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either by a ring counter or a shift register with a one rippling
through.

VI. CONCLUSION
A BIN/BCD conversion method has been developed which

lends itself to unlimited expansion by using the geometrical
similarity of interconnecting maps. Properly designed, the maps
then contain all the necessary information to determine the size,
the content, and the actual wiring of the decoding ROM's. Wiring
diagrams were used to develop the hybrid conversion scheme.
Conversion systems for practically any speed or size can be de-
signed by using either the static or the hybrid method. This
scheme is not limited to binary/BCD conversion, but can be ex-
tended to other types of conversion as well, such as, synchro/
BCD, etc.
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On the Use of Continued Fractions for Digital Computer
Arithmetic

KISHOR S. TRIVEDI

Abstract-Recently, there has been some interest in the use of
continued fractions for digital hardware calculations. We require
that the coefficients of the continued fractions be integral powers
of 2 and, therefore, well-known continued fraction expansions of
functions cannot be used. Methods of expansion of a large number
of functions are presented. We show that the problem of selection
of coefficients of the continued fractions does not have practical
solution in most of the cases we have considered.

Index Terms-Bilinear transformation, computer arithmetic,
continued fractions, hardware, logarithm, number system, qua-
dratic equation, redundancy, Riccati equation, selection proce-
dure.

I. INTRODUCTION

In this study, we have investigated the possibility of using
continued fractions to evaluate elementary functions in hard-
ware. A continued fraction is represented by

P1P2 +

q1 + q2
where pi is known as a partial numerator and qi is known as a
partial denominator. An n-term approximation to such a con-
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tinued fraction, denoted by Pn/Qn, can be obtained using the
following recursions [1]:

Po = Q-i = 0, Qo = P-i = 1)

Pi+, = pi+,Pi-, + qi+1Pi
Qi+l = Pi+lQi-l + qi+1Qi. )

(1.1)

In order to reduce the four multiplications in the above recur-
sions to shifts, we require that the partial numerators and de-
nominators be integral powers of 2. As a result of this restriction
we are not able to use well-known continued fraction expansions
of the functions to be evaluated. For example, to evaluate
tanh x, we may not use the expansion:

tanh x = xx + . . + x +2
1+3 2n+ 1

The first step in this direction was taken by deriving a method
of expansion for the solution to a quadratic equation [2]. The class
of Riccati differential equations is closed under a bilinear
transformation [3]. In this correspondence we show that using
this approach, a large number of elementary functions can be
expanded into a continued fraction. We also present a new
method of expanding logy x into a continued fraction.
We would like to keep the set of allowable values of the partial

numerators and denominators small. Once these two sets of al-
lowable values are chosen, the range of numbers representable
as continued fractions is fixed and finite. This introduces a re-
striction to the possible values of pi and qi at an iterative step.
Furthermore, since the value of the function to be evaluated is
known only implicitly through some coefficients, the selection
of pi and qi is a nontrivial problem. It is also desirable that the
selection procedure be computationally simple in the sense that
it may use add, subtract, and shift operations only. In general,
this requires the use of an approximation in the selection pro-
cedure [2].
A selection procedure was obtained for the solution of a qua-

dratic equation [2]. This was later extended to higher degree
polynomials [4]. In this correspondence, we show that for func-
tions expandable using the Riccati equation approach and for the
function logy x, a simple selection procedure does not exist.

In Section II, we derive the expansions of functions into con-
tinued fractions. In Section III, we investigate the selection
problem.

II. METHODS OF EXPANSION

Let the function to be expanded into a continued fraction be
denoted by f(ao) where ao is a vector of arguments. We expand
f(ai) (for i = 0,1,2, - - *) using the following bilinear transforma-
tion:

f(ai) Pi++
/qi+1+f(ai+l) (2.1)

It is required that the vector of coefficients ai+I be obtainable
from ai, Pi+,, qi+i, ai- , pi, and qi by means of simple recursions.
A recursion is said to be simple if it uses shift, addition, and
subtraction operations only. Let us denote this system of recur-
sions by

ai+l= G(aj,ai_i,pi+i,pi,qi+j,qi)

Next we show that many functions fall in this category.
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CORRESPONDENCE

A. Solution of a Quadratic Equation [2]

Let ai = (bi,ci), f(ai) = ci (bi + x) and x = co/(bo + x) thenf(ao)
is a solution to the quadratic x 2 + box - co = 0. In [2], a system
of simple recursions G is derived, which may be written as

bi+l= qi+lci - qici- + bi-

ci+l= qi+±(bi - bi+i) + ci-.

In [4], this method has been extended to higher degree polyno-
mials.

Another method of expansion for the solution of a quadratic
equation b xo + coxo - do = 0 is obtained by letting ai = (bi,ci,di),
f(ai) = xi where bix + cixi- di = 0. Applying the transformation
(2.1), the system G can be written as

bi+, Pdi-p+j

Ci+I= 2d i+2Pi+1 Pi+ i

di+, = bi + cjqj+1 - di (~i±i)2
Pi+ i Pi+ i

n= 2. Now (2.5) is seen to be the well-known Riccati equation.
Let

"

j(ajy2 + biyi + ci), (2.6)

where j = 1 if i is even, j = -1 if i is odd and the initial condition
is, yi (0) = ti. Applying the bilinear transformation, we obtain the
system of recursions [7]:

ai+l = Ci/Pii+l
bi+l = bi + 2ciqi+l/pi+l
ci+l = aipi+l + biqi+l + ciq+il/Pi}
ti+ I = Pi+ 1/ti -qi+

(2.7)

Now if we let ai = (ai,bi,cj,ti,x) and f(ai) = yi(x) then we have
a method of expansion of yo(x) = f(ao). The system G is given
by the set of recursions (2.7). We note.that the recursions for ai 1,
bi+ 1, and ci+ 1 are simple since we have assumed that Pi+ 1 and qi+i
are integral powers of 2. However, the recursion for ti+1 is not
simple. This problem can be solved by letting ti = di/ei, do = to,eo
-1 and

di+, = ki+,(pi+lei- qi+ldi)
ei+ i=ki+l(di) (2.8)

B. Expansion of Logarithm

Let ai = (bi,bi-1) and f(ai) = logbj_1bj. Applying the trans-
formation (2.1), we have [5],

= (bi.1)Pi+1il (bi)qi+l (2.2)

However, we note that this recursion is not simple. To solve this
problem we can easily establish by induction that [6]

bi = ((bl)ci)) ' (2.3)

where j = 1 if i is odd,] = -1 if i is even and the recursions forci+
and di+, are

c1 =do = 1, co= d- = 0)

Cj+jPi+Ici-1 + qi+lci (2.4)
dj+j = pj+jdji1 + qi+ldi.

Comparing the recursion (1.1) and (2.4), we see that ci = Pi and
di = Qi for all i. Therefore, if we let ai = (Pi,Qi), we have, f(ao)
= logb-lbo.

C. The Riccati Equation [3], [7]
Consider the first-order differential equation:

Y + . (a )Iy = 0. (2.5)
j=-m

We apply the bilinear transformation

Yi = pi+l/(qi+l + yi+i)
to (2.5) and require that Yi+l satisfy a similar differential equa-
tion, i.e.,

n

Yi+l = , (ai+i)jy,+i.
j=-M

After some tedious algebra, it is easily shown that m = 0 and

We adjoin the recursions (2.8) to (2.7) after removing the recur-
sion for ti+1. Also, the vector ai is redefined so that ai = (ai,bi,
ci,di,ei,x). By choosing the initial coefficients ao,bo,co,do, and eo
appropriately, many different functions can be expanded using
this approach, as shown in the following table [7].

ao bo co to yo(x)

1 0 1 0 tanx
-1 0 -1 o cot x
-1 0 0 o l/x
-1 0 1 co coth x
-1 0 1 0 tanh x
O +1 0 1 ex
O -1 0 1 e-X

If we allow the coefficients ai,bi, and ei to be functions of x then
many more functions can be expanded [7].
We conclude this section by presenting an algorithm for the

evaluation of a function using continued fractions. The problem
of selection, which is hidden in the procedure "select" of the al-
gorithm, will be discussed in the next section.

Algorithm A
Step 1 [Initialize]:

Po.Q-i . ;P_1 Qo l; i 0;

Initialize the coefficient vector ao depending on the function to
be evaluated.
Step 2 [Selection]:

(pi+i,qi+i) select (ai, function to be evaluated).

Step 3 [Recursions]:

ai+1 " G(aij, aji_,pi,pi+j,qi,qi+j);
P1+j -pj+jP_ij + qi+1Pi;

Qi+l pj+jQj-j + qi+iQi.
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-(I(1,2)L- [I(l, l)]

(p,q) = ?

Fig. 1. The gap in selection.

m=l/2 2/3 M=l

Fig. 2. A nonredundant number system.

Step 4 [Test]:
After a sufficient number of iterations GOTO Step 5; otherwise

set i <- i + 1 and return to Step 2.
Step 5 [Evaluate]:

f(ao) -i+l

End A.

III. THE SELECTION PROBLEM

Let the set of allowable values of partial numerators be denoted
by Sp and the set of allowable values of partial denominators be
denoted by Sq, We will assume that both Sp and Sq are finite
subsets of positive reals. Let Pmin = min Sp, Pmax: = max Sp, qmin
= min Sq and qmax = max Sq Let the set of numbers represen-
table as infinite continued fractions (ICF's) using the sets Sp and
Sq be denoted by R(Sp,,Sq). Let

Pminm =

qmax+ P max

qmin + m

and let

M = Pmax
+ Pmin

qmax + M

It is clear that

pi E Sp, qi E Sq and fi-i E I(pi,qi).

Note that this search will always succeed provided R (Sp,Sq) is
an NS. Furthermore, the definition of I(p,q) guarantees that fi
& [m,M] therefore, the above procedure can be applied repeti-
tively.
As an example, let Sp = 11l and Sq = 11,2I. In this case a simple

computation reveals that the conditions of Theorem 1 are not
satisfied and R (Sp,Sq) is not an NS. The gap between selection
intervals I(1,1) and I(1,2) is the reason for trouble as shown by
Fig. 1.
As another example, let Sp = I1l and Sq = I1,1/2) In this case

there are no gaps as shown by Fig. 2.
Therefore, R(Sp,Sq) forms an NS. In this case, the selection

procedure can be specified as follows:

a) If fi-l1 [%,3), thenP = 1, qi = 1.
b) If h-i E (J,1], then pi = 1, qi = /.
c) Iff,=fi , then pi = 1 andqj = / or 1.

Note that two choices are possible for qj if fi-i = . Let an in-
terval I(p,q) be known as a selection interval. The reason for
multiple choice is seen to be the nonnull intersection of adjacent
selection intervals. As a result of this, some numbers in [m,M]
will have multiple ICF representations. Let us define an NS
R (Sp,Sq) to be nonredundant provided for any two distinct pairs
(p,q) and (p',q'),I(p,q) r) I(p',q') is either null or is a singleton.
In such a case it is easy to see that multiple choice of (pi,qi) results
for only a finite number of points fi &E [m,M]. We see that for
sp = I and Sq = I1,'/2, R(Sp,Sq) is a nonredundant NS. An ex-
ample of a redundant NS is obtained by letting Sp = I1l and Sq
= I1,2,/41. In this case we note that [8],- ~~R(Sp,'Sq) c [m,M]-

We would like to impose some conditions on the sets Sp and Sq
so that R (Sp,Sq) = [m,M]. As a result, any number in the interval
[m,M] can be represented as an ICF. Let m(p,q) = p/(q + M),
M(p,q) = p/(q + m), I(p,q) = [m(p,q),M(p,q)] and

I(Sp,Sq) = U I(p,q).
PespPE Sqpq Sq

Note that, I(p,q) is a closed interval of the positive real numbers.
It can be shown that the following theorem holds [6].
Theorem 1:

R(Sp,Sq) = [m,M] iff I(Sp,Sq) = [m,M].
Given the sets Sp and Sq, if the conditions of Theorem 1 are
satisfied then we say that R(Sp,Sq) is a number system (NS).
Given an fo E [m,M] we can expand it into an ICF by letting

h-i- = qi+t i = 1,2,3, ....
qi + fA

The method of selection of the pair (pi,qi) is as follows.
Search for a pair (pi,qi) such that

I(,1/2) n I(1,1) = [0.485,0.72]

and

I(1,V2) n I(1,%/4) = [0.553,1.124].

Thus far, we have outlined a selection procedure when the
number to be expanded is known explicitly. However, when using
the algorithm of Section II, the number to be expanded at the ith
step (i.e., f(ai)) is known only implicitly via the coefficient vector
a,. Therefore, we should specify the selcetion procedure in terms
of ai. Recall that in terms of f(ai), the condition for selecting
(pi+1,qi+ 1) = (p,q ) is that f(ai) & I(p,q). This condition must,
somehow, be translated in terms of ai. Even after such a trans-
formation, it turns out that a prohibitive amount of computation
is needed in the selection procedurV. We may, however, reduce
the computation by use of an approximation. By using a redun-
dant NS, we hope that the error introduced in the selection due
to the use of an approximation will be corrected by the redun-
dancy of the NS.

702

I T (1, 1) I I (1, 1/2 ) 1,



CORRESPONDENCE

I ~~I L
1 Pq)

it- I(p ", qtr)9I ( ' I'
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k-I-- I(p,q) 1-
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IL IR

Fig. 3. Redundant number system.

A. Selection for the Quadratic [2], [8]

The (p,q) selection condition can be written as

m(p,q) < +' <M(p,q)
bi + x-

or

(bi + x)m(p,q) < ci < (bi + x)M(p,q). (3.1)

Note that, f(ao) = x is the unknown to be expanded, therefore,
we must use an approximation to x. Let us assume that three
adjacent selection intervals I(p,q), I(p',q'), and I(p",q") are as

shown in Fig. 3.
Thus, IL and IR are selection intersection intervals. Let us

assume that we have an approximation £ of x (and £ is simple to
compute from bo and co), and zl and zr are properly chosen
constants such that zl e IL and zr E IR. We may now use the
following (p,q) selection rule:

(bi x) *zl < ci < (bi +x) *zr. (3.2)

It is clear that the selection rule (3.2) may only be used provided
the interval of ci specified by (3.2) is contained in the interval
specified by (31). In other words,

(bi + x) * m(p,q) < (bi + x) *_ zl

and

(b1 + x) * zr < (bi + x) * M(p,q).

Thus, we have a restriction on the maximum error allowable in
approximating x by x. In [2], [8], an approximation x satisfying
these conditions was derived. Thus, we have an algorithm for the
solution of a quadratic equation. This was later extended to
higher degree polynomials.

Selection for the second method of the solution to a quadratic
is even simpler. Since the (p,q) selection rule in terms of xi is that
xi E I(p,q). An approximation xi to xi can easily be obtained from
the coefficients bi, ci, and di.

B. Selection for Other Functions

In Section III-A we have shown that the selection problem can

be solved for the roots of a quadratic and higher degree polyno-
mials. This is the only class of problems for which the selection
problem has been solved. For the remaining functions that we
discussed in Section II, it is possible to show that no simple se-

lection procedure exists. We will outline an intuitive proof of this
contention; for rigorous proofs the reader may consult [6], [9], and
[10].

Recall that in terms of f(ai), the (p,q) selection condition is
that f(ai) E I(p,q). Since f(ai) is an unknown, this must be
translated into a (p,q) selection condition for ai. Such a selection

condition will, clearly, require the computation of the inverse
function f-1. Since the computation off-1 is generally as complex
as the computation of f, we require that an approximation of f-1
be used in the selection procedure. Thus the whole process of
evaluating f may be looked upon as an attempt to obtain a good
approximation of f given a crude approximation off l. It is hoped
that the redundancy in number representation will allow us to
make a correct choice of the coefficients in spite of this approx-
imation.

Let us split the coefficient vector ai into two vectors so that
ai = (ai,(3). Thus, the vector ai consists of all the coefficients
which vary with the index i and # consists of the invariant coef-
ficients. As an example, in the case of the quadratic, ai = (bi,ci)
and # is null. As another example, for the Riccati approach, ai =
(a,,bi.ci.di,ei) and a3 = (x). We say that the initial coefficient
vector ao together with the system of recursions G determine the
function to be evaluated and ,B is the vector of true arguments for
which the function is to be evaluated. Note that # will play a role
in the selection procedure. Since we have assumed that an ap-
proximation to f-1 is used in the selection procedure, we can find
two values of f(, namely, (3i and X82, such that 61 # (32 but the
corresponding approximation of f-1 yields the same value. Note
that since (ao)i = (ao)2, we have that (pl,ql)l = (pl,ql)2- With
this condition we can prove by induction that (aci) = (ai)2 and
(pi,qi)i = (pi,qi)2 for all i. Therefore, f(ao,13) = f(ao,(2). Thus
f is not able to resolve 3 values if the approximation to f1- is not
able to resolve the same d values. It is therefore clear that for our
procedure to work, we must require that the ,B vector be null.
Indeed, in the case of the solution to polynomial equations a
vector is null. In the Riccati Approach, ,3 vector is always nonnull.
In the unmodified expansion of logb-lbo, ai = (bi,bi-1) and 13 is
null. But since the system G was not simple, we applied a trans-
formation to obtain ac = (Pi,QJ) and 13 = (bo,b1). This makes
the selection problem unsolvable.

IV. CONCLUSION AND FURTHER REMARKS

Recently, there has been some interest in the use of continued
fractions for digital hardware calculations. We require that the
coefficients of the continued fractions be integral powers of 2. As
a result well-known continued fraction expansions of functions
cannot be used. We have presented methods of expansion of a
large number of functions into continued fractions.

Selection of coefficients of the continued fractions is, however,
a difficult problem. We have shown that the selection problem
can be solved for the solution of a quadratic and higher degree
polynomial equations. However, this is the only class of problems
for which the selection problem has been solved. We have shown
that for most of the remaining functions discussed in this corre-
spondence no simple selection procedure can be found [10].
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