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On Optimal Iterative Schemes for

High-Speed Division

E. V. KRISHNAMURTHY

Abstract—This paper describes division schemes which are
derived from the classical functional iterative schemes. These
schemes are compared with t he schemes currently used in the high-
speed digital computers.

An error analysis is carried out to reduce the precision require-
ment in the multiplication operations involved in these division
schemes. In addition a scheme is described for selecting the optimal
number of minimal precision multipliers for the initial range trans-
formation of the divisor.

Index Terms—Lehman’s implementation, measure for efficiency,
multipliers, optimal number of multipliers, oscillatory and mono-
tonic convergence, recursions, speed of convergence, table-lookup,
truncation effects and precision, Wilkes-=Harvard iterative scheme.

INTRODUCTION

ECENTLY, there has been a revival of interest
in realizing an iterative division scheme as a
built-in operation in high-speed digital com-
puters [1]-[4], [5], [10]. Essentially, these iterative
schemes belong to the class of schemes described in
Wilkes [9] and are familiarly known as Harvard itera-
tive schemes [6]. The reason for implementing this type
of iterative scheme is that it can be carried out using
only multiplication, complementation, and shift opera-
tions. Since a very fast multiplier as well as facilities for
simultaneous operations are now available, it is natural
that the Wilkes—Harvard scheme turns out to be very
convenient for hardware realization.

In this paper we describe alternative division schemes
which are basically derived from the classical functional
iterative schemes; these schemes have similar features
as the Wilkes—Harvard method and turn out to be more
general than it. It is shown that these schemes can
converge equally fast (or faster) permitting a reduction
in the number of entries in the table employed to imple-
ment the Wilkes-Harvard scheme [1], [5]. Of course,
the price paid for this is in terms of a more complex
control requirement.

In order to compare the relative speeds of conver-
gence, a suitable measure is introduced for computing
the significance (number of significant digits) of the
quotient for a given number of iterations. This is applied
to a practical case.

Also, an error analysis is carried out to reduce the
precision requirement in the multiplication operations
in the preliminary stages of iterations. On the basis of
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the theoretical results obtained here, a scheme is pre-
sented to select an optimal number of minimal preci-
sion multipliers required to transform the divisor; this
helps the designer to systematically construct the trans-
formation table for a given accuracy and speed.

GENERAL DEVELOPMENT

The basic principle involved in the iteration scheme
is similar to that of Wilkes—Harvard. Let it be required
to find ¢=a/b, without remainder. We assume that the
operands a¢ and b are p-digit fractions in normalized
radix-8 form:

1/8<a,b< 1.

The procedure consists in constructing a sequence of
multipliers mg, my, - - -, m, such that bH;‘,o m; con-
verges to a definite limit & (to a desired significance or
accuracy) for some reasonable small #. The dividend a
is also simultaneously multiplied by the same sequence
of multipliers m;. In other words, denoting a =y, and
b =x,, the procedure consists in implementing the pairs
of recursions

Xir1 = MX¢ and Vip1 = MiY; (1)

so that for a reasonable 7
x;—k and y;— kg
so that
g = yk~"

Thus the procedure requires selection of m; and mul-
tiplications and a final step to multiply by k=% It is
therefore desirable that m; is chosen to be easily com-
putable, and at the same time k~!is a convenient integer
so that k~!-y is preferably obtained using only shift
operations. In fact it is easy to see that this method
turns out to be more general than the Wilkes—Harvard
scheme where k=1, so that ¢g=1y,.

The advantage of convergence to k and the recursions
that would be needed for the purpose will be discussed
in the succeeding sections.

THE CHOICE OoF LiMITs OF CONVERGENCE
AND RECURSIONS

Although various iterative methods can be devised to
enable a given sequence to converge to &, the form we
desire is the multiplicative form of recursion (2) based
on the classical functional iterative scheme [11], [7]:
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Xip1 = XMy = ¢(xi)- (2)

Starting with xo=> it is necessary that (2) converges to
the root k of a polynomial f(x) given by

f(®) = ¢(x) —x = 0.

It is known that the degree of convergence depends
on the degree of f(x) as well as on the roots of f(x). Our
interest will be confined to the case of quadratic con-
vergence as this appears to be more convenient for
hardware realization. Therefore, it is sufficient to take
k as a root of the quadratic

flx) = (@ — k))(x — k) = 0 3)

with k; =k, and derive a functional iterative process of
the form (2) to converge to its root k. (More general
higher order processes can be constructed on similar
principles.)

From (3) we rearrange and see that one such iterative
process is of the form

(kl + & — xi)

S (4a)

= ¢(x).

Xip1 = Xy

It is known from standard books on numerical analysis
[11] that the convergence of (4a) at a point is fastest if
the derivative ¢’(x) is a minimum or zero in the neigh-
borhood of x=k==Fk;.

Therefore, from (4a) the fastest convergence is ob-
tained when

¢,()— 2x+k1+k2
T TR h

=0

at x = &,

which means the quadratic f(x) should have two equal
roots:

k1=k2=k.

Using this we obtain the best form of iteration as

Xip1 = i(2k - xi) = Xi M; (4b)
where
m; = ————
k
Thus
Vig1 = Yi-m; (4¢0)

is the form of recursion for the dividend to converge to
kg. The recursion (4b) converges to k provided 0<x;
< 2k. (Note that (x;/k) (2k —x;) is monotonic in the inter-
vals 0<x <k and k<x<2k.) For k=1, (4b) reduces to
the Wilkes-Harvard scheme.

It is worthwhile noting that while the iterative pro-
cess (4b) is self-correcting for convergence to k within
the range 0 <x;<2k, the sequence (4c) has to be carried
out without any error in ;. In this sense (4b) is an
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iterative process while (4c) is a mere recursive process
using the exact values of y; and the same values of m;
used for (4b).

PracTICcAL CHOICES FOR THE LIMITS
OF CONVERGENCE

We will now consider the choices of 2 which would
give rise to simple forms of recursions. We will consider
only radices 8 which are powers of two as these are of
practical interest, although the method is equally appli-
cable to other radices.

It turns out that the choices k=1/2¢ for s=0,
1, 2, - -+ - are suitable for implementation with multi-
ply, shift, and complement operations (the choice of
k=2/3 seems practical with an extra add operation).
If we denote a left bit shift of x; (or y;) by L(x;) (or
L(y;)) and denote L(x) (or L’(y)) as r left shifts or
right shifts accordingly as r is positive or negative,
respectively, and denote

N(x) = (1 — x) = one’s complement of =,

we obtain from (4b) and (4c) the following recursions
for a given k=1, 1/2, 1/27+1, respectively.

k=1
%ip1 = L(xi N(L71(%3))5 yipr = L(yi- N(L7Y(w3)))  (Sa)
b=}
Xip1 = L(w: N(x3)); Yir1 = L(yi- N (1)) (5b)
b= 1

2r+1
X1 = L(xi- N(L7(%:)));  ¥ip1 = L(wi- N(L7(x4))) (50

Note that (5a) is the same as the Wilkes—Harvard
scheme implemented by Lehman [1] and Anderson
et al. [5].
However, except for (5a) and (5b), the general scheme
(5¢) is of no practical utility for normalized divisors.
If one chooses k=2/3, we obtain

%1 = L(xs (N(x:) + L7%(x4)))
and

Vi1 = L(yi- (N (x:) + L72(3))) (5d)

where an extra addition is involved.

Before we discuss the merits of these schemes we will
devise some measures for the efficiency of an iterative
scheme.

A MEASURE FOR THE EFFICIENCY OF
ITERATIVE SCHEMES

A convenient and a reasonably accurate measure is
the determination of number of significant digits in the
nth iterate x, in representing k. (Then the correspond-
ing significance is obtained for the quotient.) Let us
denote this by ¢(x,). This is very closely related to the
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logarithm (to base ) of the reciprocal of the relative
error of x, with respect to k. (See [8].)
Thus

(6)

a(x,.) =~ log,g |k——-—xT .

Using (4b) we obtain

x02
x,.=k—-k(1——) .
k

o(xn) = 2" logg —k— . (7)

Thus

For the significance o(x,) to be at least ¢’, a preas-
signed level, the choice of n is determined by the
inequality

> o (8)

271
0gs Ik—xol =

For example, for ¢’ =16, 8=2, x¢=1/2, k=1 we need

27 logs 2 > 16 or n > 4.
CHoICE oF CONVERGENT LIMITS AND
SPEED oF CONVERGENCE

We will now use the measure outlined above to ob-
tain the speed of convergence and arrive at optimal
schemes.

It is well known [7] that the speed of convergence
depends on the derivative ¢’(x) in (4a). By obtaining
the derivatives ¢'(x;) for k=1/2 and k=1, it is easily
shown that for x¢=2/3 the speed of convergence to
k=1/2 using (5b) is the same as that for k=1 using
(5a). Thus it is necessary to choose the recursions (5b)
or (5a) according to $<x<2/3 or 2/3<x<1, respec-
tively. This would result in equal speeds of conver-
gence. (One can use (7) to prove this directly.)

From (8) we see that the worst case arises for x¢=2/3,
k=1, ¢'=32, n=5. Also by simple computation, it is
seen that except for 21/32<x¢<23/32 which are close
to 2/3, the selection of (5b) or (5a) accordingly as
1/2<x<21/32 or 21/32<x <1 results in a speed the
same as in Lehman’s implementation [1], namely, the
convergence is obtained in four iterations with 32-bit
accuracy.

If, however, we introduce an additional recursion (5d)
so that we can converge to 2/3(0.101010..) so k~!=3/2
and k~ly, is easily computed as shifts and addition, then
by obtaining ¢’(x;) for k=2/3 it is shown that the speed
of convergence for the schemes (5a), (5b), and (5d) will
be equal accordingly as x, satisfies the following ranges.

Scheme (5b): 1/2 < %0 < 4/7(=9/16)
Scheme (5d): 4/7 < %y < 4/5(=13/16) 9)
Scheme (5a): 4/5 < xp < 1.
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Using (8) we see that with =4, we get at least 36-bit
accuracy for these choices, which is a little faster than
the table-lookup implementation [1]. It is, however, to
be noted that the gain is only one iteration in introduc-
ing an additional convergence limit at k=2/3.

This means, for a given accuracy or significance and
speed of convergence, the present schemes offer the
possibility of reduction in the size of the table used in
[1] and [5] by using a more complex control to choose
one of the appropriate schemes according to the range
(9) in which the divisor lies.

PrecisioN (WORKING AccURACY) NEEDED
FOR THE MULTIPLIER

We have been assuming so far that the recursions
(4b) and (4c) are carried out to p-precision, namely,
xi, ¥:, and m; are all p-precision numbers. It is, how-
ever, possible to reduce the precision of m; = (2k —x.) /&,
particularly during the early stages of iteration. This
would reduce the computational labor and would speed
up the scheme, provided simple additional tests are
carried out. It will be shown below that the length of
m; can be considerably smaller than p, depending upon
the absolute error in x;.

It is seen that when m; is of full-precision p, the re-
cursion (4b) converges to & monotonically. By using a
truncated x; (denoted by x;r) to form m.r= 2k —x.r) /%,
the convergence to k can become either oscillatory or
monotonic according to the absolute error in x;r. This
will be explained below.

Case 1 (Oscillatory Convergence): Let x;=k+ 08 where
6 is the absolute error in x;. If we assume that we
truncate x; to j digits (x.r), then

Xir = X; — €
where
0<e< g™
Thus
mir = 2k — x; + €)/k.
If we use m;r instead of m; in (4b) to compute x;11
(note that x; used is of full-precision p),

Xip1 = Mip X5 2> My~ %y,

then x;;1 could become larger than k even if x; <k, and
the sequence becomes oscillatory.

If we desire that the relative error still decreases at
the same geometric rate in spite of this error in m;r, we
should insist that for the sequence (4b)

| (B — ws02)/R] = (B — x)/k)?
or
| B — x| < oYk
or

(b —8%k) < xip1 S k+ 8%/k (10a)
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where
w1 = (B £ 8)/k)(k F 6+ o). (10b)

From (10a) we obtain that e the truncation error in x;r
must satisfy

0<e<28%/(k+9) (11)
or
B9 < 28/ (k +9)
or
j>logs kb — 2logg 6 — logg 2 + logs (1 + 5/k). (12a)
For k<1, 6Kk, (12a) can be approximated to
j = — 2logg 6 — logs 2. (12b)

Also since § is the absolute error in x; it can be ex-
pressed as

1/8H+1 < § < 1/ (13)
Using (13) we obtain from (12b)
i=2l+2—logs2 (12¢)
or
jz2+1 B =2). (12d)

Note that (13) actually denotes, for k=1, that x; has
either a leading digit 1 followed by at least / zeros or
has I leading repeated digits of magnitude (8—1). This
serves as a test to select the precision of m;. For example,
using (12d) for k=1/2, p=48, =2, 1/25<6<1/24, we
find that >9. This means it is sufficient to use only the
most significant 9 bits of x; (denoted as x;r) to form
2(1 —x,7) =mqr to multiply x; and obtain x,;.,. Then
x:41 will have at least eight leading 1’s or a leading 1
followed by eight zeros, keeping up the same rate of
convergence that would otherwise have been achieved
using m; (see [5]).

Case 2 (Monotonic Convergence): If in spite of using
m;r rather than m; to compute x;;1, we desire that the
iterates converge monotonically to &, a little more pre-
cision is needed for m;p than desired by (12d). In some
cases this may be desirable if overflow is to be elimi-
nated.

We find for this case that instead of (10a) the follow-
ing inequality has to be satisfied:

(k — 8%/k) < %1 < k. (14)

(Note that even if xo=%k-+0 to start with, it is possible
to converge from the lower side since x; <k; therefore,
we set x; = (k—40) in this argument.)

As before we obtain from (14)

0<e<d/(k—29)
or

B < 8%/ (k—9)
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or
j > logg kE—2 10gg 6+ log,q (1 - 5/k) (15&)

For k<1, 6Kk, and 1/B*1<8<1/B! we obtain from
(15a)

> 2+ 2. (15b)

This means, for the example considered, namely
k=1/2, p=48,8=2,1/25<8§<1/24, it is necessary that
7>10 or it is sufficient to use only the most significant
10 bits of x; (denoted as x;r) to form 2(1 —x;r) =mr, to
multiply x;, and obtain x;.;. Then x;;; will have at
least eight leading 1's and would be less than &.

Of course, this economy is possible only as long as
(2142) <p; otherwise one has to work with a p-precision
m;. Thus this economy can be achieved as long as 9§ is
not very small, which is so at the early stages of itera-
tion. (See [5].)

OpTIMAL NUMBER OF MULTIPLIERS FOR THE RANGE
TRANSFORMATION OF DIVISOR

Our discussion so far was confined to the modified
iterative methods. We will now show how the results
obtained above could be used to arrive at an optimal
scheme for systematically selecting the multipliers, if
one prefers table-lookup scheme [1], [S] and converge
to k=1 (scheme (5a)). We will illustrate this in a prac-
tical case.

Assume that we need a 48-bit quotient by using
scheme (4a) in, say, four iterations. Then from (8) we

obtain
2log, k/| kB — x| =48 or k/(k— x) =8. (16)

This means the choice of each converging limit k; and
the initial value x,; in the interval 1/2<x<1 should
obey (16) for the optimal scheme. If we now construct
a sequence

kla Xo1, k27 Xo2 * * - 1
where
k1<x01<k2<x02<k3<x03"'1

by alternatively placing the convergence limits and
initial values of x until 2;=1, then to obey (16), starting
with k;=1/2, we have in this sequence

Xoi = (9/8)k1 (xm > kt) (17)
and
kigr = (8/1)%0i (18)

This sequence (which may be called the characteristic
sequence) for the above practical case is

1/2,9/16, 9/14, 81/112, 81/98, 729/784, 1.

(Biy1 > %0:).

From this, one can either choose a point of convergence
for the given starting values (i.e., %,; can converge to
either k; or ki), or equivalently one could transform
the numbers in the intervals k;<x<x,; and x,;<x
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TABLE 1
Range of Divisor Multiplier Transformed Range
12 <x< 9/16 2 1 <x<9/8
16/9 8/9<x<1
9/16 <x< 9/14 16/9 1 <x<8/7
14/9 7/8<x<1
9/14 <x< 81/112 14/9 1 <x<9/8
112/81 8/9<x<1
81/112<x< 81/98 112/81 1 <x<8/7
98/81 7/8<x<1
81/98 <x<729/784 98/81 1 <x<9/8
784/729 8/9%x<1

729/784<x<1 No transformation

is required.

<ki;1 to a range close to unity (above and below) by
multiplication with an approximation to the reciprocal
of k; or x,; and converge to 1. This gives us an optimal
scheme for selecting the multipliers for a given speed of
convergence and significance.

In Table I the range of divisor, selected multipliers,
and the transformed range are given. From this table it
is seen that we need the set of multipliers 2 or 14/9 or
98/81 accordingly as 1/2<x<9/16 or 9/16<x<81/112
or 81/112<x<729/784, respectively.

Also note that the sequence (1/2,9/16, 9/14, 81 /112,
81/98, 729/784, 1) can be replaced by the approximat-
ing 6-bit representations (1/2, 36/64, 41/64, 46/64,
52/64, 56/64, 1) without loss in speed; and the multi-
pliers 2, 64/41, and 64/52 could also be replaced by the
approximating representations of 2, 25/16, and 5/4,
namely, 10.00, 1.1001, and 1.01, respectively. This
would help minimize the cost of table-lookup procedure
with no loss in speed.

In general, for obtaining a p-precision quotient in #-
iterations, the minimal number of multipliers needed is
obtained as follows.

Letk/|k—x,| antilog:(p/2") =+. Using a similar argu-
ment, we obtain relations similar to (17) and (18) for
%o; and k;. From these, the minimal number of multipli-
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ers needed for the transformation is given by minimum
(41, 72) where 7; and 7. satisfy the inequalities

irlogs ((y +1)/(v — 1)) + logz 21 2> 0 (19)

and
iz logs ((v + 1)/(y — 1)) + logz xe1 > 0.

It is, however, necessary to remark that while the
papers of Lehman [1] or Anderson [5] do not contain
any systematic method of constructing the optimal
multiplier table, it seems that the tables presented have
been constructed in the economical manner for the
given accuracy and speed.
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