapping of operations or
iterative cycles.
As long as the multiply had convergence rate not signifi-

cantly better than that of the divide (out of proportion to
relative usage), there was no need for improved divide op-
eration. With the advent of one-step multipliers, such as
the Wallace [1] algorithm, and pipeline multipliers, such
as Systems 360 Model 91 [2], the relative performance of
simple divide algorithms (retiring 2 or 3 divisor bits per
iteration) becomes quite unacceptable and prompts inves-
tigation of alternate approaches to divide.
One such technique which is not really new-is the

iterative divide which is most commonly based on some
variation of the Newton-Raphson equation.

ITERATIVE DIVIDE
We presume the existence of a high-speed multiply and

add. We desire to find q, the quotient of the division opera-
tive a/b. Now three different approaches to finding iterative
expressions to ascertain q, the quotient, are the following.
Method 1: Series Expansion Use a Taylor series to

find q:

q = go(a, b) + g1(a, b) + - + g,(a, b). (1)

Manuscript received December 10, 1969; revised February 6, 1970.
This work was supported in part by the U. S. Atomic Energy Commission
at the Argonne National Laboratory, Argonne, Ill.

The author was with the Department of Industrial Engineering, North-
western University, Evanston, Ill. 60201. He is now with Johns Hopkins
University, Baltimore, Md. 21218.

Method 2: Additive Iteration Let f(x) have root at
a/b = q; then find root with convergent sequence xO, x1, ,
xi,... , x,, such that

xn =a/b and xi+ = xi+H[f(xi)]. (2)

Method 3: Multiplicative Iteration-If q= a/b, suppose
one can find a product sequence, MO, m1 , mn, such that

n

b H1mi =
i= 1

then
n

q = a l mi.
i= 1

(3)

The results of applying these three different approaches
to the iterative divide problem do not always yield unique
results. It is quite possible that the same iterative expression
for division can have three separate interpretations: as a
series, as an additive iterative expression, or as a multiplica-
tive iteration. The three distinct approaches are quite use-
ful, however, in getting added insight into the definition of
iterative functions. In all of these approaches one wishes to
converge either towards a/b or towards some convenient
alternate value. Thus, 1/b would also be suitable since we
could terminate the operation with simple multiplication
by a.

SERIES EXPANSION
Given the familiar Taylor series expansion of the function

g(x) at point p,

g(x) = g(p) + (x -p)g'(p) + (x - P) g"(p) + ...2!.
+ (n! g(n)(p) + ...

n !

(4)

We could let g(x) = 1/x and p= 1 (or any convenient nonzero
value) and solve. For computational ease, we let p = 0
(Maclaurin series) and g(x)= 1/1 +x. Then (see [2]-[4]),

1 x + x2-3 4

g(x)==-x+xx-x +x

Thus, if x= b- 1, then

q = a(1-X +x2 x3 + )
or, in factored form,

(5)

(6)

q = a[(1 - x)(1 + X2)(1 + x4)(1 + x8) ... ]. (7)

702



FLYNN: DIVISION BY FUNCTIONAL ITERATION

The 2's complement of (1+ x') is [2-(1I + x)]= 1-x,
and the product term is

(1 + x')(1 - x = (1 - x2n) (8)

The recomplementation (1 +X2,) continues the develop-
ment.
For x<1 (i.e., b suitably normalized), each correction

factor, 1 +x2i, doubles the precision of the quotient. Thus,
the sequence converges quadratically with error term S2i or
error per factor application O(e2).
We avoid the use of the-term "iteration" since the form

of (6) and (7) allows direct implementation in one "itera-
tion" or multiple ones. This distinction stresses the differ-
ence between the series and iterative method to be discussed
later. It is perhaps a moot point since the factors in (6) and
(7) are dependent-being most naturally developed sequen-
tially. (Ferrari [15] provides an interesting discussion of
multiterm iterations of this type.) If (7) is written in an itera-
tive form, we get

Xi+ = x{1 + (b - 1)2i]. (9)

Since xi+ 1 is a direct function of i (rather than simply xi),
(9) is not easily interpreted as an additive iteration [of the
form of (2)].
The multiplicative interpretation is direct: the factor

(1 +X2i) corresponds to mi in (3).
The amount of computation to double the precision of a

partial quotient is an important measure of the efficiency of
an algorithm. Ifwe exclude the complementation operation,
(9) requires two multiples to double the result precision.

In addition to the work of Goldschmidt [3 ] and Anderson
[2], which concerns the hardware realization of the series
representation of divide, Laughlin [5] and Knuth [6] apply
a variation to produce multiple precision divide.

MULTIPLICATIVE ITERATION
This form of divide has been particularly well covered by

Lehman and Senzig [7] and Krishnamurthy [8]. Given
n

a FT mi
a i= a

q = =-
lb bnfli

k

i =1

(10)

k is usually selected as equal to 1, but any k = 2n is equally
attractive-in fact, certain other values (k = 2/3) can also
be used [8].

Ifwe limit our choice of recursion (selection of sequence of
mi's) to simple expressions of the form

Xi+ i = Xi' f(xi) = xi * mi,

we exclude (9). More significantly, we have a factored dual of
the additive iteration. Krishnamurthy has studied this form
when the iteration was derived from the quadratic

P(x) = (x - k1)(x -k2),

one of whose roots equals k.

ADDITIVE ITERATION
Since additive and multiplicative iterative schemes are

basically duals, the remainder of the paper will concentrate
mainly on the additive type of scheme. Thus, in the proposi-
tion q= a/b the basic iterative divide scheme will consist of
the following ingredients:

1) a continuous and differentiable equation of the form
f(x)= 0,

2) a root of the equation at x= a/b (or some equivalent),
3) an iterative method for finding said root,
4) a constraint on the iteration that it itself be free of

divide (i.e., it uses only add, subtract, multiply opera-
tions).

While any function that has a root at a reciprocal value
can be used with any iterative system for finding that root,
we will restrict our attention to relatively promising equa-
tions and iterative schemes ofquadratic order or higher. For
simplicity of discussion, we will call the iterative system the
iteration and the function with root at the reciprocal value
the priming function.

THE ITERATION
The best known quadratically convergent iteration

scheme is the Newton-Raphson equation:

Xi+I=- Xi - f(xi)=
ff'(xi) (11)

Fig. 1 is a simple illustration of its operation. The initial
approximation, x0, is known; f(x) and its derivative f'(x)
are also known. f'(xo) is evaluated and its value is equal to
the slope of the tangent line at x0. Thus,

f'(x0)= f(xo)
Xo -Xi

The error term associated with the Newton-Raphson
method is (for root at x= p)

ei= (Xi- p)2 1(i) = 2f'(x) (12)

where

lxil . . lPl.
In general, three conditions must be satisfied for the
Newton-Raphson method to converge. -

1) Our initial approximation x0 is sufficiently close to the
root.

2) The second derivative f" must not be excessively large
in the region Ixo-pi-

3) The first derivative must be known, must be able to be
evaluated, and it must exist over the range. Further,
the first derivative should not be excessively small.
This method is also called the Newton-Raphson first-
order method since the tangent predictor is linear and
the method can be derived from the linear terms in the
Taylor series expansion. Higher order Newton-

703



IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1970

f 'l)

f-X0)
f'(X0)

'error bias
Fig. 1. Newton-Raphson iteration.

X

Raphson methods can be developed which allow
arbitrary curves to be fit for predictives. In particular,
the Newton-Raphson second-order method would be

f(xi) 1 f(xi) 2 f "(xi)
f'(xi) 2 Lf'(xi)j f'(xi)

Its error term would be

Ei+1 = 8? 6f'(xi) (14)

Of course, this may be continued indefinitely. Another
potentially promising iterative form (although the author
knows no successful use of this form as yet) is Halley's
iteration (read fas f(xi)):

xi = 1 - f/f. f/f (15)

With error term of the third order,

+=0(8). (16)
Halley's is basically a hyperbolic predictive fit and would
seem to naturally suit the reciprocal curve-too well, it
seems from the author's personal experience; most of his at-
tempts have yielded xi= 1/b (i.e., the iteration requires the
division we were trying to avoid). See Traub [9] for fuller
discussion of general iterative solutions.

ROOT TARGETS
The following seem to be the most logical choices for

target roots.

q = a/b targets: llb2
a/b
1/b (17)
1 - l/b
1 - a/b

This includes the true quotient, the reciprocal value which
needs to be multiplied by the numerator to find the true
quotient, a complement of the reciprocal, a complement of
the quotient, and the square of the reciprocal which must be

multiplied by the numerator and the denominator product.
The choice of root target is quite arbitrary. One selects it
merely out of convenience with respect to the basic iterative
form, its convergence rate, its lack of divisions, and the
overhead involved if a target root other than the true
quotient is used-.

PRIMING FUNCTIONS
In dealing with priming functions, one may start with a

particularly attractive iteration for its general form, and
work backwards to find the prinring function from whence
it came, or one may work directly from promising priming
functions. The problem with the former approach is that
frequently, after analysis, the iteration either fails to con-
verge or converges at an unattractive rate. In the second ap-
proach the difficulty is that the resulting iteration frequently
involves a divide itself. For example, with the first approach,
consider the simple iteration

Xi+= xi- (bxi - a).
This can be interpreted as a Newtonian iteration. And the
priming function would be found by solving the following
differential equation:

y= 1
y' bx-a

Solution to this differential equation is of the form

f(x) = Y = (bx - a)lb.

(18)

(19)
Now one can select a and b such that as x=.a/b

f(x) = (ba/b - a)lb O 0

thus giving the priming function a root quotient value. Un-
fortunately the iteration converges slowly [i = i(l - b)]
since the second derivative is poorly behaved in the region
of the root.
Working directly from the priming function is basically a

straightforward proposition. Consider the function

1f(x) =- - b.
x

This has a resulting iterative form

Xi+ = xj(2 - bxi)

(20)

(21)
and its error term is

i+= 8(b).
Notice that this converges to the reciprocal value 1/b. This is
the most widely known iterative scheme, being discussed in
earlier books on numerical analysis (e.g., Kunz [14]). It
apparently was implemented on the Harvard Mark IV
although information on this machine is scarce (see Richards
[10] for a note on this). Both Lehman [7] and Krishna-
murthy [8] discuss the equivalent (or dual) of this scheme.

Notice carefully the result of the use of x0=1 in (21) and
the substitution of (b - 1) for x in (7), the factored form of the

704



FLYNN: DIVISION BY FUNCTIONAL ITERATION

TABLE I
COMPARISON OF SOME TECHNIQUES

Operations (ave) Required*
Error Term: Ito Double Quotient Precision

Type of Iteration Priming Function Iteration: xi+, +

Adds Multiplies

Series1
Expansion of l/b b = (2 - b)(l + (b - 1)2)(1 + (b - 1)4) ... bI 2

b
identical to #2 and #4 with x0 = 1.

#2
Additive 1
Newton-Raphson first order f(x) = -Ib x1(2-bx1)

#3
Additive x-1+ -1/b12
Newton-Raphson first order X() -- 1 2x1-1 + b(x,-1)2 bd 1 2

x -

#4
Additive 1
Newton-Raphson nth order f(x)= -b x111 + (1-bxi) + (1-bx1) ± be,t'

+ (1-bxi)n] (per order)

* Ignore shift and complement operations.

series expansion of the reciprocal. The results are identical
iteration for iteration. Thus, the series expansion is identical
to the Newton-Raphson iteration of (20) and (21) for x0= 1.
An alternative function which converges to the comple-

ment of the reciprocal value is the priming function

x- 1 + 1/b

This has iterative form

Xi+= 2xi- 1 + b(xi - 1)2.

(22)

(23)

Although it has the same error term as before,

ei+=+ b.

This iterative forms appears in Wilkes [11] as a rather terse
statement in the Appendix. The analysis of the priming
function is due to Fieg [12]. Priming function of the general
form e -f(x) appears quite interesting, especially when
f(x) has a pole at a target root which drives the overall
function to 0. Thus, consider the function

f(x) = exp 0 as x =F1/b. (24)

This has iteration

Xi+ = xi- (1 -xib)2 and gj+1 = ei(l gib2). (25)

Thus, its convergence rate is not as attractive as the earlier
schemes.

Priming functions may use the more general form or the
nth-order Newtonian to develop arbitrarily high con-

vergence rates (see Rabinowitz [13]). In applying the nth-
order Newtonian to the first priming function discussed.

f(x) = - -bx

we get the following generalized iterative form:

xi+l x i[1 + (1 - bx1) + (1 - bxi)2 + (1 -bxi)3
+ - ±+ (1 - bxi)n].

(26)

(27)

This has convergence rate

=i+l b n+l.

Notice that here also, if x0 = 1, n terms of (27) will be
identical to an n-term iteration using the series expansion
of the form of (6).

Since both the series expansion and the Newton-
Raphson iteration are based on the Taylor series and the
form of the function used in (5) and the priming function
(20) are similar, the equivalence of the resulting iteration
is not surprising.
The above is summarized in Table I.

ERROR BIAS AND STARTING TABLES

Clearly, the objective of all of these schemes is to develop
the true quotient as quickly as possible, i.e., with as few
iterations as possible, and with few operations per iteration.
While the number of operations per iteration are basically
intrinsic to the iteration itself, by carefully establishing a
table of starting values one can minimize the initial error
(i.e., work with an initial quotient precise up to m bits), thus
shortening the number of iterations required. One accom-
plishes this by means of a starting table. This is basically a
table in which high-order bits of the divisor (or reciprocal)
form the address in a table of high-order bits of the quo-

705



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 8, AUGUST 1970

tient. If m bits are used from the reciprocal the table re-
quires 2m entries and establishes m bits of quotient.

Since the table doubles in size for each additional bit of
accuracy required in the initial quotient guess, small changes
in the convergence rate per iteration may reflect substantial
changes in the size of the starting table. Notice in almost all
schemes the error is biased, hence it (or part of it) can be
subtracted from the quotient, slightly reducing the average
error. Referring back to Fig. 1, since we are approaching
the root from the left side uniformly, we may predict ahead
part of the distance for the next iteration. While this is at-
tractive, the error bias may serve a useful function when
left in the iterant. In certain cases it will serve to protect the
integrity of integers (i.e., integer quotients will be preserved
in their usual representation).

CONCLUSION
The problem of finding complexity or efficiency bounds

for division is much more difficult than for add or multiply
because of the multiplicity of approaches. The best known
techniques require two basic arithmetic operations (add or
multiply) to double the precision of the quotient. Even rela-
tively small improvements in the convergence rate of a
scheme can result in considerable hardware savings in the
area ofa starting table. The development of these techniques
remains an open problem as does the application of non-
Newtonian higher order iterations.

REFERENCES
[1] C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans.

Electronic Computers, vol. EC-13, pp. 14-17, February 1964.
[2] S. F. Anderson, J. G. Earle, R. Et. Goldschmidt, and D. M. Powers,

"IBM System/360 Model 91: floating-point execution unit," IBM J.
Res. Develop., vol. 11, pp. 34-53, January 1967.

[3] R. E. Goldschmidt, "Applications of division by convergence,"
M.S. thesis, Dept. of Electrical Engineering, Massachusetts Insti-
tute of Technology, Cambridge, Mass., June 1964.

[4] M. J. Flynn, "Very high-speed computing systems," Proc. IEEE, vol.
54, pp. 1901-1909, December 1966.

[5] H. H. Laughlin, "Large-number division by calculating machine,"
Am. Math. Monthly, vol. 37, pp. 287-293,1930.

[6] D. E. Knuth, "Seminumerical algorithms," in The Art of Computer
Programming, vol. 2. Reading, Mass.: Addison-Wesley, 1969,
p. 215.

[7] M. Lehman, D. Senzig, and J. Lee, "Serial arithmetic techniques,"
1965 Fall Joint Computer Conf., AFIPS Proc., vol. 27. Washington,
D. C.: Spartan, 1965, pp. 715-725.

[8] E. V. Krishnamurthy, "On optimal iterative schemes for high-speed
division," IEEE Trans. Computers, vol. C-19, p. 227-231, March
1970.

[9] J. F. Traub, Iterative Methodsfor the Solution ofEquations. Engle-
wood Cliffs, N. J.: Prentice-Hall, 1964.

[10] R. K. Richards, Arithmetic Operations in Digital Computers. New
York: Van Nostrand Rheinhold, 1955.

[11] M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of Pro-
grams for an Electronic Digital Computer. Cambridge, Mass.:
Addison-Wesley, 1951.

[12] R. J. Fieg, "Analysis of a computer divide algorithm," unpublished
communication.

[13] P. Rabinowitz, "Multiple precision division," Commun. ACM, vol. 4,
p. 98, February 1961.

[14] K. Kunz, Numerical Analysis. New York: McGraw-Hill, 1957.
[15] D. Ferrari, "A division method using a parallel multiplier," IEEE

Trans. Electronic Computers, vol. EC-16, pp. 224-226, April 1967.

High-Speed Computer Multiplication Using

a Multiple-Bit Decoding Algorithm

H. LING, MEMBER, IEEE

Abstract-This paper presents a method of performing the binary
multiplication beyond the scheme of multiple ADD and SHIFT. The
binary multiplication algorithm will be discussed first, followed by
block decoding method, logic implementation, hardware considera-
tion, and two examples which are at the end of the discussion.

Index Terms-Block decoding technique, fast multiplication,
high-speed computer logic, high-speed multiplication, parallel multi-
plication.

Manuscript received May 20, 1969; revised December 12, 1969, and
February 22, 1970.

The author is with the Information Sciences Department, IBM Re-
search Laboratory, San Jose, Calif.

INTRODUCTION
O NE problem which the computer field has been con-

cerned with for many years is how to improve the
process of binary multiplication beyond the tech-

nique of repetitive ADD and SHIFT.
Some methods have been proposed, all of which have

some disadvantages. It was pointed out by Lamdan and
Aspinall [1], for example, that the realization of simultane-
ous multipliers necessitates a large number of components.
Recently, carry save adders have generally been used to in-
crease the speed of multiplication. However, due to the re-

706


