
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-22, NO. 1, JANUARY 1973

On the Parallel Evaluation 0r Polynomials

KIYOSHI MARUYAMA

Abstract-If an unlimited number of processors is available,
then for any given number of steps s, s >1, polynomials of degree
as large as q28-6 can be evaluated, where C= V2 and 6: \V2s. This
implies polynomials of degree can be evaluated in log2n+V/2 log2n
+0(1) steps. Various techniques for the evaluation of polynomials
in a "reasonable number" of "steps" are compared with the known
lower bounds.

Index Terms-Parallel algorithms, polynomial evaluation.

I. INTRODUCTION
HE evaluation of polynomials has been studied

T for many years. It has been shown by Pan [7],
Winograd [8], and others that 2n operations are

required to evaluate a general polynomial of degree n.
Thus, for a serial machine, Horner's rule is optimal.
However, it is easy to see that on a fully parallel ma-
chine it requires only [log2(n+ 1) I steps to evaluate all
of the terms, and [log2(n +1) 1 steps to add those terms.
Thus by introducing some "redundant" operations one
can obtain the result in 2[o10g2(n+1)I steps (assuming
multiplication and addition times are equal). This is a
crude bound for a multiarithmetic unit machine be-
cause some additions can be performed before the final
multiplications are completed.

In this paper we shall investigate algorithms for poly-
nomial evaluation that allow parallelism. We first
assume that arbitrarily many processors are available.
Two previously known methods are Estrin's [31 and
the Kth order of Horner's rule [2], which require at
least 2 [log2(n+ 1) 1 and [log0n]+ [og2(n + 1) I + 1 steps,
respectively. Two other methods, a "tree" method and
a "folding" method,' have been developed by Muraoka
[6]. It has been shown by Munro and Paterson [5] that
at least [log,n 1+1 steps are required to evaluate a gen-
eral nth degree polynomial.
We write an nth degree polynomial as

P,(x) = a,,xn + an-jxn-1 + + a,x + ao (1)

where we assume x, ao, a,, , a, are algebraically in-
dependent reals.
The dual problem to the problem of finding the mini-

Manuscript received July 21, 1971; revised August 28, 1972. This
work was supported in part by the Department of Computer Sci-
ence, University of Illinois, Urbana, Ill., and in part by NSF Grant
GJ-328.

The author is with the Department of Computer Science, Uni-
versity of Illinois, Urbana, Ill. 61801.

1 Muraoka's folding method requires at least C log1n+0(1) steps,
where C= 1/log02(N/9+1)/2) 1.46. We use the standard notation for
the order of magnitude of a function:f(n) =0(g(n)) if there is a con-
stant k > 0 such that lim,_ , sup (f(n)/g (n)) = k.

mum number of steps s required to evaluate P.(x) is the
problem of finding the maximum N for which the poly-
nomial PN(x) may be evaluated for a particular given
method in s steps. This dual problem will be considered
later.

II. BOUNDS FOR PARALLEL
EVALUATION OF POLYNOMIALS

N(s) will denote the degree of polynomial that can
be evaluated in s steps.

Theorem 1: If an unlimited number of processors is
available, then N(Dr) > 2 Dr-1 holds, where Dr r (r+ 1)/
2+i, for r>2, r-1>i> -1.

Proof: We prove by induction that polynomials of
degree as large as 2Dr1 can be evaluated in Dr steps.2
The proof of this theorem, for i=O, can be found in
Munro and Paterson [5].
The result is true for r-2, since N(3+i).21+i for

1>i> -1. We assume that the result is true for r<k;
we prove it for r=k+1.
By induction hypothesis, at time Dk, we have avail-

able any polynomial of degree less than or equal to
2Dk-1, and we also have all powers of x up to and includ-
ing 2Dk. An arbitrary polynomial of degree less than or
equal to 2Dk may be expressed in the form

2k-1

P(X) = E Qj(X)Xj2D-1
J=0

where Qj(x) are polynomials of degree less than or equal
to 2Dk1. It is clear, however, that P(x) can be evaluated
in Dk+1 steps, from which the theorem follows. Q.E.D.

Corollary 1 (Dual Property): For any given s > 1,
polynomials of degree as large as C28-O can be evaluated
in s steps, where C=V\2 and b -VlI.

Proof: Easily derived from Theorem 1. Q. E.D.
We now revert to the problem of evaluating a poly-

nomial of degree n in as few steps as possible. From
Theorem 1 and Corollary 1 we deduce that3

T,,(n) < log2 n + V2 log. n//log2 n- 1 + 0(1)

when

log2 n = r(r - 1)/2 + i, r > 2,r - 1 > i > - 1.

It is interesting to niote here that in Brent [1, eq. (4), p. 758] the
equation may be modified to evaluate polynomials and interpreted so
that polynomials of degrees 2r(r-)II-1 can be evaluated in r(r+1)/2
steps.

TK(n) denotes the least running time of all algorithms that
evaluate a general nth degree polynomial. T,,(n) = minK TK(n) and
corresponds to an unilimited number of processors. It is easy to see
that T,(n) can be achieved with at most n processors.

2

3MARUYAMA: PARALLEL EVALUATION OF POLYNOMIALS

Hence, we have the following theorem.
Theorem 2 (Primal Property):

T,(n)< log2 n + V2 1Og2 n + 0(1).

Theorem 3 (Munro and Patterson): If we have only K
processors, O(K) =/n, then

TK(n) < 2n/K + log2K+ V/2 1og2 K + 0(1).

Proof: We write

P (x) = A o(x) + A l (x)X + + AK-2(X) XK-2

where Ai are polynomials of degree n/(K-1) and
X=xnl(K-1). We first evaluate A0, A1, , AK-2 in
2n/(K-1) steps using Horner's rule for each A .
Simultaneously, we also evaluate X. Finally, we get the
result in another log2(K-2) +V/2log2(K-2) +0(1)
steps using Theorem 2. The total computation time is
thus 2n/(K-1)+log2(K-2) +V42log2(K-2) +0(1),
from which the theorem follows. Q.E.D.

III. COMPUTATION TREES

This section is provided to show algorithms that sat-
isfy the bound given by Theorem 2.

Pn(x) may be divided into q segments, each segment
consisting of a subpolynomial multiplied by a power
of x(i.e., Q"f(x)x). Thus we may write

q-1

P,(x) = E Qi(X)Xmi + Pm(X) (2)
i_~1

where n = m+ (ni+ 1) and mi =m +i+ j<i nj.
Such a segmentation of a polynomial is called a q-cut.
To compute a segment in s' steps, both the subpoly-
nomial and a power of x should be evaluated in (s'-1)
steps, i.e., s'-1>T,,(ni) and s'-1. [log2mM1, for all i.
A segment is said to be consistent if both conditions are
satisfied.

It is convenient to consider (2) as a computation tree
to evaluate Pn(x). The subcomputation tree to evaluate
the E summation of (2) is called the left-hand tree
(LHT), while the subcomputation tree for Pm(x) is
called the right-hand tree (RHT).
Examples of two computation trees, a 2-cut and a

3-cut, which respectively evaluate polynomials of de-
gree 33 and 36 at step 8, are illustrated in Fig. 1. As can
be seen, it is possible to increase the degree of poly-
nomials that may be evaluated at a given step by an
appropriate selection of the number of cuts.

In general, for such a computation tree, if 2k<q-1
<2k+1, q>3, the deg~ree of a polynomial that can be
evaluated in (s+1) steps, N(s+ 1), by a q-cut is given
by

M+L
N(s+l)=N(s)+ , (N(s-k-1+M-i)+1)Ai (3)

where we have the following.
1) q-1 = Z=+LA , At is the number of segments

(a1x2 + + 21 (a20(335 2i s+20s +i +0)

6 steps 5 steps 7 steps

7 steps X

8 steps +

(a)

(aox + a) X29 + (ax + -- + a21) x21 + (a20 -- +)

5 steps 5 steps 5 steps 5 steps 7 steps

x 6 steps x

7 step +

8 steps +

(b)
Fig. 1. Examples of computation trees at step 8. (a) The computa-

tion tree for Muraoka's folding method, a 2-cut at step 8, which
evaluates a polynomial of degree 33. (b) The comptutation by a
3-cut at step 8, which evaluates a polynomial of degree 36.

that require (s-k+M-i) number of steps and
AM+L is a multiple of 2.

2) s-k-L is the least number of steps required to
evaluate a segment in the LHT.

3) s-k+M is the most number of steps required to
evaluate a segment in the LHT.
The details of (3) can be found in Maruyama [4].
A computation tree of (3) is said to be q-consistent if

each segment in the LHT is consistent. A lower order
first (LOF) computation tree is a balanced binary tree,
i.e., q-1 =Ao+A1, such that the minimum power of x

of segments in Ao is greater than the maximum power
of x of segments in A1 for 2k<q-1 <2k+l. If q-1-2=21,
then an LOF computation tree is a completely balanced
tree. It is important to notice that for a given s and q,
the LOF computation tree is unique.

It is shown in [4] that the LOF computation tree is
better than the usual balance tree to solve the dual
problem. Hereafter we consider the LOF computation
tree for evaluating polynomials of degree n, as illus-
trated in Fig. 2.

Theorem 4: For q>3 such that 2 <q-1<2I 1, if the
q-consistency condition

s - k - 2 > [1og2 (N(s) + (2q - 21+1 - 3)

*(N(s- k - 2) + 1) + 1)I (4)
for the LOF computation tree at step (s+1) holds, then

N(s + 1) = N(s) + 2(q - 1- 2k)(N(s - k -2) + 1)
+ (2k+l-q + 1)(N(s-k- 1) + 1). (5)

For q=2, N(s+1) =N(s)+N(s-1)+1.
Proof: It is easily derived by an inspection of the

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1973

A1 = 2(q - i - 2)

s-k-i

AO '(2ki -q++i)

s-k 77 77 + +...0+ +

s-k+1 + + * 0 - + + +

I1~

\H+ \ +

LHT RHT

s4l +

step
Fig. 2. A general LOF computation tree where the box denotes

a segment.

LOF computation tree and the definition of q-con-
sistency. Q. E. D.

Corollary 2: If an LOF computation tree is q-con-
sistent, then N(s+1) given by a q-cut is greater than
N(s+1) given by a (q-1)-cut, for 1<i<q-3.

Proof: A q-consistent LOF computation tree is
clearly (q-i)-consistent for 1 < i< q-2. It is sufficient
to show that N(s+1) given by a q-cut is greater than
N(s+1) given by a (q-1)-cut. Q.E.D.

Corollary 2 implies that to maximike N(s+1) we
should choose the maximum q such that the LOF com-
putation tree is q-consistent. This multifolding approach
has also been discovered (independently and essentially
simultaneously) by Munro and Paterson [5]. The q-
consistency condition of (4) for an LOF computation
tree contains information to increase the degree of (5)
by forcing 1,

13 = 2s-k-2 N(s) -(2q - -k+ 3)(N(s - k -2)

* ~~~~+1)-i

TABLE I
DEGREES OF POLYNOMIALS THAT CAN BE EVALUATED

IN GIVEN STEPS

Folding iultifolding Best f (s]1
s Method Method N(s) q Known B(s) q + 1

1 00 - 0* -
2 1 1 2 1* 2 2

3 2 2 2 2* 2 3
4 4 4 2 4* 2 4
5 7 7 2 7* 2 4

6 12 12 2 12* 2 5
7 20 20 2 21* - 6

8 53 36 5 37* 3 7
9 54 62 3 63* 3 7

10 88 104 3 107* 3 8

11 143 183 4 187* - 9
12 232 320 4 527 4 10

13 376 572 5 575 5 11

14 609 992 5 1,007 5 11

15 986 1,728 5 1,759 5 12

16 1,596 5,059 -6 3,119 6 13
17 2,583 5,489 7 5,575 7 14
18 4,180 9,767 7 9,895 7 15
19 6,764 17,454 8 17,703 8 16

20 10,945 31,286 9 31,783 9 16

21 17,710 55,915 10 56,743 9 17
22 28,656 101,095 11 102,111 11 18

23 46,367 182, 875 12 185,047 12 19

24 75,024 330, 859 13 3355051 13 20

25 121,392 602,873 15 607,423 14 21

26 196,417 1,096,807 '16 1,109, 143 16 22

27 317,810 1,991,463 17 2,017,047 17 22

28 514,228 3,619,735 18 3,662,215 L8 23
29 832,039 6, 603, 699 20 6, 680,511 20 24

30 1,346,268 12, 071,699 22 12, 216, 343 22 25
31 2,178,308 22,129,325 24 22,373,607 24 26

32 35524,577 40, 738, 153 27 41,071,247 26 27
33 5,702,886 75, 027,401 29 75,758,895 29 28

Note: Those degrees marked with an asterisk have been found by
Munro and Paterson [5].

ment on B(s) for s>15 can be expected, however, it
will not affect the lower bound.

to be zero and achieving (q+1)-consistency. We call IV. CONCLUSION
this approach the modified multifolding method. It is The author has found a simple computation tree
shown in [4] that the modified multifolding method is at called LOF (or the multifolding method) that is a
least as good as the multifolding method. generalization of Muraoka's folding method. It eval-

Table I shows the maximum degree of polynomials uates polynomials of degree n in a number of steps
evaluated by Muraoka's folding method and the modi- that are close to the lower bound for large n.
fied multifolding method. It is easy to see that each It would seem that the preceding results could be
N(s) in the table satisfies the bound given by Theorem 1. extended to the case in which divisions are permitted.
The amplification factor a(s) for the multifolding It is felt, however, that the multifolding method is a
method, defined by the ratio between N(s) and N(s -1), reasonable model of computation permitting parallelism,
approaches 2 as s increases. After the seventh step, the even for the case in which only a limited number of
multifolding method becomes superior to Muraoka's processors is available.
folding method. The greatest known degrees of poly-
nomials B(s) that may be evaluated at step s and the ACKNOWLEDGMENT
theoretical lower bound [log2B(s) +1 are also shown The author wishes to thank Dr. D. Kuck, Professor
in the table. To the author's knowledge a slight improve- of Computer Science at the University of Illinois,

4

$-I

JEEE TRANSACTlONS ON COMPUTERS, VOL. c-22, NO. 1, JANUARY 1973

Urbana-Champaign, for suggesting the problem and his
comments. He also wishes to thank Dr. Y. Muraoka
for his assistance and helpful discussion.

REFERENCES
[1] R. Brent, "On the addition of binary numbers," IEEE Trans.

Comput. (Short Notes), vol. C-19, pp. 758-759, Aug. 1970.
[2] W. Dorn, "Generalizations of Horner's rule for polynomial evalu-

ation," IBM J. Res. Develop., vol. 6, pp. 239-245, Apr. 1962.
[3] G. Estrin, "Organization of computer systems-The fixed plus

variable structure computer," in Proc. Western Joint Comput.
Conf., May 1960, pp. 33-40.

[4] K. Maruyama, "Parallel methods and bounds of evaluating
polynomials," Dep. Comput. Sci., Univ. Illinois, Urbana, Rep.
437, Mar. 1971.

[5] I. Munro and M. Paterson, "Optimal algorithms for parallel
polynomial evaluation," in Proc. IEEE 12th Annu. Symp. Switch-
ing and Automata Theory, Oct. 1971, pp. 132-139.

[6] Y. Muraoka, "Parallelism exposure and exploitation in pro-
grams," Ph.D. dissertation, Dep. Comput. Sci., Univ. Illinois,
Urbana, 1971, pp. 33-41.

[71 V. Pan, "Methods of computing values of polynomials," Russ.
Math. Surv., vol. 21, pp. 105-136, Jan.-Feb. 1966.

[81 S. Winograd, "On the number of multiplications required to
compute certain functions," Proc. Nat. Acad. Sci. U. S., vol. 58,
pp. 1840-1842, 1968.

Kiyoshi Maruyama was born in Japan, on
December 5, 1945. He received the B.S. de-
gree in engineering from Nihon University,
Tokyo, Japan, in 1968 and the M.S. and
Ph.D. degrees in computer science from the
University of Illinois, Urbana, in 1970 and
1972, respectively.

He is currently with the Department of
Computer Science, University of Illinois. His
current areas of interest are parallel algo-
rithms and picture processing.

Dr. Maruyama is a member of the Association for Computing
Machinery.

Error Correction in Redundant Residue Number Systems

STEPHEN SIK-SANG YAU AND YU-CHENG LIU.

Abstract-Two error-correcting algorithms for redundant residue
number systems are presented, one for single residue-error correc-

tion and the other for burst residue-error correction. Neither
algorithm requires table lookup, and hence their implementation
needs a memory space which is much smaller than that required by
existing methods. Furthermore, the conditions which the moduli
of the redundant residue number systems must satisfy for single
residue-error correction are less restrictive than that of existing
methods. Comparison of the approach on which these two algorithms
are based and that of existing methods is given.

Index Terms-Algorithms, burst residue errors, conditions for
moduli, error correction, memory requirement, redundant residue
number systems, single residue errors, speed.

INTRODUCTION

MAJOR ADVANTAGE for using residue num-

ber systems in computer systems is that it has
error detection and correction capability by

adding some redundant residues [1]. Such a number
system is called a redundant residue number system.
Cheney [2] first proposed a method for error correction

Manuscript received September 8, 1971; revised April 19, 1972.
This paper was presented at the IEEE Symposium on Computer
Arithmetic, University of Maryland, College Park, Md., May 1972.

S. S.-S. Yau is with the Departments of Electrical Engineering and
Computer Sciences and the Biomedical Engineering Center, North-
western University, Evanston, Ill. 60201.

Y.-C. Liu was with the Department of Electrical Engineering and
the Biomedical Engineering Center, Northwestern University, Evans-
ton, Ill. He is now with the Department of Electrical Engineering,
University of Texas at El Paso, El Paso, Tex. 79968.

in redundant residue number systems which can correct
any single bit error when the residues are encoded in a
binary code. But his method is very time consuming and
the condition required for single bit correction is very
restrictive. Szabo and Tanaka [3] presented a method
for correcting single residue error which seems to be too
complicated for implementation. Watson [4] established
a method for single residue-error correction which needs
a correction table. He also stated the necessary and
sufficient conditions which the moduli must satisfy in
order to apply this correction method. In this paper we
will present a single residue-error correction algorithm
which does not need a correction table, and hence re-
quires a much smaller memory space for implementation
than the existing methods. Furthermore, the conditions
which the moduli must satisfy are less restrictive. An
algorithm for burst residue-error correction and the
sufficient conditions for a set of positive integers to be
used as its moduli of the redundant residue number sys-
tem will- also be given.

SINGLE RESIDUE-ERROR CORRECTION

Let ml, M2, , mke be k positive integers, each mi i.s
called a modulus. For any integer X, the least positive
remainder of dividing X by mi is represented as XI m

and called the residue of X modulo mi (or X mod mi).
We call the k tuple (IXImi, IXim2,X jX|m*) as the
residue representation of the positive number X with the

5

