
IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 1975

f

Fig. 5. Modifled realization of f with an additional observable output.

g E Ft, i.e., the test set will detect t s-a-faults at the AND gates of
Fig. 1.

Definition: If x is a real number then [x] denotes the integer
part of x.

Theorem 3: If a function f is realized in complement-free form (as
given in Fig. 1) then any t s-a-faults at the input or output of AND
gates can be detected by applying all input vectors having 0-weight
less than or equal to [log2 2t].

Proof: If g E Ft, then by Lemma 3 If ED g < 2t. By Theorem
2 there exists an input vector E such that ow (E) < [log2 2t] and
(f e g) (E) = 1. Therefore f(E) # g(E) and the input vector E
will detect the fault corresponding to g in the realization of f. Hence
if all input vectors X with ow (X) less than or equal to [log2 2t] are
applied to the network then any t or less faults in AND gates will
be detected. Q.E.D.

Algorithm 1

1) First apply the test set T, thus detecting any number of faults
in the collector row of the network.

2) Fix ho = constant term in the realization of RMC form f.
3) Apply all input vectors having 0-weights less than or equal to

[1Og2 2t] and cal this set T2.
Theorems 1 and 3 guarantee us that any t s-a-faults on all leads

other than the primary input leads will be detected by the applica-
tion of test inputs in T1 U T2. Therefore the number of tests suffi-
cient to detect t faults at the input and output of AND gates and
any number of faults in the collector row is

4 +() +() + --- +
()1O 2O ** Gc2t1)

It can be shown that if in addition to the network of Fig. 1, an
extra AND gate and one observable output are available as shown in
Fig. 5, then the test set given by Reddy [1] to detect single faults
will also detect any number of faults in the primary inputs. But this
test set is included in (T1 U T2) given in the present correspondence.
Therefore if an extra AND gate and an extra observable output are
provided then the test set (T1 U T2) will detect t or less faults.

III. CONCLUSIONS

In this correspondence we have extended the earlier result due to
Reddy [1] and obtained a fault detecting test set for multiple
faults in RMC networks, realizing an n-variable logic function. We
have shown that to detect t s-a-faults in RMC networks, one needs
to apply a predetermined test set, independent of the function being
realized, whose cardinality is

[10[2 2t] (n)

The number of tests sufficient to detect all single and multiple
faults can be reduced to n + 4 by adding extra observable out-
puts [6].

REFERENCES

[1] S. M. Reddy, "Easily testable realizations for logic functions," IEEE
Trans. Comput., vol. C-21, pp. 1183-1188, Nov. 1972.

[2] D. E. Muller, "Application of Boolean algebra to switching circuit
design and error detection," IEEE Trans. Electron. Comput., vol.
EC-3, pp. 6-12, Sept. 1954.

[3] J. P. Hayes, "A study of digital network structure and its relation
to fault diagnosis," Coordinated Sci. Lab., Univ. Illinois, Urbana,
Rep. R-467, May 1970.

[4] K. K. Saluja and S. M. Reddy, "Multiple faults in Reed-Muller
canonic networks," in Proc. IEEE 13th Annu. Symp. Switching and
Automata Theory, Oct. 1972.

[5] W. R. Kantz, "Testing faults in combinational cellular logic arrays,"
in Proc. 8th Annu. Symp. Switching and Automata Theory, Oct. 1971,
pp. 161-174.

[6] K. K. Saluja, "A study of combinational networks based on Reed-
Muller canonic forms," Ph.D. dissertation, Dep. Elec. Eng., Univ.
Iowa, Iowa City, Aug. 1973.

Arithmetic Algorithms in a Negative Base

DHARMA P. AGRAWAL

Abstract-Algorithms are described for the basic arithmetic op-
erations in a negative base. These algorithms are simpler, faster,
and more general than those proposed by Sankar et al.

Also, problems associated with the division and square-rooting
operations, are treated in a more efficient way.

Index Terms-Algorithms, basic arithmetic operations, interim
carry, multiple operand addition, negative base, polarization, twin
carry.

I. INTRODUCTION

Recently, Sankar et al. [1] have described arithmetic algorithms
in a negative base. They have also given a comprehensive list of the
references available in this field. Since then, Zohar [2]-[5] has
published several papers on the possible use of negative base; while
Kanani and O'Keefe [6] have compared the hardware requirements
for the conditional-sum adders in +2 and -2 base. More recently,
various circuits for -2 base arithmetics, have been described in the
literature [7}-[9]. This correspondence presents new algorithms for
the basic arithmetic operations in a general negative base. For con-
venience, the notations of [1] are followed here.

Let a and b be the two operands in base -, (where # is a positive
integer) given by the expressions

Manuscript received August 26, 1974; revised December 24, 1974.
The author is with the Digital Calculators Laboratory, Federal

Institute of Technology, Lausanne, Switzerland.

998

h - /TN
0 - w

CORRESPONDENCE

a = E ai(-P)i
i-O

n
b = E bj(-13)i

i-O

(1)

(2)

where 0 < ai <1, and 0 < by <1 with am and bn 5# 0. Thus, a (b)
is positive or negative, as m (n) is even or odd, respectively.

II. ADDITION

As mentioned by Sankar et al., the negative radix addition re-
quires "twin carriers" and these are denoted by ci and di. To obtain
the sum of two operands a and b, start the addition from the least-
significant-digit (lsd) and use the logic for addition shown in Table I.
The sum can be expressed as

max (m,n)+2
S = E 8i(_) i

i-0
(3)

TABLE I
LOGIC FOR ADDITION

zi = ai + bi + ci + di Si ci+1 ds+2

Casel: zi <1 0 0
Case 2: k13 < zi < (k + 1)1 (zi) mod 13 1-k 1

fork = 1.* *,
CaseS: (t,8 +k)o < z; < (tB+k +1) (zi) mod# ,B-k t + 1

fort = 1... -2
and k = 1 ..

TABLE II
LOGIC FOR X AND y GENERATION

bi xi+l y;

Case l: #0 1 18-by
Case 2: =0 0 0

where max (m,n) means the larger value between m and n.
It may be noted that addition algorithms of Sankar et al. are valid

for two numbers, while the one proposed here, can be easily extended
for multiple operands addition by taking the value of zi as

zi = ai + bi +e,+fi + *-- +ci +di (4)
where a, b, e, f, . ., etc., are the operands for addition. Now, the
complexity of Table I (given here and in [l]) can also be compared.

III. POLARIZATION AND SUBTRACTION

The polarization operation is defined by Sankar et al. as trans-
formation of b to -b (or vice-versa) in a negative base. Let b be
the given number expressed by (2) and b be its polarized form, then

n

b= E - (_13)i+l+ ()i+ +bj(_#)i
i-O

n n

-E (_E)i+l-(O,- b,) (-O)i
i- o jO

(7b)Ci = E ci+li (-#) i+i+l
io

and

(7c)Di = E di+2i(-3) i+i+
i-0.

with

Pi = (a1b,) mod ,8

ci+li = value of ci+l from Table I for zi = ajb

di+2i = value of d,f2 from Table I for zi = aib,

(8a)

(8b)

(8c)

where

aib =digit ai multiplied by digit b,. (9)

Table I can be used again for final addition of the partial sums and
carries. The result can be expressed as

= -Ex] - Cy] (5)

and hence

b=x +y (6)

where x and y are, respectively, first and second terms of summation
on the right-hand side of (5).
Thus polarization requires generation of x and y, followed by

addition. The logic for obtaining x and y is given in Table II. Case 1
of this table is also valid for by = 0. But Case 2 has been included
just to avoid the propagation of carries due to redundant terms.
The polarization process of [1] is more complex than given here.
Moreover, the subtraction can be achieved without completing
polarization. To obtain (a -b), just generate x and y for b and
add them to a.

IV. MULTIPLICATION

To evaluate P as a multiplication of a and b, the algorithm de-
scribed for addition can be repeatedly employed. Using Table I, a
can be multiplied by the jth multiplier digit bj, giving the partial
sum Pi and the "interim carries" Ci and Di as

m

Pi= pii- i+i (7a)

(10)
n

P = ab = E P + Ci + Di.
j-o

In the final step of addition, Ci and Di are considered as operands
and this allows simultaneous addition of all the terms, while the
algorithm of [1] gives the addition of two terms at a time.

V. DIVISION

The division operation in a negative radix poses the problem of
defining the criteria that decides the end of a particular digit evalu-
ation. Let a, b, and q be the dividend, divisor, and the quotient,
respectively, all in base -13. First, b is obtained from b and a lead-
ing zero is added to a and most-significant-digits (msd's) of a and b
are aligned. Now division operation is started and once the computa-
tion of the ith digit qi is completed, start computing q-1 by shifting
b by one digit to the right. It may be noted that, while evaluating
qi, either of the following three conditions will exist.

Condition 1:

0 ai+ni ai+n-2 . ai-ao

(lla)

&n bn-1 bn_2 . ..

i.e., the nonzero msd of a (or the partial remainder) is placed one or

more digits right of the nonzero msd of 6.

999

IEEE TRANSACTIONS ON COMPUTERS, OCTOBER 1975

Condition 2:

ai+n ai+n-1 * a,oao
(llb)

&n bn1l * @ bo

i.e., the nonzero msd's are aligned.

Condition 3:

ai+n+i ai+n ai+n1 *... ai *ao
(llc)

&n bn_1 ... bo

i.e., the nonzero msd of b is placed one digit right of a or the re-
mainder.
When Condition 3 exists, the polarized addition is always pos-

sible, while when Condition 2 exists, the polarized addition is never
possible. When Condition 1 exists, the decision is slightly compli-
cated. First obtain Pcri as

Pcri=b (1--+-2-- An) (12)

and take ai+n_l and msd of Pc, for comparison and follow the
following steps (for detailed proof, see [10]).

Step 1: Compare the digits under consideration. If the digit of
Pcri is smaller, the polarized addition is possible; if larger, polarized
addition is not possible; and if equal, go to Step 2.

Step 2: If all the digits have already been compared, go to Step 5;
otherwise go to Step 3.

Step 3: Compare next digits. If the digit of P,,i is larger, the
polarized addition is possible; if smaller, polarized addition is not
possible; and if equal, go to Step 4.

Step 4: If the comparison of all the digits have already been
completed, go to Step 5; otherwise take next significant digits for
comparison and go to Step 1.

Step 3: Take qi = 0, qi-l = 0 and onwards alternate digits as
(3- 1) and 0. Final remainder will be zero.

The results of division thus obtained, will have a unique representa-
tion in -# base and the possibilities of initial overflow and qi = +,8
(as happens in nonstoring division algorithms proposed by Sankar
et at. [1]) have been completely eliminated and Conditions 2, 3,
and Step 5 behaves as a deterministic algorithm. It is worth men-
tioning that, once P,,i has been evaluated for any specific "i," same
value, with proper right shift, can be utilized for onwards computa-
tion of lower significant digits. But value of qi-2 and onward digits
of Step 5, will no longer hold good.

VI. SQUARE-ROOT

The difference of this process from division lies in the fact that
the subtrahend changes in successive step of square-rooting. Here,
an algorithm which generates polarized addend (rather than subtra-
hend) is given. The method starts with the selection of (1 ,B-1)
as the two digits of the first polarized addend and allow its addition.
Onward addend can be evaluated with the help of the following
steps.

Step A: Add (1 8 -2) to the previous addend, with the lsd's
aligned. Take the result as a new addend and go to Step B.

Step B: If possible, add the polarized addend and go to Step A;
otherwise go to Step C.

Step C: Add (2 ,B-1) to the previous addend, with 2 aligned
with the lsd of the previous addend, shift the result one digit to
right and take the result as a new addend and go to Step B. (In the
case of base -2, take the equivalent value 1 1 0 1.)

The square-rooting process is similar to the division operation
and therefore details are not given here. For this operation Pcrt has
to be taken as present value of polarized addend plus (1 1), with

the msd of the second aligned with the lsd of first. Also, Step 5 has
to be taken as qi = 1, qi-l = (3 - 1) and onwards digits and re-
mainder as zero. (For detailed proof, refer to [10].)
The possibility of getting either positive or negative root, has

already been mentioned by Sankar et al. Square-rooting will give
positive root only when (m + 1)/2 is odd (m is the number of
digits of a). If it is even and it is still desired to obtain the positive
root directly, the position of the initial polarized addend has to be
shifted through two digits, either to the left or to the right and the
condition for left shift is given below.

Condition for Left Shift: Take w = B3-1 0 63-1 0 ... with
total number of digits equal to (m - 1)/2; obtain the square of w
and use it as Peri and if comparison allows polarized addition in
Step 1 or 3, allow the left shift; otherwise right shift. When m = 1,
always do left-shift, while evaluating negative root.

VII. CONCLUSION

Faster and more general algorithms for arithmetic operations in a
negative radix, have been described in this correspondence and an
attempt has been made to solve the problems associated with divi-
sion and square-rooting operation.

REFERENCES

[1] P. V. Sankar, S. Chakrabarti, and E. V. Krishnamurthy, "Arith-
metic algorithms in a negative base," IEEE Trans. Comput., vol.
C-22, pp. 120-125, Feb. 1973.

[2] S. Zohar, "New hardware realizations of nonrecursive digital
filters," IEEE Trans. Comput., vol. 0-22, pp. 328-338, Apr. 1973.

[3] , "The counting recursive digital filter," IEEE Trans. Comput.,
vol. C-22, pp. 338-347, Apr. 1973.

[4] , "Fast hardware Fourier transformation through counting,"
IEEE Trans. Comput., vol. C-22, pp. 433-441, May 1973.

[51 - , "A/D conversion for radix (-2)," IEEE Trans. Comput.,
vol. C-22, pp. 698-701, July 1973.

[6] D. V. Kanani and K. H. O'Keefe, "A note on conditional-sum
addition for base -2 systems," IEEE Trans. Comput. (Corresp.),
vol. C-22, p. 626, June 1973.

[7] L. S. Houselander, "Cellular-array negabinary multiplier," Electron.
Lett., vol. 10, pp. 168-169, May 1974.

[8] D. P. Agrawal, "Negabinary carry-look-ahead adder and fast
multiplier," Electron. Lett., vol. 10, pp. 312-313, July 1974.

[9] -, "Negabinary complex number multiplier," Electron. Lett.,
vol. 10, pp. 502-503, Nov. 1974.

[10] , "Some aspects of fast arithmetic techniques," Ph.D. dis-
sertation, Fed. Inst. Technol., Lausanne, Switzerland, 1975.

An Algorithm for Finding Nearest Neighbors

JEROME H. FRIEDMAN, FOREST BASKETT, AND
LEONARD J. SHUSTEK

Abstract-An algorithm that finds the k nearest neighbors of a
point, from a sample of size N in a d-dimensional space, with an
expected number of distance calculations

E[nd] $ 2r E2[kdr (d/2)]iId(2N)1-(lId)
is described, its properties examined, and the validity of the estimate
verified with simulated data.

Manuscript received June 24, 1974; revised February 7, 1975. This
work was supported in part by the U. S. Atomic Energy Commission
under Contract AT(043)515.

J. H. Friedman is with Stanford Linear Accelerator Center, Stanford,
Calif. 94305.

F. Baskett and L. J. Shustek are with the Computer Science Depart-
ment, Stanford University, Stanford, Calif.

1000

