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Hardware Complexity of
Modular Multiplication and Exponentiation

Jean Pierre David, Member, IEEE, Kassem Kalach, and Nicolas Tittley

Abstract—Large integer Modular Multiplication (MM) and Modular Exponentiation (ME) are the foundation of most public-key
cryptosystems, specifically RSA, Diffie-Helleman, ElIGamal, and the Elliptic Curve Cryptosystems. Thus, MM algorithms have been
studied widely and extensively. Most of the work is based on the well-known Montgomery Multiplication Method and its variants, which
require standard multiplication operations. Despite their better complexity orders, Karatsuba and FFT algorithms seem to rarely be
used for hardware implementation. In this paper, we review their hardware complexity and propose original implementations of MM
and ME that become useful for 24-bit operators (Karatsuba algorithm) or 373-bit operators (FFT algorithm).

Index Terms—Cryptography, multiplication, modular arithmetic, hardware complexity.

1 INTRODUCTION

THE ever-increasing needs in data communication and
the expansion of Internet services, namely, financial
applications and electronic commerce, have made security a
major concern. Private-key cryptography is unfortunately
impractical for such applications because of its main
drawback: the Key Distribution Problem. Public-key cryp-
tography [1], introduced in 1976, was the first bright
solution and so far has been shown to be the only
convenient security technique for such applications.

Since then, many public-key cryptosystems have been
designed and implemented. The most dominant realiza-
tions are RSA, ElGamal, and Elliptic Curve Cryptosystems
(ECCs). These systems base their security on the computa-
tional difficulty of solving some mathematical problems in
modular arithmetic.

All current public-key cryptosystems use Modular
Multiplication (MM), and most of them require Modular
Exponentiation (ME). Thus, the performance of any public-
key cryptosystem is primarily determined by the efficiency
of the MM algorithm (multiplication and remainder
operations) and its implementation. Unfortunately, the
complexity of the classical method for multiplying integers
is O(N?) and the same is true for the modulo operation.
Besides, for security reasons, these algorithms are applied
to very large integers (1,024 bits or higher). This is an
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important obstacle to attaining high throughput, which is a
vital criterion in network applications.

A number of papers have been published on the
optimization of MM. Most of the contributions are based
on the Montgomery Multiplication Method (MMM) [2],
which achieves MM and ME with classical multiplication
and power-of-2 division. Many variants (that is, the
combination of the MMM with a particular mathematical
or hardware technique) have also been proposed. We
mention, for example, the Residue Number System [3],
[4], [5], Chinese Remainder Theorem [6], [7], Redundant
Number System [8], [9], High Radix [10], Systolic Array
[10], [11], Carry Save Adders [12], [13], and Lookup Tables
[14]. Nevertheless, the intrinsic complexity of these ap-
proaches relies on the multiplication and is O(N?).

Other methods exist to multiply (large) integers.
Karatsuba and Ofman proposed a recursive algorithm,
which is about O(N'%®) [15], and the Fast Fourier Trans-
form (FFT) [16] has the smallest known complexity,
O(Nlog(N)), for integer multiplication. Fig. 1 illustrates
MM complexity order for both classical and Montgomery
representations.

This figure will be detailed in the following sections. The
important point here is to notice that an MM can have the
same complexity order as a standard multiplication, which
can be as low as O(N'®) or O(Nlog(N)). Nevertheless,
these orders hide constants that make the algorithms useful
only beyond a given threshold. The present paper reviews
the hardware complexity (HC) of squaring, multiplication,
modular squaring (MS), MM, and ME with classical,
Karatsuba, and FFT-based operators. An important con-
tribution is also proposed in the hardware optimization of
FFT-based operators.

Given these implementations, we propose to answer the
following question: “What are the thresholds that deter-
mine when classical, Karatsuba, or FFT-based operators
should be used to minimize the HC?” After an extensive
search, the only FFT-based hardware implementation that
we have found is a recent work that aims at multiplying
ultra-large numbers (12,000,000 digits) [17]. Our results
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Fig. 1. Modular multiplication complexity order.

demonstrate that, to multiply two integers, the FFT method
is better than the classical one for 346-bit operands and
better than the Karatsuba one for 1,824-bit operands,
whereas the Karatsuba method starts to be more efficient
than the classical one for 16-bit operands. We have obtained
similar results for modular operations (MM and ME).

The rest of this paper is organized as follows: Section 2
presents the ME algorithm and defines our approach to
measure its HC. The first refinement step leads to MM and
MS algorithm implementations, which are studied in
Section 3. The second refinement step is presented in
Section 4, where various algorithms and implementations of
the square and multiplication operations are described.
Section 5 is dedicated to the study of FFT-based operators
and, in particular, details our original hardware implemen-
tation. The HC of squarer, multiplier, MS, MM, and ME
have been computed for several architectures and operand
sizes. Section 6 presents and compares the results, including
a preliminary FPGA implementation. Section 7 concludes
this work.

2 MODULAR EXPONENTIATION COMPLEXITY

2.1 Modular Exponentiation Computation
ME has the form

y = 2z mod m, (1)

where z is the base, e is the exponent, and m is the modulus.
We consider that all integers are unsigned N-bit numbers.

One of the most efficient techniques to compute
exponentiation is the square-and-multiply algorithm (Algo-
rithm 1), which is also called Binary Exponentiation. It
drastically reduces both the number of operations and the
memory required to perform ME. The exponent e must first
be converted into its binary notation. That is, e can be
written as

N-1

> 2. (2)

i=0

e=(en_16N-2...€1€60) =

1309

TABLE 1
Atomic Device Complexity
Identifier | Complexity
Ogate One 2-input gate
Omuz One 2-input multiplexer
Oma One Half Adder
Ora One Full Adder

Bits e; are scanned from left to right. An MS is performed
at each step. Depending on the e; value, a subsequent MM
is done. The following equation illustrates this strategy:

$13 — xll[]lb _ (((12$)2I)2)21‘. (3)

To minimize the ME’s HC, we propose studying the
possible implementations of MS and MM according to
Fig. 1. Nevertheless, we must first define what we call
“HC.” This is detailed in the next section.

Algorithm 1 Modular Binary Exponentiation (MBE).
1: Input: z, e, m
2:  Output: y = z° mod m
3 y=1
4: fori= N —1 downto 0 do
5: y =1 modm
6: if (¢; = 1) then
7: y=1y-xmodm
8 end if
9: end for
10: return y

2.2 Measure of Algorithms Complexity
The abstraction level that we address is the theoretical
number of atomic devices required to implement an
algorithm. The atomic devices that we consider are simple
gates (AND, OR, XOR), two-input multiplexer, Half Adder
(HA), and Full Adder (FA). Their intrinsic complexity,
which is technology dependent, is denoted 6cyic. (Table 1).
The routing, the delays, the power consumption, and the
potential logic redundancy that depend on the actual
implementation are not taken into account at this level.
All of our algorithms are refined until they can be
implemented as a network of such basic devices in order to
measure their HC, which is expressed by their 6,,,()
function:

ealgo() =... Oga+...0p4. (4)

We consider only pure combinatorial implementations.
The information can, however, be easily extrapolated to
pipelined or functionally pipelined implementations when
possible. In this context, multiplications and divisions by
constant powers of 2 are free.

Ogate + - - - O + -

2.3 Power-of-2 Sum Complexity

Many algorithms require the implementation of power-of-2
sums. That is,

result = Z x; - 2", (5)
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TABLE 2
Complexity of Basic Functions

Identifier
04pD (Wa, Wy, wr)
04pp(wa,ws)

Complexity

OPZSum(- . )
04D D (Wa, wy, max(wq, wp) + 1)

04pp(wa) 04DD (Wa,wa)

Osus(-..) 0app(...) (Subtracter)
0appc(wa),0suBB(Wa) | wabpa (With Carry/Borrow)
6csTapp(wr) wrOp 4 (Constant adder)

O2_cpr(wr) wrOg 4 (Two’s complement)

where z;5 are binary input variables with associated
weight w;.

The complexity Opsgum({z;}) is computed by a fixed-
point algorithm (Algorithm 2) that tries to allocate FA when
possible and HA otherwise until the whole sum is
computed.

Algorithm 2 power-of-2 sum complexity.
1: Input: z;, w;

2:  Output: complexity in terms of 84 and 0p4

3: Start: Cya =Cpy =0

4:  Let ¢; = number of x|wy =1

5. while (Ji|(¢; > 1)) do

6: if (3j|(c; > 3)) then

7 Cj:Cj—Z,'Cj+1:Cj+1+1;CF,4:CFA+1

8

: else
9: let jlc; =2 and Vk < j, ¢ <2
10: cj=c¢j— 1; Cj+1 = Cj4+1 + 1, Cya=Cha+1
11: end if

12: end while
13: return (Cpa 0ga + Cra 0pa)

We define the 6, (Table 2) for basic functions that are
trivially implemented by HA and FA atomic resources. The
variables w, and wj represent the widths of operands a and

b, respectively, whereas w, represents the required result
width.

3 MobDULAR MULTIPLICATION

This section presents standard and Montgomery methods to
compute the MM and details their HC. The MM is given by

p=a-bmodm. (6)

3.1 Standard Modular Multiplication (SMM)

This method consists of computing the multiplication and
then computing the modulus. It is detailed in Algorithm 3.
The SMM’s HC is concentrated in lines 3 and 6 because shift
resources are free. Multiplication can be implemented in
various ways, as shown in the next section. Test and
subtraction at line 6 are actually a single subtractor resource
(the test is the subtracter’s borrow). A multiplexer is used to
choose between p and p—m values. This block is replicated
N +1 times to implement the FOR structure. A hardware
implementation is given in Fig. 2. The HC is

Oriopuro(N) = (N + 1)(0sus(N) + Oy x(N)), (7)

Osaine(N) = Onorr(N) + Oropuro(N). (8)
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Fig. 2. Standard Modulo Multiplication.

Algorithm 3 Standard Modular Multiplication (SMM).
1: Input: a, b, m
2:  Output: a - bmod m
3: p=a-b
4 m=m<KN
5: fori= N downto 0 do
6: if(p=m)p=p-—m
7 m=m>1
8: end for
9: return p

3.2 THE MONTGOMERY MULTIPLICATION METHOD

Introduced in 1985 [2], Montgomery’s MM algorithm is one
of the most efficient methods to perform ME. Let m be a
modulo of N bits and r be defined as r = 2V. Parameters m
and r must be relatively prime in order to have unique
inverses (r',m™!) in Z, and Z, respectively. This
necessary condition for the MMM is satisfied for any odd
m since r is a power of 2.

Given an integer 0 < a < m, the Montgomery representa-
tion (also called the m-residue) with respect to r is defined by

@ =a-rmodm. 9)

The Montgomery Reduction (MR) is the inverse trans-
form of the m-residue representation. It is defined by

a=MR(a) =a-r' modm, (10)

where @ is the m-residue of a, and 7! is the inverse of r in
Zn.

Given the m-residues @ and b, Montgomery proposes an
algorithm to compute the m-residue of a - b with power-of-2
divisions only (due to the special form of r). This is detailed
in Algorithm 4. The squaring version of the algorithm is
straightforward and will be called Montgomery Square
Reduction (MSR).

Algorithm 4 Montgomery Product Reduction (MPR).
1: Input: @, b,
2: Output:¢=a-b

3 u=a-b

4: v=wu-(—m") modr
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c=(u+v-m)/r

if (¢ > m) then
c=c¢c—m

end if

Return ¢

RSN IS

This algorithm is not efficient at all for a single MM
because it requires m-residue transformations (for operands)

~-1 and

and reduction (for result). Besides, constants r
(—m™1) must be precomputed. Nevertheless, when the
same data is involved in a large set of MM, this algorithm
has the asymptotical complexity of a multiplication and
becomes very interesting for large numbers since the
standard modulo operation is O(N?).

The HC of this algorithm is composed of two full
multipliers (lines 3 and 5), one N-bit truncated multiplier
(line 4), one 2N-bit adder (line 5), and one N-bit subtractor/
multiplexer stage similar to the one used in SMM (lines 6
and 7). The HC is

Orepver(N) =0yurr(N) + Oynurr(N, N, N)

+04pp(2N) + Osy(N) (11)

+ Opux(N),
Orsr(N) = Osquare(N) + Orepucr(N), (12)
Orpr(N) = Oyurr(N) + Orepver(N). (13)

The squarer and multiplier complexities are analyzed in
the next section. Combining MSR/MPR with MBE, MEM is
presented in Algorithm 5. This algorithm has /V stages. Each
stage is composed of one MSR and one conditional MPR.
The HC of one stage is

Ornem(N) = Onmpr(N) + Opsr(N) + Oawx (N). (14)

Algorithm 5 Montgomery Exponentiation Method (MEM).
1: Input:z, e, m

2:  Output: y = z° mod m

3: r=—m""' (using the extended euclidean algorithm)
4: T=2x-rmodm

5: y=1-rmodm

6: fori= N —1 downto 0 do

7: 5= MSR(y)

8: if (e; = 1) then

9: y = MPR(Z,7)

10: end if

11: end for

12: y= MPR(y,1)
13: return y

4 MULTIPLICATION ALGORITHMS

4.1 The Standard Multiplication Algorithm (SMA)
Let a and b be two N-bit numbers:

N-1
a = (ay-1aN-2...a9) = Z a;2', (15)
i=0

1311

a EN)
X b, by
Por Poo
+ P11 Pio
P3 P2 P4 Po

Fig. 3. The Standard Multiplication Algorithm.

N-1
b= (by 1by2...bo) =Y b2" (16)
=0

The standard (classical) multiplication method computes
the partial products p;; = a;b;. Each product has a weight 2.
Then, all products are summed (according to their weight),
resulting in a 2N-bit number. This is illustrated in Fig. 3 for
2-bit integers.

The last row of this table is the total sum of the partial
products, giving the product of a by b. This method is
presented in Algorithm 6, where partial products are
iteratively computed and summed at Step 8, known as the
inner product operation.

Algorithm 6 SMA.

1: Input:a, b

2:  Output: p = ab

3: Variable: C(Carry) and S(Sum)
4: Initially, p, =0 forall i =0,1,---,2N — 1
5: fori=0to N—1do

6: C=0

7 for j=0to N —1 do

8: (C7S) :ijeriajJrC
9: Dirj =195

10: end for

1. pun=C

12: end for

13: return (p2N71p2N,2 . po)

This algorithm’s complexity is O(N?). It is asymptotically
the slowest one in the literature but also the simplest. Its HC
can thus be given as

05204 (N) = Opasum ({pi;}) + N0 are.

The general form of the SMA (including r-bit truncated
multiplications) complexity is

(17)

1 €[0,w, — 1],
J€0,w, — 1],
P ={pi;l(i+7j) <w},
05214 (Wa, Wy, wr) = Opagum (P, w;)
+ #P Ocare.

The Standard Squaring Algorithm (SSA) is also O(N?),
but has a smaller complexity because p;; =p;; and
pij + pji = 2p;j, which is simply a change of weight of p; ;.

(18)

4.2 The Karatsuba Algorithm

Karatsuba is a Russian mathematician who proposed a
recursive multiplication algorithm with a complexity of
about O(N'?%). Let a and b be two N-bit numbers and let
I = N/2.Initially, a and b are split into two equal-sized parts
as follows:
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Fig. 4. Karatsuba multiplication implementation.

a = 2la1 +ay, b= 21b1 + by. (19)

Thus, ay and b, contain the ! least significant bits and a,
and b, contain the most significant bits. The value 2! denotes
the base 3 of this system. Karatsuba’s algorithm transforms
the multiplication of ¢ and b into the multiplications of half-
sized numbers ag, a1, by, and by, illustrated as follows:

p=a-b
=(2'a; + a).(2'b; + by)
=22 (ayby) + 2'(arbo + aghy) + aghy
=2%p, +2'p1 + po.

(20)

This formalism is simply a recursive version of SMA and
its complexity is still O(N?), but Karatsuba noticed that p;
could be expressed differently as

p1 = airby + apby = (ag + a1) - (by + b1) — po — po. (21)

The two multiplications and the addition previously
required are replaced by one multiplication, two additions,
and two subtractions, leading to a global complexity order
of N Karatsuba’s algorithm is consequently asympto-
tically more efficient than the classical one. However, the
latter is better for small-sized numbers. Therefore, a hybrid
algorithm is often used. It consists of applying Karatsuba’s
algorithm until the coefficient widths become lower than
the threshold at which point it is more interesting to use the
classical method. This algorithm is described in Algorithm 7
and its hardware implementation is illustrated in Fig. 4.

Algorithm 7 Karatsuba Multiplication Algorithm (KMA).
1: Inputs: a (w, bits), b (wy bits)
2: Output: p (w, bits) =a-b

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10,
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3: if (w,, wp and w, are too small) then

4 return SMA (a, b)

5: end if

6: ap=amod?2; a; =a/2

7: by = bmod2}; by = b/2'

8: Po = Kl\/IA(ao, bg)

9: P2 = I(N[A(Cll7 bl)

10: pP1 = KMA(CL() + ai, b() + bl) —Po — D2

11: p = 2%py +2'p1 + po

12: return p

We propose extending this algorithm to arbitrary widths
(including r-bit truncated multiplications). To be able to
compute p; from p; and py when w, < w, + w, the required
widths pow, piw, and pa,, are computed as follows:

~ min(wq, wp)

l B y ha:’wa—l, hb:wb—l, (22)

pOw - 2l7 (23)

1w = min(l + max(hg, hy) + 1, w, — 1), (24)

Pow = min(ha + hln max(plun Wy — 2l)) (25)

The HC of this algorithm is

Oxrra(Wa, wp, wr) = O ara(l) + Oxara(ha, B, Pow)
+894pp(l, ha) + 04pp (L, hy)

+0xaa(max(l, hy) + 1, max(l, hy) + 1, pro (26)

)

+95UB(plu‘apUu!7p1u/') + 95UB(p1w7p21mp1w)
+9P25um (P? y P1, pO) .

The HC of the Karatsuba Squaring Algorithm (KSA) can

be easily deduced by considering that w, =w, and
h = hq, = hy. It is given by the following;:

Oxsa(we, wy) = Oxsa(l) + Oxsa(h, paw
+204pp(L, h

+0scara(max(l, h) + 1, max(l, h) + 1, pry
+0507B(P1ws Pows Prw) + O5UB(P1ws P2ws Pl
+0p25um (P2, P1, Po)-

(27)

NN N NG

5 FFT IMPLEMENTATION OF MM AND ME
5.1 The Principle of FFT Multiplication

The multiplication of large integers using the FFT algorithm
is based on the polynomial multiplication:

S/2—1 ‘
Adz) = Y wd', (28)
=0
s/2—1
Bz)= > ba', (29)
i=0
S—-1
P(z) = A(z) - B(z) = Zp7:r‘ (30)

i=0
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Fig. 5. Polynomial multiplication.

Given two numbers A and B, the first step consists of
defining the {a,}, {0;}, and a base ( satisfying the following
system:

A= A@)],_p, (31)
B = B(x)|,_s, (32)
= P = P(z)],_s (33)

A degree S polynomial P(z) is completely defined by
S pairs (z;, P(x;)). Its coefficients can be computed by
interpolation. The polynomial multiplication by FFT is a
three-step process, as illustrated in Fig. 5:

1. Evaluate A; = A(z;) and B; = B(x;).

2. Compute products (z;, P(x;)) = (zi, A; - By).

3. Interpolate {(z;, P(z;))} to find the p;.

Evaluation and interpolation processes are generally
O(S5?). However, for a specific set of z; (0 <i < S), the
discrete Fourier transform (DFT) and its inverse (IDFT) can
compute them in O(Slog(S)) time by applying, respec-
tively, the FFT and IFFT algorithms:

S=2"w=®-T=uw =1, (34)
{r;}=vw',0<i<$, (35)
S-1 )
FFT=A; =) aw™0<i<s5, (36)
k=0
1 S—1 )
IFFT =a; = EZ Ay~ 0<i < 8. (37)
k=0

Fig. 6 illustrates a well-known implementation of the FFT
and IFFT algorithms based on the Butterfly operator. This
implementation is fully covered in the signal processing
literature. In our context (HC evaluation), we only need to
consider the following:

1. The Butterfly operator is computed as follows:

ru = lu + w'ld, (38

1313

IFFT

Log,(S) slices

lug +eru
Id ¢ -|serd
Butterfly operator

Fig. 6. FFT and IFFT implementation (S = 8).

rd = lu — w'ld. (39)

2. FFT can be implemented by log,(S) slices of

5 instances of the Butterfly operator.

3. IFFT can be implemented in a similar way (with

{X;} =w™), but it must be followed by a slice of

1
g Operators.

The FFT and IFFT algorithms rely on specific properties
of unity roots, which are complex numbers in the general
case. Nevertheless, complex numbers are not good candi-
dates for implementation in hardware because operands
have fixed widths and it is not possible to maintain full
precision. Modular arithmetic also offers multiple unity
roots, x;, that can be exploited in these algorithms and
which are better implemented in hardware. However,
specific conditions must be met to guarantee that FFT can
be applied. The theory behind these conditions is quite
complex and out of the scope of this paper. We present here
a very summarized justification. The interested reader can
find a more formal justification in [18]:

1. S =2Fand S~!' must exist in Zy:

= modulo m must be odd.
2. a4, bi<pB-1=p <5(B-1%

= m must be > 5 (8 — 1)
3. FFT and IFFT are used:

= Juwjw? = —1.

The following simple example will help illustrate the
process. We intend to multiply 4,321 by 8,765. For clarity,

we will use decimal formalism, so =10 and S = &:
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a b

' '

base conversion base conversion
(free) (free)

a NI T o,
FFT, O(S log(S)) FFT, O(S log(S))
A [T e
point to point multiplication , O(S)
[ e,
IFFT, O(S log(S))

[ e,

evaluation, O(S)

|

p

Fig. 7. FFT multiplication.

m must be odd and > 4(9)* = 324

. (40)
= w=06,m=w"+ 1= 1297 is a valid modulo
A(x) =14 2z + 32° + 423,
A=FFT(1,2,3,4,0,0,0,0)
=(10,985, 1,223, 349, 1,295, 530,70, 734),
B(x) =5+ 6z + T2* + 82,
B=FFT(5,6,7,8,0,0,0,0) (41)

= (26,724,1,223,1,097, 1,295, 1,087, 70, 1,003),

P =AB = (260,1,087,288,238, 4, 242, 1,009, 803),
pi = (5,16, 34,60,61,52,32,0),
P(x) =5+ 162 + 342% + 602° + 612" + 522° + 3225,

Finally, noticing that

A(z)B(x)|,_yo = 4,321 - 8,765 = P(x)|,_,, = 37,873,565,
(42)

the reader will be easily convinced that multiplying large
numbers is equivalent to multiplying polynomials. This is
detailed in the following section.

5.2 FFT-Based Multiplication

We consider the multiplication of N-bit numbers. Binary
numbers can be expressed in base 3 = 2! at no cost since it
consists of grouping their bits per packet of [ bits from the least
significant bits to the most significant bits. The operation to
compute P(x)|,_y (final evaluation) is a little more complex
because it requires additions, but the complexity is only O(S).
Thus, the multiplication of two integers can have the same
complexity order as the multiplication of two polynomials.
The algorithm for multiplying two binary integers by FFT is
described in Algorithm 8 and its combinatorial architecture is
presented in Fig. 7.
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Algorithm 8 FFT-based multiplication algorithm (FMA).
1:  Input: a, b N-bit integers

Output: p = ab

define parameters 1, k, and S such as

§=2%15S>2N

define valid modulo m and root w

compute {a;} and {b;}

apply FFT to get {4;} and {B;} (in Z,)

compute P, = A;B; (in Zp)

apply IFFT to get {p;} (in Zy,)

0: return p = P(z)|,_y

Remembering that Vi > *;, a; = 0 and b; = 0, thus render-
ing the first slice of FFT useless, the HC of FMA is therefore

S
Opaa(N) =25 (1og(S) = 1)0uttersiy (v)+
SOna(v+1) +0vv(S)+ (43)
S
§1Og(5)93utzerﬂy(v) +0pvar

with v defined as follows.

For the FFT-based squaring algorithm (FSA) or the FFT-
based constant multiplication algorithm (FCMA), only one
FFT must be computed. The complexity is reduced
accordingly.

Brassard and Bratley [18] have proposed special m and
w values that allow efficient implementation of the multi-
plier. We propose an original architecture based on these
parameters that tends to minimize the global HC. This is
fully detailed in the following points.

5.2.1 Brassard and Bratley Special m and w Values
These are given by

S ,
w:2r,v:r§,m:2"+1, (44)

with 7 chosen to satisfy m > 5 (3 — 1)*. This particular form
leads to power-of-2 w' defined by

. . S
w' =2"for 0 <ri< 3 (45)

S

w' = —2"77 for g <ri<8S. (46)

The value w is theoretically a (v + 1)-bit unsigned integer
and so are the operations involved in FFT and IFFT. In
order to simplify the hardware architecture, we propose
using (v+ 1)-bit signed integers with redundant logic.
Attention must be paid to the fact that the value 2" is now
represented by —1. All other values (except 0) have two
possible representations (positive and negative).

5.2.2 Modulo Operator
Any number z expressed in base 2" has the form

T = E ;2"
i
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Fig. 8. The butterfly operation in modular arithmetic.

Considering that

2’modm=-1=x= (Z xi(l)i> in Zmy. (48)

For (2v + 1)-bit signed integers and due to the sign bit, we
have

xmodm =z[fv—1...0] —z[2v—1...v] — z[2v] mod m,
(49)

which is a (v+ 1)-bit signed integer that can be computed
with a simple v-bit subtracter (with borrow) operator. The
reader should note that this would not have been possible
with unsigned arithmetic, which justifies our choice. Thus,
the HC of the modulo operator for up to (2v+ 1)-bit
(signed) operands is

QM()D(’UJT) = GSUBB('U) Yw, <2v+1. (50)

5.2.3 The Butterfly Operator

The Butterfly operator in modular arithmetic is illustrated
in Fig. 8. Thanks to our optimized parameters, the
multiplication by w' is reduced to a constant shift (from 0
to v —1 bits) and the negative values simply switch the
adder and subtracter resources. Thus, ¢ is actually a
(maximum) 2v-bit signed integer whose (v+1) first bits
are significant. The modulo operator following the multi-
plier is not useful anymore. The subsequent adder and
subtracter can be implemented by (v+ 1)-bit adder/
subtracter operators producing (2v + 1)-bit signed integers
that perfectly map the modulo operator requirements
defined above. The Butterfly HC can therefore be written as

Oprr(v) = 0app(v+ 1) + Osyp(v+1) + 20supp(v),  (51)

which is a remarkable result because the complexity
theoretically required for unspecified m and w’ parameters
would require one MM and two modular adder/subtracter
resources.

5.2.4 The Internal MM Operator and % Operator

The FMA requires S instances of a (v+ 1)-bit MM. This
multiplier can be recursively implemented by the FMA.
Nevertheless, in this paper, we only consider single-level
FMA because the operand size required for multilevel
implementation is beyond what is achievable in a single
combinatorial Integrated Circuit (IC). Thus, we consider
that this multiplier is implemented by KMA or SMA and
that it is followed by a modulo-m operator.
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The multiplier takes inputs in the range [—2",2" — 1] and
produces a result in the range [—22" + 2Y,2%], which is a
(2v + 2)-bit signed integer.

In order to have a (2v + 1)-bit signed integer (required by
our modulo operator) and to anticipate the ¢ operator, we
propose implementing the product’s negation, followed by
the modulo-m operator already described.

The implementation of the § operator (for IFFT) is also
very simplified in our context:

m=2"+1=1=—2'(.modm), (52)

1 v—k
Since the negation is already done (in the multiplication),
the { operator simply becomes a (free) shift followed by our

modulo-m operator. The HC is

(53)

Onnr(v+1) +O0invv(S) =

54
9AIULT(”+1)+92—CPL(U+1) +26‘M()D(U+1). ( )
5.2.5 Final Evaluation
The final evaluation consists of computing
51
P(z) =Y pia'l,y, (55)

i=0

where p;s are the outputs of the IFFT, which are modulo-m
integers represented by redundant (v+ 1)-bit signed in-
tegers. The values p; must first be converted into modulo-m
integers by adding m to each negative value. This can be
done with a multiplexer and a constant adder resource. The
final result is obtained by a sum of shifted values, which is
simply a power-of-2 sum. Noticing that ps_; =0, the
evaluation HC is

Opvar = (S —1)(Onux (v +1) + Ocsrapp(v+ 1))

+ QPQSum(- . ) (56)

5.3 FFT-Based MM and ME

The MSR and MPR algorithms combined with FSA and
FMA are very powerful because, among the three multi-
plications, two involve precomputed constants. Therefore,
one can also precompute the FFT of these constants and
apply FCMA. The MEM combined with FMA is even better
because all of the multiplications involved are square or
(precomputed) constant multiplications. Algorithms 9 and
10 are, respectively, the FFT-based implementation of MPR
and MEM.

Algorithm 9 FFT-based MPR (FMPR).
1: Input Y = FFT(y), X = FFT(%)
Output: ¥~z mod m
Constants: m = modulo, r =2V > m
Precomputed: | = —m™!, L = FFT(l), M = FFT(m)
U =Y - X(point to point)
u = evaluate(IFFT(U))
V = FFT(umodr) - L(point to point)
v = evaluate(IFFT(V)) mod r
W = FFT(v) - M(point to point)
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TABLE 3
Atomic Device Weights for Global Hardware Complexity
Device | Weight
Gate 1
Multiplexer 3
HA 2
FA 5

10: w = evaluate(IFFT(W))
11: g=(u+w)/r

12: if (y > m) then

13: y=y—m

14: end if

15: return y

Algorithm 10 FFT-based MEM (FMEM).
1: Input:z,e,m
Output: y = ¢ mod m
if (e = 0) then
return 1
else if (e = 1) then
return x
end if
l = —m™! (using the extended euclidean algorithm)
T=x-rmodm

—_
=)

:y=1-rmodm
: L=FFT()
: M =FFT(m)
: X =FFT(7)
: fori = N —1 downto 0 do
Y = FFT(y)
7= FMPR(Y,Y)
if (¢; = 1) then
Y = FFT(y)
y=FMPR(Y,X)
end if
: end for
: Y =FFT(%)
: y=FMRM(Y,FFT(1))
: Return y

NN RN NRKNR B

6 IMPLEMENTATION RESULTS

In this section, we present the HC results obtained for
several combinations of algorithms, implementations, and
operand widths. These complexities are expressed in terms
of atomic complexities Oyutc, Opmua, Orra, and Or4. A global HC
(computed from Table 3) is also given to enable the
comparison of the different versions. These weights are
based on the number of two-input gates required to
implement each atomic device.

6.1 Classical Implementation HC

The HCs of square, multiplication, MS, MM, and ME are
computed for the classical implementations. For ME, only
one stage is computed. Results are presented in Table 4.
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TABLE 4
Hardware Complexity: Standard Implementation
[ N gate | mux | HA ] FA | HC |
Square
16 120 0 15 105 675
32 496 0 31 465 2883
64 2016 0 63 1953 11907
128 8128 0 127 8001 48387
256 32640 0 255 32385 195075
512 130816 0 511 130305 783363
1024 523776 0 1023 522753 3139587
2048 2096128 0 2047 2094081 12570627
4096 8386560 0 4095 8382465 50307075
Multiplication
16 256 0 16 224 1408
32 1024 0 32 960 5888
64 4096 0 64 3968 24064
128 16384 0 128 16128 97280
256 65536 0 256 65024 391168
512 262144 0 512 261120 1568768
1024 1048576 0 1024 1046528 6283264
2048 4194304 0 2048 4190208 25149440
4096 | 16777216 0 4096 | 16769024 | 100630528
Modular Square
16 120 272 32 360 2800
32 496 1056 64 1488 11232
64 2016 4160 128 6048 44992
128 8128 16512 256 24384 180096
256 32640 65792 512 97920 720640
512 130816 262656 1024 392448 2883072
1024 523776 1049600 2048 1571328 11533312
2048 2096128 4196352 4096 6288384 46135296
4096 8386560 | 16781312 8192 | 25159680 | 184545280
Modular Multiplication
16 256 272 33 479 3533
32 1024 1056 65 1983 14237
64 4096 4160 129 8063 57149
128 16384 16512 257 32511 228989
256 65536 65792 513 130559 916733
512 262144 262656 1025 523263 3668477
1024 1048576 1049600 2049 2095103 14676989
2048 4194304 4196352 4097 8384511 58714109
4096 | 16777216 | 16781312 8193 | 33546239 | 234868733
Modular Exponentiation

16 376 560 65 839 6381
32 1520 2144 129 3471 25565
64 6112 8384 257 14111 102333
128 24512 33152 513 56895 409469
256 98176 131840 1025 228479 1638141
512 392960 525824 2049 915711 6553085
1024 1572352 2100224 4097 3666431 26213373
2048 6290432 8394752 8193 | 14672895 | 104855549
4096 | 25163776 | 33566720 | 16385 | 58705919 | 419426301

6.2 Karatsuba Implementation HC

The HCs of square, multiplication, MSR, MPR, and MEM
are computed for the Karatsuba implementation. This
means that, each time a squarer or a multiplier is involved,
its complexity is computed by the Karatsuba algorithm (in a
recursive way). Only one stage of MEM is computed. The
reader must recall that MSR, MPR, and MEM require a
Montgomery representation. Results are presented in
Table 5. The rightmost column indicates the ratio of the
Karatsuba implementation HC to the standard classical

implementation HC (%(S)).
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TABLE 5
Hardware Complexity: Karatsuba Implementation
| N gate | mux | HA | FA | HC [ %(S) ]
Square
16 120 0 15 105 675 100
32 496 0 31 465 2883 100
64 2016 0 63 1953 11907 100
128 6233 0 637 7250 43757 90
256 19028 0 2800 24504 147148 75
512 57685 0 10170 78967 472860 60
1024 174162 0 34036 247718 1480824 47
2048 524551 0 109139 764630 4565979 36
4096 | 1577542 0 341445 2336579 | 13943327 28
Multiplication

16 214 0 36 218 1376 98

32 683 0 131 810 4995 85
64 2106 0 433 2739 16667 69
128 6413 0 1377 8822 53277 55
256 19388 0 4280 27648 166188 42
512 58405 0 13130 85255 510940 33
1024 175602 0 39956 260294 1556984 25
2048 527431 0 120979 789782 4718299 19
4096 | 1583302 0 365125 2386883 | 14247967 14

Montgomery Square Reduction
16 499 16 67 460 2981 106
32 1768 32 194 1804 11272 100
64 5989 64 694 6714 41139 91
128 18492 128 2846 23169 140413 78
256 56527 256 10124 75802 456553 63
512 171706 512 33671 240444 1442804 50
1024 519407 1024 107867 748265 4479538 39
2048 | 1566876 2048 337827 2300326 | 13750304 30
4096 | 4718069 4096 | 1042970 7015306 | 41892827 23
Montgomery Product Reduction
16 593 16 88 573 3682 104
32 1955 32 294 2149 13384 94
64 6079 64 1064 7500 45899 80
128 18672 128 3586 24741 149933 65
256 56887 256 11604 78946 475593 52
512 172426 512 36631 246732 1480884 40
1024 520847 1024 113787 760841 4555698 31
2048 | 1569756 2048 349667 2325478 | 13902624 24
4096 | 4723829 4096 | 1066650 7065610 | 42197467 18
Montgomery Exponentiation (1 stage)

16 1092 48 155 1033 6711 105
32 3723 96 488 3953 24752 97
64 12068 192 1758 14214 87230 85
128 37164 384 6432 47910 290730 71
256 113414 768 21728 154748 932914 57
512 344132 1536 70302 487176 2925224 45
1024 | 1040254 3072 221654 1509106 9038308 34
2048 | 3136632 6144 687494 4625804 | 27659072 26
4096 | 9441898 | 12288 | 2109620 | 14080916 | 84102582 20

6.3 FFT Implementation HC

The HC is computed for the FFT implementation devices.
This means that, each time a squarer or a multiplier is
involved, its complexity is computed by the FFT algorithm.
This algorithm is theoretically recursive because it requires
S multipliers of smaller size. Nevertheless, only one level of
FFT is actually implemented in our context because further
levels are best implemented by the Karatsuba or the
classical architectures. The FFT architecture is not as flexible
as other architectures due to the close relationship between
r, S, m, and N. For a given r, the HC is a step function,
where steps are defined by S = 2k as illustrated in Table 6,
for r =1,2 and 3. It is up to the designer to choose the best
combination of r and S satisfying the required N. In this
paper, we only present results for » = 1 to save space. The
following details the case where » =1 and 5 = 64:
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TABLE 6
Operand Sizes for the FFTI Due to the Step Function
r=1 r=2 r=23
S l N 1 N l N
8 I 1—4 3 =12 5 1—20
16 2 5-16 6 13—48 || 10 21-80
32 6 17—96 || 14 49—224 || 22 81352
64 || 13 97—416 || 29 225928 || 45 353—1440
128 || 29 4171856 || 61 9293904 || 93 1441—5952
256 || 60 | 1857—7680 || 124 | 3905—15872 || 188 | 5953—24064
512 || 124 | 7681—31744 || 262 | 15873—64512 || 380 | 24065—97280
S=64=m=2"1+1, (57)
2m
B < 5= 11,585 = I < logy(5) = 13, (58)
result width < 64.13 = 832, (59)
operand width < 32.13 = 416. (60)

The Butterfly operator HC is available in Table 7, while
full implementation results are reported in Table 8. The
rightmost two columns indicate the ratio of the FFT
implementation HC to standard (%(S)) and to Karatsuba
(%(K)) implementation HC.

6.4 Hardware Complexity Comparison

Table 9 compares the HC of square, multiplication, MM,
and ME (one stage). For MM and ME, the classical
implementations require the classical binary representation,
whereas the Karatsuba and FFT implementations require
the Montgomery representation. NV values have been chosen
to be the best or the worst cases for FFT implementation
when r =1 (due to the step function).

Results demonstrate that the Karatsuba implementation
quickly produces lower complexities than the classical
implementation. Any application requiring operands great-
er than or equal to 32 bits should replace the classical
implementation with the Karatsuba implementation and,
potentially, the FFT implementation.

The Karatsuba implementation and the FFT implementa-
tion compete to minimize the HC. The FFT implementation
minimizes the HC of 1,856-bit operands operations, but the
Karatsuba implementation minimizes the HC of 1,857-bit
operands and both implementations are better than the
classical implementation. The exact thresholds are pre-
sented in Table 10.

Although the Karatsuba implementation seems to offer
the best complexity for up to 1,825-bit operands, one must
recall that it requires a complete combinatorial or pipelined

TABLE 7
Butterfly Operator Hardware Complexity

v+1 | gate | mux | HA | FA | HC

5 0 0 2| 8| 4

9 0 0 2| 12| 64

17 0 0 2| 16| 84

33 0 0 2| 20| 104

65 0 0 2| 24| 124

129 0 0 2| 28| 144

257 0 0 2| 32| 164
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TABLE 8
Hardware Complexity: FFT Implementation
N ] gate [ mux | HA ] FA T HC [ %) [ %K) ]
Square
1—4 87 35 146 442 2694 | 9978 | 9978
5—16 582 135 526 2576 14919 | 2210 | 2210
17—96 4354 527 1890 14392 81675 302 316
97—416 33793 2079 7289 82103 465123 90 139
417—1856 266241 8255 29145 491895 2808771 27 72
1857—7680 1625857 32895 247969 2954741 16994185 10 44
7681—31744 9849857 | 131327 1775393 17451509 | 101052169 3 27
Multiplication
1—4 207 35 170 642 3862 | 6034 | 6034
5—16 1302 135 590 3904 22407 | 1591 1628
17—96 8066 527 2818 22648 128523 236 392
97—416 47169 2079 14329 126327 713699 69 196
417—1856 281345 8255 78681 695159 3939267 19 97
1857—7680 1679105 32895 441761 3824629 21784457 6 56
7681—31744 | 10048513 | 131327 2541857 21175797 | 121405193 2 33
Constant Multiplication
1—4 207 35 154 514 3190 | 4984 | 4984
5—16 1302 135 542 3136 18471 | 1312 | 1342
17—96 8066 527 2690 18552 107787 198 328
97—416 47169 2079 14009 105847 610659 59 167
417—1856 281345 8255 77913 596855 3446211 17 85
1857—7680 1679105 32895 439969 3365877 19487113 6 50
7681—31744 | 10048513 | 131327 2537761 19078645 | 110911241 2 30
Montgomery Square Reduction
1—4 501 109 456 1480 9140 | 5314 | 5050
5—16 3186 421 1612 8894 52143 | 1862 | 1749
17—96 20486 1677 7272 51782 298971 295 353
97—416 128131 6653 35309 295043 1693923 89 165
417—1856 828931 26621 184973 1691171 9734595 26 83
1857—7680 4984067 | 106365 1127909 9709533 56106645 9 49
7681—31744 | 29946883 | 425725 6850917 55704029 | 323446037 3 29
Montgomery Product Reduction
1—4 621 109 480 1680 10308 | 4932 | 4728
5—16 3906 421 1676 10222 59631 | 1688 | 1620
17—96 24198 1677 8200 60038 345819 269 371
97—416 141507 6653 42349 339267 1942499 80 184
417—1856 844035 26621 234509 1894435 10865091 23 91
1857—7680 5037315 | 106365 1321701 10579421 60896917 7 53
7681—31744 | 30145539 | 425725 7617381 59428317 | 343799061 2 31
Montgomery Constant Product Reduction
1—4 621 109 464 1552 9636 | 4611 | 4420
5—16 3906 421 1628 9454 55695 | 1576 | 1513
17—96 24198 1677 8072 55942 325083 253 354
97—416 141507 6653 42029 318787 1839459 76 174
417—1856 844035 26621 233741 1796131 10372035 22 87
1857—7680 5037315 | 106365 1319909 10120669 58599573 7 51
7681—31744 | 30145539 | 425725 7613285 57331165 | 333305109 2 30
Montgomery Exponentiation (1 stage)
1—4 1122 222 920 3032 18788 | 4781 | 4571
5—16 7092 858 3240 18348 107886 | 1691 1608
17—96 44684 3450 15344 107724 624342 271 353
97—416 269638 13722 77338 613830 3534630 82 170
417—1856 1672966 55098 418714 3487302 20112198 23 85
1857—7680 | 10021382 | 220410 2447818 19830202 | 114729258 8 50
7681—31744 | 60092422 | 883194 | 14464202 | 113035194 | 656846378 3 30

implementation (because of recursion deployment). Such an
implementation involves tens of millions of gates and this is
usually not acceptable in most cryptographical circuits.

The FFT implementation produces lower complexities
than the classical implementation for higher thresholds, but
it offers the advantage of being implementable with a
functional pipeline. A circuit composed of one modulo-m
multiplier (with m defined as shown above), 2log(S)
modulo-m Butterfly operators, and one accumulator can
perform a multiplication in S clock cycles at the price of a
few extra memory elements and multiplexers to implement
functional pipelining.

6.5 Preliminary FPGA Implementation

FPGAs are programmable devices capable of implementing
complex designs equivalent to millions of gates. Moreover,
recent FPGAs already contain hundreds of small multiplier
cores that can be interconnected with custom logic to build
more complex devices. Our methodology to measure a
circuit’s complexity cannot be applied straightforwardly to
such a device because they contain atomic subdevices that
are more complex than a gate, a multiplexer, an HA, or an
FA. Nevertheless, if thresholds are different, complexity
orders remain and this should be observable.
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TABLE 9
Hardware Complexity Comparison: Standard, Karatsuba, and
FFT Algorithms for Square, Multiplier, MS, MM, and ME

[ NT ST 1] SMA(W] KMAQ) [ FMAR) [ /(D% [ B/ % | B2 % |
Square
96 32 6 27075 25859 81675 96 302 316
97 64 13 27648 26492 465123 96 1682 1756
416 64 13 516675 334152 465123 65 90 139
417 | 128 29 519168 336353 2808771 65 541 835
1856 | 128 29 10323075 3908038 2808771 38 27 72
1857 | 256 60 10334208 3913901 16994185 38 164 434
7680 | 256 60 176901123 38251605 16994185 22 10 44
7681 | 512 | 124 176947200 38269299 | 101052169 22 57 264
Multiplication
96 32 6 54528 32819 128523 60 236 392
97 64 13 55678 33660 713699 60 1282 2120
416 64 13 1035008 364968 713699 35 69 196
417 | 128 29 1039998 367385 3939267 35 379 1072
1856 | 128 29 20653568 4049830 3939267 20 19 97
1857 | 256 60 20675838 4055915 21784457 20 105 537
7680 | 256 60 353832960 38831701 21784457 11 6 56
7681 | 512 | 124 353925118 38849581 | 121405193 11 34 313
Modular Square (Standard or Montgomery representation)
96 32 6 101280 84755 298971 84 295 353
97 64 13 103402 86746 1688181 84 1633 1946
416 64 13 1903200 1023829 1693923 54 89 165
417 | 128 29 1912362 1029943 9708693 54 508 943
1856 | 128 29 37890240 11784291 9734595 31 26 83
1857 | 256 60 37931082 11800019 56001831 31 148 475
7680 | 256 60 648798720 | 114819105 56106645 18 9 49
7681 | 512 | 124 648967690 | 114865734 | 323012903 18 50 281
Modular Multiplication (Standard or M y representation)
96 32 6 128733 91715 345819 71 269 377
97 64 13 131432 93914 1936757 71 1474 2062
416 64 13 2421533 1054645 1942499 44 80 184
417 | 128 29 2433192 1060975 10839189 44 445 1022
1856 | 128 29 48220733 11926083 10865091 25 23 91
1857 | 256 60 48272712 11942033 60792103 25 126 509
7680 | 256 60 825730557 | 115399201 60896917 14 7 53
7681 | 512 | 124 825945608 | 115446016 | 343365927 14 42 297
One stage of Modular Exponentiation (Standard or y ion)

96 32 6 230301 176758 624342 77 271 353
97 64 13 235125 180951 3522189 77 1498 1946
416 64 13 4325981 2079722 3534630 48 82 170
417 | 128 29 4346805 2092169 20056077 48 461 959
1856 | 128 29 86116541 23715942 20112198 28 23 85
1857 | 256 60 86209365 23747623 | 114502161 28 133 482
7680 | 256 60 | 1474552317 | 230241346 | 114729258 16 8 50
7681 | 512 | 124 | 1474936341 | 230334793 | 655907921 16 44 285

The following results demonstrate that our approach is
fully functional and give some insight into what is
achievable in an FPGA. Nevertheless, the complete optimi-
zation of such an implementation is out of the scope of this
paper and could be explored in a future paper.

We implemented multipliers of different sizes on a
Stratix II device manufactured by Altera [19]. Each circuit
has been synthesized by the Quartusll software [19].
Table 11 reports the synthesis results of a naive imple-
mentation that lets the Quartusll tool build the multiplier
itself and our Karatsuba-based implementation. Due to the
presence of 9-bit digital signal processor (DSP) blocks
capable of implementing 18-bit multipliers, we limited the
Karatsuba recursion to such multipliers. Table 12 reports
the synthesis results for our FFTI. All of the circuits have
been tested on random test vectors and gave successful
results.

TABLE 10

Thresholds of Equal Complexity
Algorithm K/S FFT/S FFT/K
Square (N) 80 969 1519
(HC) | 18551 | 2808771 | 2808771
Multiply (N) 16 346 1824
(HC) | 1376 | 713699 | 3939267
MM (N) 24 373 1750
(HC) | 7842 | 1941725 | 10863183
ME (N) 28 376 1677
(HC) | 19335 | 3533070 | 20105217
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TABLE 11
Multiplier FPGA Implementation: Naive/Karatsuba
Naive implementation Karatsuba-based implementation
Size LC 9-bit DSP | Delay(ns) LC 9-bit DSP | Delay(ns)
32x32 —64 0 8 14 149 6 20
64x64 —128 213 32 23 745 24 30
128x128 —256 5700 96 38 2828 78 44
256x256 —512 | 36193 288 64 9669 246 68
TABLE 12

Multiplier FPGA Implementation: Naive/FFT

Naive implementation FFT-based implementation

Size LC 9-bit DSP | Delay(ns) LC 9-bit DSP | Delay(ns)
4x4 —16 32 0 11 544 6 31
16x16 —32 0 2 12 3141 31 46
96x96 —192 501 72 31 16788 64 73
416x416 —832 | 70180 768 91 79438 512 253

7 CONCLUSION

The complexity of squaring, multiplication, MS, MM, and
ME depend on the algorithm used to implement them. the
Karatsuba implementation and the FFT implementation are
well known in software applications but seem to be rarely
used in hardware due to recursion (for the Karatsuba
implementation) and too large integer requirements (for the
FFT implementation).

We have performed an in-depth analysis of the HC
involved by Karatsuba and FFT-based implementations of
the cited operators. We have also proposed a very
optimized implementation of FFT-based operators. Results
show that recursion deployment leads to efficient imple-
mentation for as small as 16-bit operands (Karatsuba
implementation), whereas our optimized FFT implementa-
tion starts to outperform the classical implementation for
346-bit operands for simple multiplication. For 1,856-bit
integers, one stage of ME in FFTI only requires 23 percent of
the classical implementation hardware for the same stage.

Current cryptographical applications require 1,024-bit
operands (and beyond) and the need for larger keys
continuously increases. We think that the FFT implementa-
tion will take an important place in future design, at least
for functionally pipelined architectures or specialized
arithmetic logic units (ALUs, with dedicated modulo-m
operations) coupled to standard processors.
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