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In Knuth's algorithm for multlprecision integer division, the estimated quotient digit may differ from 
the correct value by 2 in rare cases. We derive the entire range of cases in which this situation can 
occur for a given radix. The results are expected to be useful in testing realizations of the algorithm 
in computer algebra systems and elsewhere. 
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1.1.3 [Algebraic Manipulation]: Languages and Systems--special-purpose algebraic systems 
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1. INTRODUCTION 

We present  examples tha t  are useful in test ing realizations of  Knu th ' s  algori thm 
[1, p. 237] for division of nonnegat ive integers using an arbi t rary  radix. We derive 
the entire range of si tuations in which the seldom-executed special cases of  the 
algori thm are performed. 

We use the nota t ion 

[am, a m + l , . . . ,  a,] = ~ ajb "-J, 
J~rf~ 

where b is the radix. We assume throughout  tha t  b is even and b -> 6. We also 
write Ixj for the greatest  integer less than  or equal to x and  fx] for the least 
integer greater than  or equal to x. 

The  algori thm divides s = [ s - l , . . . ,  sm] by v = [vo . . . .  , v,], for m, n ~ 1, s-1 -~ 
0, So > 0. It is assumed tha t  vo >- b/2; if it is not,  it can be made so by  mult iplying 
both s and v by Ib/(vo + 1)J. 

The  only tr icky par t  of the algori thm is the est imation of  the  successive digits 
q, of the quotient.  For  a given quot ient  digit q, the procedure is as follows, 
assuming m = n: 

(1) Est imate  q by 0 = t[s_~so]/VoJ. (If  0 _> b, we may adjust it  immediately to 
b -  1.) 
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(2) Adjust ~ to ~ = L[s-,sos,]/[VoV,]J by subt rac t ing  1 or 2 if  necessary.  
(3) Pe r fo rm the  division, replacing s by  s - Ov. I f  this  quant i ty  is negative, 

subt rac t  1 f rom q, producing the  t rue quot ient  digit q. 

K n u t h  proves  t ha t  the given condit ions q _ ~ <- q + 2 and  q - ~ - q + 1. He  
also shows tha t  S tep  3 will be pe r fo rmed  with a probabi l i ty  (in some sense) of  3 /  
b. I f  b is as large as the size of  a compute r  word, as it is in the  usual applicat ions,  
this  probabi l i ty  is very small.  Therefore ,  it is impor t an t  to tes t  any  real izat ion of 
the a lgor i thm with cases in which Steps  2 and  3 are bo th  executed. For  example ,  
for b - 10, s = 4791, and  v --- 599, we have q = [4791/599J = 7, while ~ -- [479/ 
59J = 8 and  t~ = L47/5J = 9. 

We show how to find all cases in which ~ = q + 2 for a given radix b, first  
wi thout  and  then  with the  addi t ional  condit ion t h a t  ~ = q + 1. 

2. RESULTS 

We first  invest igate the  condi t ions under  which ~ --- q + 2 alone. Looking a t  the  
mos t  s ignif icant  digits only, we assume a three-digi t  dividend s and  a two-digit  
divisor v = [vovl]. I f  ~ = q + 2, then  s mus t  sat isfy Sm,n- S ----- Smax, where 

s,,,. = vob(q + 2), sm,x --- v(q + 1) - 1. 

Elabora t ing  the  condit ion Smax ----- S~m gives 

vl(q + 1) >__ vob + 1. (*) 

The  m a x i m u m  value of q, say q . . . .  is b - 3 since we wan t  ~ to be less t han  b. T o  
find the ent i re  range of  v and  q which is of  interest ,  we solve the  following 
problems:  

A. Find  the range of possible v for a given q. Set t ing  vl = b - 1 in ( .) ,  the 
m a x i m u m  v0 is 

max  vo = b --- q + 1 b - q" 

For  a given q and  Vo, the m i n i m u m  v~ is obviously 

minv~  = q +  1 | " 

I f  Vo is m a x i m u m  for a given q, t hen  

÷ q 
r a i n y 1 - -  | q + l |  - - b -  l = m a x v l .  

B. Find  all possible v for q = qrnax. Obviously,  max  Vo = qm,x -- b - 3. For  a 
given Vo, 

m i n v l =  | b - 2 |  = V o +  o_ = V o + 2 ,  

since b/2 -: Vo <- b - 3. 
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C. F ind  q . . . .  t he  m i n i m u m  o /q ,  and  the associated range o f  v. F r o m  ( . ) ,  l e t t i n g  
Vo = b/2 a n d  vi = b - 1, we have  

c l l = v o b + l  1 = - 1 = 2 qmm / vl 1) = - '  

s ince  we a s s u m e  b is g r e a t e r  t h a n  or  equa l  to  6 a n d  even.  F r o m  P a r t  A, i f  q = 
q . . . .  t h e n  Vr,,~ = V~,, = [b/2,  b - 1]. 

N o w  we i n v e s t i g a t e  cases  in  w h i c h  ~ = q + 2 a n d  ~ = q + 1. W e  m u s t  give s 
four  d ig i t s  a n d  v t h r e e  d ig i t s ,  v --- [VoV~V2]. T h e  m a x i m u m  va lue  o f  s is, a s  be fore ,  

sm,. = v (q  + 1) - 1. 

T h e  m i n i m u m  va lue  o f  s d e p e n d s  now on  two  c o n d i t i o n s .  De f ine  

to = vob2(q + 2), 

tl = (vob + vz)b(q + 1) = Sin,. -- v2(q + 1) + 1. 

In  o r d e r  for  t) = q + 2, we m u s t  have  s _ to, wh i l e  ~ = q + 1 i m p l i e s  s ~ t l .  
T h e r e f o r e ,  in t h i s  case,  sin,, = max( to ,  h ) .  H o w e v e r ,  s ince  tz < to is e q u i v a l e n t  to  

v~(q + 1) < vob, 

w h i c h  is i n c o n s i s t e n t  w i th  ( . ) ,  we  m u s t  have  s~, ,  = tz in  t h e  ca ses  o f  i n t e r e s t .  
T h e  c o n d i t i o n  Sin,, >-- tz i m p l i e s  o n l y  t h a t  

v 2 ( q +  1 ) _  1, 

a n d  the re fo re ,  t h a t  v2 - 1. O n  t h e  o t h e r  h a n d ,  f rom s~ , .  >_ to we ge t  

(v~b + v2)(q + 1) >_ vob 2 + 1. (**) 

So lv ing  p r o b l e m s  A, B, C a g a i n  f rom t h i s  i n e q u a l i t y ,  we f i n d  no  f u r t h e r  r e s t r i c t i o n  
on t h e  r e su l t s  d e r i v e d  f rom ( . ) .  I n  fact ,  n o  c o n d i t i o n  is i m p o s e d  on  v~ b e y o n d  
v2 --- 1. So  for  p r o b l e m  C, i f  q = qm,, = b/2,  t h e n  

Vmax ~ -  [b/2, b - I, b - I] ,  Vm,n = [b/2, b - I ,  I] .  

W e  i l l u s t r a t e  w i th  e x a m p l e s  for  b = 10 a n d  1000, l a b e l i n g  t h e  r e s u l t s  d e r i v e d  
f rom ( . )  w i th  B a n d  C, a n d  t h o s e  f rom (**) w i t h  B '  a n d  C ' .  

E x a m p l e  i .  b = I0.  

B. q = q~.~ = 7: v~.~ = 79, Sm.. = 631 a n d  stain = 630. 
C. q = q~l.  = 5: v~.~ = vmi. = 59, Sm.~ = 353 a n d  s~m = 350. 
B ' .  q = q~. .  = 7: Vm.. = 799, S~..  = 6391, a n d  S~,n = 6320. 
C ' .  q = q~,.  = 5: Vm.. = 599, Sm.. = 3593 a n d  sin,. = 3540; 

v~,.  = 591, sin.. = 3545 a n d  s~, .  = 3540. 

E x a m p l e  2. b = 1000. 

B. q = q~. .  = 997: v~. .  = 997,999, Sin.. = 996,003,001 a n d  sin=. = 996,003,000. 
C. q = q~,.  = 500: v~ . .  = Vm,. = 500,999, Sin.. = 251,000,498 

a n d  S~m = 251,000,000. 
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B ' .  q = qmax = 997: V~ax ---- 997,999,999, S . ~  = 996,003,999,001 
a n d  s~.~n = 996,003,002,000. 

C ' .  q = qm,n = 500" Vmax ffi 500,999,999, S.ox = 251,000,999,498 
a n d  Smi. ffi 251,000,499,000; Vmi~ ffi 500,999,001, 
S.~x ffi 251,000,499,500 a n d  Sm,n = 251,000,499,000. 

T h e  u s e r  m a y  d e t e r m i n e  a n  a p p r o p r i a t e  r a n g e  o f  v for  a n y  q b e t w e e n  q~,.  a n d  
q~.x, t h e n  ve r i fy  t h e  q u o t i e n t s  for  va lue s  o f  s b e t w e e n  sin,. a n d  Sm~. 
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