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Deterministic Division Algorithm in a Negative Base
P. V. SANKAR, S. CHAKRABARTI, AND E. V. KRISHNAMURTHY

Abstract-Described here is a deterministic division algorithm
in a negative-base number system; here, the divisor is mapped into
a suitable range by premultiplication, so-that the choice of the quo-
tient digit is deterministic.

Index Terms-Deterministic division, negative base, range
transformation.

I. INTRODUCTION

ECENTLY, deterministic division algorithms
[1 ], [2 ] have been described for conventional and
signed-digit number systems; these algorithms

transform the divisor to a suitable range by premultipli-
cation, so that the choice of the quotient digit is de-
terministic, without any need for a trial and error pro-
cess. It is possible to develop a similar algorithm for
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division in a negative-base number system [3]. Let us
denote the (n+1) digit dividend as A, the (d+1) digit
divisor as B, and the (m+1) digit quotient as Q in float-
ing-point form (integral mantissa) in base -d. Thus

A = (-0)e- a = (_O)ea E aj(-I)j

d

B = (.....fyb.b = (_b5)eib , b

Q = (-j3)ea.q = (._3)es E j_
j=o

(la)

(lb)

(Ic)

where ea, eb, and eq are the exponents and a, b, and q are
the mantissas, respectively.

II. NOTATION AND DEFINITIONS

The same notations and definitions as in [3] (for
negative base) are used. However, for the sake of con-
venience, we define the following. -
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Polarization: Polarization is an operation that re-
verses the sign of a number in the negative base. The
polarized form of a is denoted by d.
When an m-precision number is polarized, it could

either contract to an (m -1) precision number or ex-
pand to an (m+1) precision number; in the latter case,
the leading digit will be unity (this is defined as "polari-
zation overflow").

III. THEORY OF DETERMINISTIC DIVISION

For the purpose of our study, we denote by Rj the par-
tial remainder at each step, with Rj(j = n) = a the man-
tissa of the dividend.

Let us denote by aj the digit in the (-/3)jth position
of Rj. It is now interesting to study under what condi-
tions the quotient digit qj can be deterministically
chosen as the leading digit of every Rj (or Rj when
there is a polarization overflow) plus a suitable integer 6
(positive or negative). In other words, the rules of
choice are

qj = aj + 6 (positive)

or

qj = (-/3 + aj) + 6 (negative).
The negative quotient arises when Rj has an overflow
digit unity in the (-j3)j+lth position.
Assuming we carry out the recursion

Rj-l = Rj- qjb(-) d

= Rj + qjb(_/)'d (2)

forj= n, n-i, * , n-rm, the choice of qj as above will
be the nonrestoring quotient if

|Rj_l|= Rj- (aj + S)b(_/)j-d I< b(_- d. (3)

This demands that b should be in the range

Rj/(aj + a + 1) < b(_-3)id < Rj/(aj + 6 - 1). (4)

In order to find the range of b satisfying (4), we need
to obtain the greatest lower bound and the least upper

bound of the right- and left-hand side terms, respec-

tively.
It is shown below that inequality (4) can be satisfied

only for 6=0 and 6=-1.
Case 1: 6=0.

(Rj/(aj + 1))max < b(/-3)j-d < (R/I(a - 1))min. (5)

Note that

(Rj/(aj + 1))max = (3 [(-/3)i + (-i2 +

+ (_/)2 + 1] (6)

(//(0/ + 1))(-O)' (7)

while

(Rj/(aj- 1))min =
(d- i)(-/3)j+(/3- 1)

(a3-2)
-

[ l-3+
- -

* +(-/)] (8)
=
((2$ 1/: )-)(: 9)

(here-. denotes "approximately equal to").
Since Rj=O implies aj=O, we must omit this case

while finding the bound in (8); in this case, we set qj=0
(unlike the nonrestoring division scheme described in
[3]).
Substituting (7) and (9) in (5), we get

(,3/(O3+ 1)) < b(_/3)-d< (/2-/-1)/((/+ 1)(/- 2))

Case 2: a =-1.
In this case, (4) is rewritten as

(Rj/aj)max < b(- )j-d < (Rj/(aj - 2))min

(Rj/aj)max = (-/)i + (/ - 1)

=. ((/3 + 2)/(/3 + 1))(-#)i

(10)

(11)

(12)

(13)

(when Rj =0, Rj/aj is undetermined; we exclude this
case to obtain (13) and take for this case, qj= 0) and

(Rj/(aj- 2))min =
(/3- 1)(-/3)j+(/3- 1)

(/3-3)

= ((/2-#- 1)/(+1)(/33))(-)i.
(14)

(15)

Substituting (13) and (15) in (11), we get

(d + 2)/(# + 1) < b( )-d
< (/32 - 3 - 1)/((/ + 1)(3- 3)). (16)

Case 3: 6>1 and 6< -2.
It is easy to see that, for these cases, inequality (4)

cannot be satisfied for all Rj.
Allowed divisor patterns: Table I lists all leading

three-digit patterns of b that satisfy (10) and (16). It is
to be noted that the polarized form of the divisors listed
in Table I also satisfy (10) and (16). Thus, initially it is
necessary to check'whether a given divisor or its polar-
ized form satisfies Table I.
The case = -1 has little practical utility, since

range (16) is very much narrower than (10); hence, this
case will not be considered.

Multiplier choice for obtaining the allowed patterns:
The following rules are useful for constructing a table of
two-digit multipliers a=aj(-3)+ao that would trans-
form a given divisor b to satisfy (10), so that the leading
three digits of the modified divisor (or its polarized
form) assume one of the patterns specified in Table I for
8 = 0. These rules can be arrived at by using the analysis
available for positive-base numbers [4]-[6].

Rule 1:
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TABLE I
ALLOWED DIVISOR PATTERNS

5 bd bd-1 bd-2

1 0 0
0 1 0 1

1 1 'y(#0,l1)
-1 2 (83-1) -y where

y<,8/2 (j3 even)fy<@(-1)/2 (f odd)

a) If bd=1, bdl=0, and bd-2=Y where y$0 or 1,
then choose a,1 -1 and ao = 0.

b) If bd=1, bd_l= 1, and bd-2=O or 1, then choose
al=2 and ao=3-1.

c) If bd = 1 and bd-l$ or 0, then polarize the di-
visor and use Rule 2.

d) If bd=2 and bdIl=(-1) and bd-2=0, 1, or 2,
then choose a,= 1 and ao= 1.

Rule 2: Otherwise, divide (f32-f) by the leading two
digits (three digits if bd = 1) of b and obtain the two most
significant digits of the quotient, viz, al and a0. Thus,
if

((-1)2-f)/(bd(-3)+bd-l)=al+ao/(-3)+ (17)

then choose a =a(-,3)+(ao -).

IV. STEPS OF THE ALGORITHM

Step 1: Prefix two leading zero digits to the dividend a
to prevent initial overflow (see [3]); this dividend is
denoted as Rn, the initial partial remainder; the number
of digits in R. is taken as (n+ 1). Prefix one more lead-
ing zero to R, to match the extra digit of the polarized
divisor b.

Step 2: Check whether the leading three digits of the
divisor b(or b) are among the patterns listed in Table I.
If yes, go to Step 3; otherwise, choose a suitable multi-
plier a to transform the divisor into the required range.

Step 3: Set qn= 1 (to take care of initial overflow) and
compute

Rn-1 = Rn- b(-#)n-d.

If there is no quotient overflow, then the (n+l)th,
nth, and (n-l)th positions of Rn-1 will contain 1,
(,- 1), and 0, respectively. Then qni- equals +3, and
this results in qn =0 and qn-1 = 0.

Otherwise, the (n+l)th and nth digit positions of
Rn-1 will be zero, and we take the (n-l)th digit of
Rn-1(=an-1) as qn-l.
Now onwards, if the (j+1)th (j=n-2, n-,1

position of Rj is zero, choose the jth digit of Rj as qj;
otherwise, (Rj overflows) choose (j+ 1)th and jth digits
of Rj as qj; the quotient is then negative (-I+aj), and
needs to be converted to the conventional form in nega-
tive base.
Then compute

Rj_l = Rj qjb(_O)j--d

for each j( = n-2, n-1, ) and proceed to obtain qj
as above.

Step 4: Convert the negative quotient digits (if any)
to positive form, using polarized addition.

Step 5: If we stop after obtaining qn-m, then

eq = ea - eb + n - m - d.

Example 1:

a = 14652; ea = 0; b 88; eb = 0

a = 27; b-a = 1144; a a = 95236

n-rm = 3; d = 3; q = 1909; eq = 0.

j 6 5 4 3 2 1 0 qiJ

R6 0 0 9 5 2 3 6 1

q6*b 1 9 0 7 6 0 0 0

R5 9 5 1 2 3 6 9

q5-b 1 2 5 8 4 0 0

R4 0 9 6 3 6 0

q4-b 0 0 0 0 0

Rg 9 6 3 6 9

q3-b 1 2 5 8 4

R2 0 0 0 0

V. CONCLUDING REMARKS

It can be proved that, if we permit only those di-
visors whose leading three digits are of the form
llPy(Qy0, 1, 2) in Table I, then a negative quotient
digit cannot follow a positive quotient digit (3-1). This
eliminates the carry or borrow chain while converting
the negative quotients. Hence, an economical left-to-
right conversion of the quotient in parallel with the
division process is possible. This will speed up the
division process, since Step 4 of the algorithm need not
be carried out separately.
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A Video Display System for Image Processing by Computer

NORMAN H. KREITZER AND WILLIAM J. FITZGERALD

Abstract-A core-refreshed video display system that can display
gray-scale images of 32 intensity levels on a standard monochrome
video monitor will be described. The system can also display flicker-
free black and white images of more than 800 000 picture elements.
There are special features that allow overlaying black and white
images on 16-level gray-scale images and manual cursor control via
an X- Y tablet. Multiple reduced size images can be accommodated
by features that allow independent manipulation of images in sepa-

rate areas on the display screen. This permits simultaneous display
of images before and after processing.

Index Terms-Cathode-ray tube display, computer display, cur-

sor, graphics, graphic tablet, image overlay, image processing, image
refresh buffer, raster display, video display.

1. INTRODUCTION

CATHODE-ray tube displays have been used ex-

tensively as computer output devices to com-

municate with alphanumeric or graphical symbols

the results of information processing. For these symbols,
only two screen intensities are required to represent
black and white. Images with intermediate intensities,
such as photographs, are now being processed by com-

puter and additional display capability is required in
order to present quickly the results of this information
processing. A cathode-ray tube display system that can

accommodate such gray-scale images will be described.
The system can also display, without flicker, black and
white images with greater detail than other computer
output display systems known to the authors.
A signal and image processing experimental facility
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[1] that has been in existence at the T. J. Watson Re-
search Center for a number of years, includes flying-
spot scanners [2 ] and a tablet [3 ] for input of data to an
IBM 1800 Computer. Output from the computer has
been available via two displays and a Polaroid film
recorder. One display, which creates images a dot at a
time, is quite limited in the number of spots that it can
display without flicker and is used primarily to show
the results of scanning. This philosophy of display is
developed further and described in [4]. The second dis-
play is a modified IBM 2250 [5] and can display only
black and white. The scanners have the ability to enter
gray-scale images into the 1800; and there are channel
to channel connections from the 1800 to a 360 Model 67
and to a 360 Model 91, which can be used for image pro-
cessing. There was a need for a display to provide quick
access to the processed images.

Television technology was chosen for the display be-
cause: 1) the TV scan pattern is similar to that used by
the optical scanners to scan images into the 1800; 2) a
standardized scan pattern makes it unnecessary to store
the positional data associated with the image; 3) flicker
is not influenced by image complexity; and 4) consider-
able development had already been carried out in this
area and some of the required equipment was readily
available. TV technology also presented the opportunity
to build a large black and white display that could be
programmed to display arbitrary characters, symbols,
and graphics. Since this display system was to be used
for research, flexibility was a primary requirement. Be-
cause of the dual requirements for displaying both gray
scale and black and white, the concept of a dual-line
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