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Abstract—Large integer Modular Multiplication (MM) and Modular Exponentiation (ME) are the foundation of most public-key

cryptosystems, specifically RSA, Diffie-Helleman, ElGamal, and the Elliptic Curve Cryptosystems. Thus, MM algorithms have been

studied widely and extensively. Most of the work is based on the well-known Montgomery Multiplication Method and its variants, which

require standard multiplication operations. Despite their better complexity orders, Karatsuba and FFT algorithms seem to rarely be

used for hardware implementation. In this paper, we review their hardware complexity and propose original implementations of MM

and ME that become useful for 24-bit operators (Karatsuba algorithm) or 373-bit operators (FFT algorithm).

Index Terms—Cryptography, multiplication, modular arithmetic, hardware complexity.
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1 INTRODUCTION

THE ever-increasing needs in data communication and
the expansion of Internet services, namely, financial

applications and electronic commerce, have made security a
major concern. Private-key cryptography is unfortunately
impractical for such applications because of its main
drawback: the Key Distribution Problem. Public-key cryp-
tography [1], introduced in 1976, was the first bright
solution and so far has been shown to be the only
convenient security technique for such applications.

Since then, many public-key cryptosystems have been

designed and implemented. The most dominant realiza-

tions are RSA, ElGamal, and Elliptic Curve Cryptosystems

(ECCs). These systems base their security on the computa-

tional difficulty of solving some mathematical problems in

modular arithmetic.
All current public-key cryptosystems use Modular

Multiplication (MM), and most of them require Modular

Exponentiation (ME). Thus, the performance of any public-

key cryptosystem is primarily determined by the efficiency

of the MM algorithm (multiplication and remainder

operations) and its implementation. Unfortunately, the

complexity of the classical method for multiplying integers

is OðN2Þ and the same is true for the modulo operation.

Besides, for security reasons, these algorithms are applied

to very large integers (1,024 bits or higher). This is an

important obstacle to attaining high throughput, which is a
vital criterion in network applications.

A number of papers have been published on the
optimization of MM. Most of the contributions are based
on the Montgomery Multiplication Method (MMM) [2],
which achieves MM and ME with classical multiplication
and power-of-2 division. Many variants (that is, the
combination of the MMM with a particular mathematical
or hardware technique) have also been proposed. We
mention, for example, the Residue Number System [3],
[4], [5], Chinese Remainder Theorem [6], [7], Redundant
Number System [8], [9], High Radix [10], Systolic Array
[10], [11], Carry Save Adders [12], [13], and Lookup Tables
[14]. Nevertheless, the intrinsic complexity of these ap-
proaches relies on the multiplication and is OðN2Þ.

Other methods exist to multiply (large) integers.
Karatsuba and Ofman proposed a recursive algorithm,
which is about OðN1:58Þ [15], and the Fast Fourier Trans-
form (FFT) [16] has the smallest known complexity,
OðN logðNÞÞ, for integer multiplication. Fig. 1 illustrates
MM complexity order for both classical and Montgomery
representations.

This figure will be detailed in the following sections. The
important point here is to notice that an MM can have the
same complexity order as a standard multiplication, which
can be as low as OðN1:58Þ or OðN logðNÞÞ. Nevertheless,
these orders hide constants that make the algorithms useful
only beyond a given threshold. The present paper reviews
the hardware complexity (HC) of squaring, multiplication,
modular squaring (MS), MM, and ME with classical,
Karatsuba, and FFT-based operators. An important con-
tribution is also proposed in the hardware optimization of
FFT-based operators.

Given these implementations, we propose to answer the
following question: “What are the thresholds that deter-
mine when classical, Karatsuba, or FFT-based operators
should be used to minimize the HC?” After an extensive
search, the only FFT-based hardware implementation that
we have found is a recent work that aims at multiplying
ultra-large numbers (12,000,000 digits) [17]. Our results
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Operationnelle, Université de Montréal and the Ecole Polytechnique de
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demonstrate that, to multiply two integers, the FFT method
is better than the classical one for 346-bit operands and
better than the Karatsuba one for 1,824-bit operands,
whereas the Karatsuba method starts to be more efficient
than the classical one for 16-bit operands. We have obtained
similar results for modular operations (MM and ME).

The rest of this paper is organized as follows: Section 2
presents the ME algorithm and defines our approach to
measure its HC. The first refinement step leads to MM and
MS algorithm implementations, which are studied in
Section 3. The second refinement step is presented in
Section 4, where various algorithms and implementations of
the square and multiplication operations are described.
Section 5 is dedicated to the study of FFT-based operators
and, in particular, details our original hardware implemen-
tation. The HC of squarer, multiplier, MS, MM, and ME
have been computed for several architectures and operand
sizes. Section 6 presents and compares the results, including
a preliminary FPGA implementation. Section 7 concludes
this work.

2 MODULAR EXPONENTIATION COMPLEXITY

2.1 Modular Exponentiation Computation

ME has the form

y ¼ xe modm; ð1Þ

where x is the base, e is the exponent, and m is the modulus.
We consider that all integers are unsigned N-bit numbers.

One of the most efficient techniques to compute
exponentiation is the square-and-multiply algorithm (Algo-
rithm 1), which is also called Binary Exponentiation. It
drastically reduces both the number of operations and the
memory required to perform ME. The exponent e must first
be converted into its binary notation. That is, e can be
written as

e ¼ ðeN�1eN�2 . . . e1e0Þ ¼
XN�1

i¼0

ei2
i: ð2Þ

Bits ei are scanned from left to right. An MS is performed

at each step. Depending on the ei value, a subsequent MM

is done. The following equation illustrates this strategy:

x13 ¼ x1101b ¼ ððð12xÞ2xÞ2Þ2x: ð3Þ

To minimize the ME’s HC, we propose studying the

possible implementations of MS and MM according to

Fig. 1. Nevertheless, we must first define what we call

“HC.” This is detailed in the next section.

Algorithm 1 Modular Binary Exponentiation (MBE).

1: Input: x, e, m
2: Output: y ¼ xe modm

3: y ¼ 1

4: for i ¼ N � 1 downto 0 do

5: y ¼ y2 modm

6: if ðei ¼ 1Þ then

7: y ¼ y � xmodm

8: end if

9: end for

10: return y

2.2 Measure of Algorithms Complexity

The abstraction level that we address is the theoretical

number of atomic devices required to implement an

algorithm. The atomic devices that we consider are simple

gates (AND, OR, XOR), two-input multiplexer, Half Adder

(HA), and Full Adder (FA). Their intrinsic complexity,

which is technology dependent, is denoted �device (Table 1).

The routing, the delays, the power consumption, and the

potential logic redundancy that depend on the actual

implementation are not taken into account at this level.
All of our algorithms are refined until they can be

implemented as a network of such basic devices in order to

measure their HC, which is expressed by their �algoðÞ
function:

�algoðÞ ¼ . . . �gate þ . . . �mux þ . . . �HA þ . . . �FA: ð4Þ

We consider only pure combinatorial implementations.

The information can, however, be easily extrapolated to

pipelined or functionally pipelined implementations when

possible. In this context, multiplications and divisions by

constant powers of 2 are free.

2.3 Power-of-2 Sum Complexity

Many algorithms require the implementation of power-of-2

sums. That is,

result ¼
X
i

xi � 2wi ; ð5Þ
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Fig. 1. Modular multiplication complexity order.

TABLE 1
Atomic Device Complexity



where xis are binary input variables with associated
weight wi.

The complexity �P2SumðfxigÞ is computed by a fixed-
point algorithm (Algorithm 2) that tries to allocate FA when
possible and HA otherwise until the whole sum is
computed.

Algorithm 2 power-of-2 sum complexity.

1: Input: xi, wi
2: Output: complexity in terms of �HA and �FA
3: Start: CHA ¼ CFA ¼ 0

4: Let ci ¼ number of xkjwk ¼ i
5: while ð9ijðci > 1ÞÞ do

6: if ð9jjðcj � 3ÞÞ then

7: cj ¼ cj � 2; cjþ1 ¼ cjþ1 þ 1; CFA ¼ CFA þ 1

8: else

9: let jjcj ¼ 2 and 8k < j, ck < 2

10: cj ¼ cj � 1; cjþ1 ¼ cjþ1 þ 1; CHA ¼ CHA þ 1

11: end if

12: end while

13: return ðCHA �HA þ CFA �FAÞ
We define the �algo (Table 2) for basic functions that are

trivially implemented by HA and FA atomic resources. The
variables wa and wb represent the widths of operands a and
b, respectively, whereas wr represents the required result
width.

3 MODULAR MULTIPLICATION

This section presents standard and Montgomery methods to
compute the MM and details their HC. The MM is given by

p ¼ a � bmodm: ð6Þ

3.1 Standard Modular Multiplication (SMM)

This method consists of computing the multiplication and
then computing the modulus. It is detailed in Algorithm 3.
The SMM’s HC is concentrated in lines 3 and 6 because shift
resources are free. Multiplication can be implemented in
various ways, as shown in the next section. Test and
subtraction at line 6 are actually a single subtractor resource
(the test is the subtracter’s borrow). A multiplexer is used to
choose between p and p�m values. This block is replicated
N þ 1 times to implement the FOR structure. A hardware
implementation is given in Fig. 2. The HC is

�MODULOðNÞ ¼ ðN þ 1Þð�SUBðNÞ þ �MUXðNÞÞ; ð7Þ

�SMMðNÞ ¼ �MULT ðNÞ þ �MODULOðNÞ: ð8Þ

Algorithm 3 Standard Modular Multiplication (SMM).

1: Input: a, b, m

2: Output: a � bmodm

3: p ¼ a � b
4: m ¼ m� N

5: for i ¼ N downto 0 do

6: if ðp � mÞ p ¼ p�m
7: m ¼ m� 1

8: end for

9: return p

3.2 THE MONTGOMERY MULTIPLICATION METHOD

Introduced in 1985 [2], Montgomery’s MM algorithm is one
of the most efficient methods to perform ME. Let m be a
modulo of N bits and r be defined as r ¼ 2N . Parameters m
and r must be relatively prime in order to have unique
inverses ðr�1;m�1Þ in Zm and Zr, respectively. This
necessary condition for the MMM is satisfied for any odd
m since r is a power of 2.

Given an integer 0 � a < m, the Montgomery representa-
tion (also called them-residue) with respect to r is defined by

a ¼ a � rmodm: ð9Þ

The Montgomery Reduction (MR) is the inverse trans-
form of the m-residue representation. It is defined by

a ¼ MRðaÞ ¼ a � r�1 modm; ð10Þ

where a is the m-residue of a, and r�1 is the inverse of r in
Zm.

Given the m-residues a and b, Montgomery proposes an
algorithm to compute the m-residue of a � b with power-of-2
divisions only (due to the special form of r). This is detailed
in Algorithm 4. The squaring version of the algorithm is
straightforward and will be called Montgomery Square
Reduction (MSR).

Algorithm 4 Montgomery Product Reduction (MPR).

1: Input: a, b,

2: Output: c ¼ a � b
3: u ¼ a � b
4: v ¼ u � ð�m�1Þmod r
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Fig. 2. Standard Modulo Multiplication.



5: c ¼ ðuþ v �mÞ=r
6: if ðc � mÞ then

7: c ¼ c�m
8: end if

9: Return c

This algorithm is not efficient at all for a single MM

because it requires m-residue transformations (for operands)

and reduction (for result). Besides, constants r�1 and

ð�m�1Þ must be precomputed. Nevertheless, when the

same data is involved in a large set of MM, this algorithm

has the asymptotical complexity of a multiplication and

becomes very interesting for large numbers since the

standard modulo operation is OðN2Þ.
The HC of this algorithm is composed of two full

multipliers (lines 3 and 5), one N-bit truncated multiplier

(line 4), one 2N-bit adder (line 5), and one N-bit subtractor/

multiplexer stage similar to the one used in SMM (lines 6

and 7). The HC is

�REDUCT ðNÞ ¼ �MULT ðNÞ þ �MULT ðN;N;NÞ
þ �ADDð2NÞ þ �SUBðNÞ
þ �MUXðNÞ;

ð11Þ

�MSRðNÞ ¼ �SQUAREðNÞ þ �REDUCT ðNÞ; ð12Þ

�MPRðNÞ ¼ �MULT ðNÞ þ �REDUCT ðNÞ: ð13Þ

The squarer and multiplier complexities are analyzed in

the next section. Combining MSR/MPR with MBE, MEM is

presented in Algorithm 5. This algorithm has N stages. Each

stage is composed of one MSR and one conditional MPR.

The HC of one stage is

�MEMðNÞ ¼ �MPRðNÞ þ �MSRðNÞ þ �MUXðNÞ: ð14Þ

Algorithm 5 Montgomery Exponentiation Method (MEM).

1: Input: x, e, m

2: Output: y ¼ xe modm

3: r ¼ �m�1 (using the extended euclidean algorithm)

4: x ¼ x � rmodm

5: y ¼ 1 � rmodm

6: for i ¼ N � 1 downto 0 do

7: y ¼MSRðyÞ
8: if ðei ¼ 1Þ then

9: y ¼MPRðx; yÞ
10: end if

11: end for

12: y ¼MPRðy; 1Þ
13: return y

4 MULTIPLICATION ALGORITHMS

4.1 The Standard Multiplication Algorithm (SMA)

Let a and b be two N-bit numbers:

a ¼ ðaN�1aN�2 . . . a0Þ ¼
XN�1

i¼0

ai2
i; ð15Þ

b ¼ ðbN�1bN�2 . . . b0Þ ¼
XN�1

i¼0

bi2
i: ð16Þ

The standard (classical) multiplication method computes
the partial products pij ¼ aibi. Each product has a weight 2iþj.
Then, all products are summed (according to their weight),
resulting in a 2N-bit number. This is illustrated in Fig. 3 for
2-bit integers.

The last row of this table is the total sum of the partial
products, giving the product of a by b. This method is
presented in Algorithm 6, where partial products are
iteratively computed and summed at Step 8, known as the
inner product operation.

Algorithm 6 SMA.

1: Input: a, b

2: Output: p ¼ ab
3: Variable: C(Carry) and S(Sum)

4: Initially, pi ¼ 0 for all i ¼ 0; 1; � � � ; 2N � 1

5: for i ¼ 0 to N � 1 do

6: C ¼ 0

7: for j ¼ 0 to N � 1 do

8: ðC; SÞ ¼ piþj þ biaj þ C
9: piþj ¼ S
10: end for

11: piþN ¼ C
12: end for

13: return ðp2N�1p2N�2 . . . p0Þ
This algorithm’s complexity is OðN2Þ. It is asymptotically

the slowest one in the literature but also the simplest. Its HC
can thus be given as

�SMAðNÞ ¼ �P2Sumðfpi;jgÞ þN2�GATE: ð17Þ

The general form of the SMA (including r-bit truncated
multiplications) complexity is

i 2 ½0; wa � 1�;
j 2 ½0; wb � 1�;
P ¼fpi;jjðiþ jÞ < wrg;

�SMAðwa; wb; wrÞ ¼ �P2SumðP;wrÞ
þ#P �GATE:

ð18Þ

The Standard Squaring Algorithm (SSA) is also OðN2Þ,
but has a smaller complexity because pi;j ¼ pj;i and
pi;j þ pj;i ¼ 2pi;j, which is simply a change of weight of pi;j.

4.2 The Karatsuba Algorithm

Karatsuba is a Russian mathematician who proposed a
recursive multiplication algorithm with a complexity of
about OðN1:58Þ. Let a and b be two N-bit numbers and let
l ¼ N=2. Initially, a and b are split into two equal-sized parts
as follows:
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Fig. 3. The Standard Multiplication Algorithm.



a ¼ 2la1 þ a0; b ¼ 2lb1 þ b0: ð19Þ

Thus, a0 and b0 contain the l least significant bits and a1

and b1 contain the most significant bits. The value 2l denotes

the base � of this system. Karatsuba’s algorithm transforms

the multiplication of a and b into the multiplications of half-

sized numbers a0, a1, b0, and b1, illustrated as follows:

p ¼ a � b
¼ð2la1 þ a0Þ:ð2lb1 þ b0Þ
¼ 22lða1b1Þ þ 2lða1b0 þ a0b1Þ þ a0b0

¼ 22lp2 þ 2lp1 þ p0:

ð20Þ

This formalism is simply a recursive version of SMA and

its complexity is still OðN2Þ, but Karatsuba noticed that p1

could be expressed differently as

p1 ¼ a1b0 þ a0b1 ¼ ða0 þ a1Þ � ðb0 þ b1Þ � p0 � p2: ð21Þ

The two multiplications and the addition previously

required are replaced by one multiplication, two additions,

and two subtractions, leading to a global complexity order

of N log2ð3Þ. Karatsuba’s algorithm is consequently asympto-

tically more efficient than the classical one. However, the

latter is better for small-sized numbers. Therefore, a hybrid

algorithm is often used. It consists of applying Karatsuba’s

algorithm until the coefficient widths become lower than

the threshold at which point it is more interesting to use the

classical method. This algorithm is described in Algorithm 7

and its hardware implementation is illustrated in Fig. 4.

Algorithm 7 Karatsuba Multiplication Algorithm (KMA).

1: Inputs: a (wa bits), b (wb bits)

2: Output: p ðwr bitsÞ ¼ a � b

3: if (wa, wb and wr are too small) then

4: return SMAða; bÞ
5: end if

6: a0 ¼ amod 2l; a1 ¼ a=2l

7: b0 ¼ bmod 2l; b1 ¼ b=2l

8: p0 ¼ KMAða0; b0Þ
9: p2 ¼ KMAða1; b1Þ
10: p1 ¼ KMAða0 þ a1; b0 þ b1Þ � p0 � p2

11: p ¼ 22lp2 þ 2lp1 þ p0

12: return p

We propose extending this algorithm to arbitrary widths

(including r-bit truncated multiplications). To be able to

compute p1 from p2 and p0 when wr < wa þ wb, the required

widths p0w, p1w, and p2w are computed as follows:

l ¼ minðwa; wbÞ
2

; ha ¼ wa � l; hb ¼ wb � l; ð22Þ

p0w ¼ 2l; ð23Þ

p1w ¼ minðlþmaxðha; hbÞ þ 1; wr � lÞ; ð24Þ

p2w ¼ minðha þ hb;maxðp1w; wr � 2lÞÞ: ð25Þ

The HC of this algorithm is

�KMAðwa; wb; wrÞ ¼ �KMAðlÞ þ �KMAðha; hb; p2wÞ
þ�ADDðl; haÞ þ �ADDðl; hbÞ

þ�KMAðmaxðl; haÞ þ 1;maxðl; hbÞ þ 1; p1wÞ
þ�SUBðp1w; p0w; p1wÞ þ �SUBðp1w; p2w; p1wÞ

þ�P2Sumðp2; p1; p0Þ:

ð26Þ

The HC of the Karatsuba Squaring Algorithm (KSA) can

be easily deduced by considering that wb ¼ wa and

h ¼ ha ¼ hb. It is given by the following:

�KSAðwa; wrÞ ¼ �KSAðlÞ þ �KSAðh; p2wÞ
þ2�ADDðl; hÞ

þ�KMAðmaxðl; hÞ þ 1;maxðl; hÞ þ 1; p1wÞ
þ�SUBðp1w; p0w; p1wÞ þ �SUBðp1w; p2w; p1wÞ

þ�P2Sumðp2; p1; p0Þ:

ð27Þ

5 FFT IMPLEMENTATION OF MM AND ME

5.1 The Principle of FFT Multiplication

The multiplication of large integers using the FFT algorithm

is based on the polynomial multiplication:

AðxÞ ¼
XS=2�1

i¼0

aix
i; ð28Þ

BðxÞ ¼
XS=2�1

i¼0

bix
i; ð29Þ

P ðxÞ ¼ AðxÞ �BðxÞ ¼
XS�1

i¼0

pix
i: ð30Þ

1312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

Fig. 4. Karatsuba multiplication implementation.



Given two numbers A and B, the first step consists of

defining the faig, fbig, and a base � satisfying the following

system:

A ¼ AðxÞjx¼�; ð31Þ

B ¼ BðxÞjx¼�; ð32Þ

) P ¼ P ðxÞjx¼�: ð33Þ

A degree S polynomial P ðxÞ is completely defined by

S pairs ðxi; P ðxiÞÞ. Its coefficients can be computed by

interpolation. The polynomial multiplication by FFT is a

three-step process, as illustrated in Fig. 5:

1. Evaluate Ai ¼ AðxiÞ and Bi ¼ BðxiÞ.
2. Compute products ðxi; P ðxiÞÞ ¼ ðxi; Ai �BiÞ.
3. Interpolate fðxi; P ðxiÞÞg to find the pi.

Evaluation and interpolation processes are generally

OðS2Þ. However, for a specific set of xi ð0 � i < SÞ, the

discrete Fourier transform (DFT) and its inverse (IDFT) can

compute them in OðS logðSÞÞ time by applying, respec-

tively, the FFT and IFFT algorithms:

S ¼ 2k; w ¼
ffiffiffiffiffiffiffi
�1

1
2
S
p

) wS ¼ 1; ð34Þ

fxig ¼ wi; 0 � i < S; ð35Þ

FFT 	 Ai ¼
XS�1

k¼0

akw
ik; 0 � i < S; ð36Þ

IFFT 	 ai ¼
1

S

XS�1

k¼0

Akw
�ik; 0 � i < S: ð37Þ

Fig. 6 illustrates a well-known implementation of the FFT

and IFFT algorithms based on the Butterfly operator. This

implementation is fully covered in the signal processing

literature. In our context (HC evaluation), we only need to

consider the following:

1. The Butterfly operator is computed as follows:

ru ¼ luþ wild; ð38Þ

rd ¼ lu� wild: ð39Þ

2. FFT can be implemented by log2ðSÞ slices of
S
2 instances of the Butterfly operator.

3. IFFT can be implemented in a similar way (with
fXig ¼ w�i), but it must be followed by a slice of
1
S operators.

The FFT and IFFT algorithms rely on specific properties

of unity roots, which are complex numbers in the general

case. Nevertheless, complex numbers are not good candi-

dates for implementation in hardware because operands

have fixed widths and it is not possible to maintain full

precision. Modular arithmetic also offers multiple unity

roots, xi, that can be exploited in these algorithms and

which are better implemented in hardware. However,

specific conditions must be met to guarantee that FFT can

be applied. The theory behind these conditions is quite

complex and out of the scope of this paper. We present here

a very summarized justification. The interested reader can

find a more formal justification in [18]:

1. S ¼ 2k and S�1 must exist in Zm:
) modulo m must be odd.

2. ai, bi � � � 1) pi � S
2 ð� � 1Þ2:

) m must be > S
2 ð� � 1Þ2.

3. FFT and IFFT are used:
) 9wjwS

2 ¼ �1.

The following simple example will help illustrate the

process. We intend to multiply 4,321 by 8,765. For clarity,

we will use decimal formalism, so � ¼ 10 and S ¼ 8:
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Fig. 5. Polynomial multiplication.

Fig. 6. FFT and IFFT implementation ðS ¼ 8Þ.



m must be odd and > 4ð9Þ2 ¼ 324

) w ¼ 6;m ¼ w4 þ 1 ¼ 1297 is a valid modulo
ð40Þ

AðxÞ ¼ 1þ 2xþ 3x2 þ 4x3;

A ¼FFT ð1; 2; 3; 4; 0; 0; 0; 0Þ
¼ ð10; 985; 1; 223; 349; 1; 295; 530; 70; 734Þ;

BðxÞ ¼ 5þ 6xþ 7x2 þ 8x3;

B ¼FFT ð5; 6; 7; 8; 0; 0; 0; 0Þ
¼ ð26; 724; 1; 223; 1; 097; 1; 295; 1; 087; 70; 1; 003Þ;

P ¼AB ¼ ð260; 1; 087; 288; 238; 4; 242; 1; 009; 803Þ;
pi ¼ð5; 16; 34; 60; 61; 52; 32; 0Þ;

P ðxÞ ¼ 5þ 16xþ 34x2 þ 60x3 þ 61x4 þ 52x5 þ 32x6:

ð41Þ

Finally, noticing that

AðxÞBðxÞjx¼10 ¼ 4; 321 � 8; 765 ¼ P ðxÞjx¼10 ¼ 37; 873; 565;

ð42Þ

the reader will be easily convinced that multiplying large

numbers is equivalent to multiplying polynomials. This is

detailed in the following section.

5.2 FFT-Based Multiplication

We consider the multiplication of N-bit numbers. Binary

numbers can be expressed in base � ¼ 2l at no cost since it

consists of grouping their bits per packet of lbits from the least

significant bits to the most significant bits. The operation to

compute P ðxÞjx¼2l (final evaluation) is a little more complex

because it requires additions, but the complexity is onlyOðSÞ.
Thus, the multiplication of two integers can have the same

complexity order as the multiplication of two polynomials.

The algorithm for multiplying two binary integers by FFT is

described in Algorithm 8 and its combinatorial architecture is

presented in Fig. 7.

Algorithm 8 FFT-based multiplication algorithm (FMA).
1: Input: a, b N-bit integers

2: Output: p ¼ ab
3: define parameters l, k, and S such as

4: S ¼ 2k, lS � 2N

5: define valid modulo m and root w

6: compute faig and fbig
7: apply FFT to get fAig and fBig (in Zm)

8: compute Pi ¼ AiBi (in Zm)
9: apply IFFT to get fpig (in Zm)

10: return p ¼ P ðxÞjx¼2l

Remembering that 8i � S
2 , ai ¼ 0 and bi ¼ 0, thus render-

ing the first slice of FFT useless, the HC of FMA is therefore

�FMAðNÞ ¼ 2
S

2
ðlogðSÞ � 1Þ�ButterflyðvÞþ

Sð�MMðvþ 1Þ þ �INV ðSÞÞþ
S

2
logðSÞ�ButterflyðvÞ þ �EVAL

with v defined as follows:

ð43Þ

For the FFT-based squaring algorithm (FSA) or the FFT-

based constant multiplication algorithm (FCMA), only one

FFT must be computed. The complexity is reduced

accordingly.

Brassard and Bratley [18] have proposed special m and

w values that allow efficient implementation of the multi-

plier. We propose an original architecture based on these

parameters that tends to minimize the global HC. This is

fully detailed in the following points.

5.2.1 Brassard and Bratley Special m and w Values

These are given by

w ¼ 2r; v ¼ r S
2
;m ¼ 2v þ 1; ð44Þ

with r chosen to satisfy m > S
2 ð� � 1Þ2. This particular form

leads to power-of-2 wi defined by

wi ¼ 2ri for 0 � ri < S

2
; ð45Þ

wi ¼ �2ri�
S
2 for

S

2
� ri < S: ð46Þ

The value w is theoretically a ðvþ 1Þ-bit unsigned integer

and so are the operations involved in FFT and IFFT. In

order to simplify the hardware architecture, we propose

using ðvþ 1Þ-bit signed integers with redundant logic.

Attention must be paid to the fact that the value 2v is now

represented by �1. All other values (except 0) have two

possible representations (positive and negative).

5.2.2 Modulo Operator

Any number x expressed in base 2v has the form

x ¼
X
i

xi2
vi: ð47Þ
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Considering that

2v modm ¼ �1) x ¼
X
i

xið�1Þi
 !

in Zm: ð48Þ

For ð2vþ 1Þ-bit signed integers and due to the sign bit, we
have

xmodm ¼ x½v� 1 . . . 0� � x½2v� 1 . . . v� � x½2v�modm;

ð49Þ

which is a ðvþ 1Þ-bit signed integer that can be computed

with a simple v-bit subtracter (with borrow) operator. The

reader should note that this would not have been possible

with unsigned arithmetic, which justifies our choice. Thus,

the HC of the modulo operator for up to ð2vþ 1Þ-bit

(signed) operands is

�MODðwrÞ ¼ �SUBBðvÞ 8wr � 2vþ 1: ð50Þ

5.2.3 The Butterfly Operator

The Butterfly operator in modular arithmetic is illustrated

in Fig. 8. Thanks to our optimized parameters, the

multiplication by wi is reduced to a constant shift (from 0

to v� 1 bits) and the negative values simply switch the

adder and subtracter resources. Thus, t is actually a

(maximum) 2v-bit signed integer whose ðvþ 1Þ first bits

are significant. The modulo operator following the multi-

plier is not useful anymore. The subsequent adder and

subtracter can be implemented by ðvþ 1Þ-bit adder/

subtracter operators producing ð2vþ 1Þ-bit signed integers

that perfectly map the modulo operator requirements

defined above. The Butterfly HC can therefore be written as

�BTF ðvÞ ¼ �ADDðvþ 1Þ þ �SUBðvþ 1Þ þ 2�SUBBðvÞ; ð51Þ

which is a remarkable result because the complexity

theoretically required for unspecified m and wi parameters

would require one MM and two modular adder/subtracter

resources.

5.2.4 The Internal MM Operator and 1
s Operator

The FMA requires S instances of a ðvþ 1Þ-bit MM. This

multiplier can be recursively implemented by the FMA.

Nevertheless, in this paper, we only consider single-level

FMA because the operand size required for multilevel

implementation is beyond what is achievable in a single

combinatorial Integrated Circuit (IC). Thus, we consider

that this multiplier is implemented by KMA or SMA and

that it is followed by a modulo-m operator.

The multiplier takes inputs in the range ½�2v; 2v � 1� and
produces a result in the range ½�22v þ 2v; 22v�, which is a
ð2vþ 2Þ-bit signed integer.

In order to have a ð2vþ 1Þ-bit signed integer (required by
our modulo operator) and to anticipate the 1

S operator, we
propose implementing the product’s negation, followed by
the modulo-m operator already described.

The implementation of the 1
S operator (for IFFT) is also

very simplified in our context:

m ¼ 2v þ 1) 1 ¼ �2vð:modmÞ; ð52Þ

1

S ¼ 2k
¼ �2v�kð:modmÞ: ð53Þ

Since the negation is already done (in the multiplication),
the 1

S operator simply becomes a (free) shift followed by our
modulo-m operator. The HC is

�MMðvþ 1Þ þ �INV ðSÞ ¼
�MULT ðvþ 1Þ þ �2�CPLðvþ 1Þ þ 2�MODðvþ 1Þ:

ð54Þ

5.2.5 Final Evaluation

The final evaluation consists of computing

P ðxÞ ¼
XS�1

i¼0

pix
ijx¼2l ; ð55Þ

where pis are the outputs of the IFFT, which are modulo-m

integers represented by redundant ðvþ 1Þ-bit signed in-
tegers. The values pi must first be converted into modulo-m

integers by adding m to each negative value. This can be
done with a multiplexer and a constant adder resource. The
final result is obtained by a sum of shifted values, which is
simply a power-of-2 sum. Noticing that pS�1 ¼ 0, the
evaluation HC is

�EVAL ¼ðS � 1Þð�MUXðvþ 1Þ þ �CSTADDðvþ 1ÞÞ
þ �P2Sumð. . .Þ:

ð56Þ

5.3 FFT-Based MM and ME

The MSR and MPR algorithms combined with FSA and
FMA are very powerful because, among the three multi-
plications, two involve precomputed constants. Therefore,
one can also precompute the FFT of these constants and
apply FCMA. The MEM combined with FMA is even better
because all of the multiplications involved are square or
(precomputed) constant multiplications. Algorithms 9 and
10 are, respectively, the FFT-based implementation of MPR
and MEM.

Algorithm 9 FFT-based MPR (FMPR).

1: Input: Y ¼ FFT ðyÞ, X ¼ FFT ðxÞ
2: Output: y � xmodm

3: Constants: m ¼ modulo, r ¼ 2N > m

4: Precomputed: l ¼ �m�1, L ¼ FFT ðlÞ, M ¼ FFT ðmÞ
5: U ¼ Y �X(point to point)

6: u ¼ evaluateðIFFT ðUÞÞ
7: V ¼ FFT ðumod rÞ � L(point to point)

8: v ¼ evaluateðIFFT ðV ÞÞmod r

9: W ¼ FFT ðvÞ �M(point to point)
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10: w ¼ evaluateðIFFT ðWÞÞ
11: y ¼ ðuþ wÞ=r
12: if ðy � mÞ then

13: y ¼ y�m
14: end if

15: return y

Algorithm 10 FFT-based MEM (FMEM).

1: Input: x, e, m

2: Output: y ¼ xe modm

3: if ðe ¼ 0Þ then

4: return 1

5: else if ðe ¼ 1Þ then

6: return x

7: end if

8: l ¼ �m�1 (using the extended euclidean algorithm)

9: x ¼ x � rmodm

10: y ¼ 1 � rmodm

11: L ¼ FFT ðlÞ
12: M ¼ FFT ðmÞ
13: X ¼ FFT ðxÞ
14: for i ¼ N � 1 downto 0 do

15: Y ¼ FFT ðyÞ
16: y ¼ FMPRðY ; Y Þ
17: if ðei ¼ 1Þ then

18: Y ¼ FFT ðyÞ
19: y ¼ FMPRðY ;XÞ
20: end if

21: end for

22: Y ¼ FFT ðyÞ
23: y ¼ FMRMðY ; FFT ð1ÞÞ
24: Return y

6 IMPLEMENTATION RESULTS

In this section, we present the HC results obtained for

several combinations of algorithms, implementations, and

operand widths. These complexities are expressed in terms

of atomic complexities �gate, �mux, �HA, and �FA. A global HC

(computed from Table 3) is also given to enable the

comparison of the different versions. These weights are

based on the number of two-input gates required to

implement each atomic device.

6.1 Classical Implementation HC

The HCs of square, multiplication, MS, MM, and ME are

computed for the classical implementations. For ME, only

one stage is computed. Results are presented in Table 4.

6.2 Karatsuba Implementation HC

The HCs of square, multiplication, MSR, MPR, and MEM

are computed for the Karatsuba implementation. This

means that, each time a squarer or a multiplier is involved,

its complexity is computed by the Karatsuba algorithm (in a

recursive way). Only one stage of MEM is computed. The

reader must recall that MSR, MPR, and MEM require a

Montgomery representation. Results are presented in

Table 5. The rightmost column indicates the ratio of the

Karatsuba implementation HC to the standard classical

implementation HC (%(S)).
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TABLE 3
Atomic Device Weights for Global Hardware Complexity

TABLE 4
Hardware Complexity: Standard Implementation



6.3 FFT Implementation HC

The HC is computed for the FFT implementation devices.

This means that, each time a squarer or a multiplier is

involved, its complexity is computed by the FFT algorithm.

This algorithm is theoretically recursive because it requires

S multipliers of smaller size. Nevertheless, only one level of

FFT is actually implemented in our context because further

levels are best implemented by the Karatsuba or the

classical architectures. The FFT architecture is not as flexible

as other architectures due to the close relationship between

r, S, m, and N . For a given r, the HC is a step function,

where steps are defined by S ¼ 2k, as illustrated in Table 6,

for r ¼ 1; 2 and 3. It is up to the designer to choose the best

combination of r and S satisfying the required N . In this

paper, we only present results for r ¼ 1 to save space. The

following details the case where r ¼ 1 and S ¼ 64:

S ¼ 64) m ¼ 232 þ 1; ð57Þ

� �
ffiffiffiffiffiffiffi
2m

S

r
¼ 11; 585) l � log2ð�Þ ¼ 13; ð58Þ

result width � 64:13 ¼ 832; ð59Þ

operand width � 32:13 ¼ 416: ð60Þ

The Butterfly operator HC is available in Table 7, while
full implementation results are reported in Table 8. The
rightmost two columns indicate the ratio of the FFT
implementation HC to standard (%(S)) and to Karatsuba
(%(K)) implementation HC.

6.4 Hardware Complexity Comparison

Table 9 compares the HC of square, multiplication, MM,
and ME (one stage). For MM and ME, the classical
implementations require the classical binary representation,
whereas the Karatsuba and FFT implementations require
the Montgomery representation. N values have been chosen
to be the best or the worst cases for FFT implementation
when r ¼ 1 (due to the step function).

Results demonstrate that the Karatsuba implementation
quickly produces lower complexities than the classical
implementation. Any application requiring operands great-
er than or equal to 32 bits should replace the classical
implementation with the Karatsuba implementation and,
potentially, the FFT implementation.

The Karatsuba implementation and the FFT implementa-
tion compete to minimize the HC. The FFT implementation
minimizes the HC of 1,856-bit operands operations, but the
Karatsuba implementation minimizes the HC of 1,857-bit
operands and both implementations are better than the
classical implementation. The exact thresholds are pre-
sented in Table 10.

Although the Karatsuba implementation seems to offer
the best complexity for up to 1,825-bit operands, one must
recall that it requires a complete combinatorial or pipelined
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TABLE 5
Hardware Complexity: Karatsuba Implementation

TABLE 6
Operand Sizes for the FFTI Due to the Step Function

TABLE 7
Butterfly Operator Hardware Complexity



implementation (because of recursion deployment). Such an
implementation involves tens of millions of gates and this is
usually not acceptable in most cryptographical circuits.

The FFT implementation produces lower complexities
than the classical implementation for higher thresholds, but
it offers the advantage of being implementable with a
functional pipeline. A circuit composed of one modulo-m
multiplier (with m defined as shown above), 3

2 logðSÞ
modulo-m Butterfly operators, and one accumulator can
perform a multiplication in S clock cycles at the price of a
few extra memory elements and multiplexers to implement
functional pipelining.

6.5 Preliminary FPGA Implementation

FPGAs are programmable devices capable of implementing
complex designs equivalent to millions of gates. Moreover,
recent FPGAs already contain hundreds of small multiplier
cores that can be interconnected with custom logic to build
more complex devices. Our methodology to measure a
circuit’s complexity cannot be applied straightforwardly to
such a device because they contain atomic subdevices that
are more complex than a gate, a multiplexer, an HA, or an
FA. Nevertheless, if thresholds are different, complexity
orders remain and this should be observable.

The following results demonstrate that our approach is

fully functional and give some insight into what is

achievable in an FPGA. Nevertheless, the complete optimi-

zation of such an implementation is out of the scope of this

paper and could be explored in a future paper.
We implemented multipliers of different sizes on a

Stratix II device manufactured by Altera [19]. Each circuit
has been synthesized by the QuartusII software [19].
Table 11 reports the synthesis results of a naive imple-
mentation that lets the QuartusII tool build the multiplier
itself and our Karatsuba-based implementation. Due to the
presence of 9-bit digital signal processor (DSP) blocks
capable of implementing 18-bit multipliers, we limited the
Karatsuba recursion to such multipliers. Table 12 reports
the synthesis results for our FFTI. All of the circuits have
been tested on random test vectors and gave successful
results.
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TABLE 9
Hardware Complexity Comparison: Standard, Karatsuba, and

FFT Algorithms for Square, Multiplier, MS, MM, and ME

TABLE 10
Thresholds of Equal Complexity

TABLE 8
Hardware Complexity: FFT Implementation



7 CONCLUSION

The complexity of squaring, multiplication, MS, MM, and
ME depend on the algorithm used to implement them. the
Karatsuba implementation and the FFT implementation are
well known in software applications but seem to be rarely
used in hardware due to recursion (for the Karatsuba
implementation) and too large integer requirements (for the
FFT implementation).

We have performed an in-depth analysis of the HC
involved by Karatsuba and FFT-based implementations of
the cited operators. We have also proposed a very
optimized implementation of FFT-based operators. Results
show that recursion deployment leads to efficient imple-
mentation for as small as 16-bit operands (Karatsuba
implementation), whereas our optimized FFT implementa-
tion starts to outperform the classical implementation for
346-bit operands for simple multiplication. For 1,856-bit
integers, one stage of ME in FFTI only requires 23 percent of
the classical implementation hardware for the same stage.

Current cryptographical applications require 1,024-bit
operands (and beyond) and the need for larger keys
continuously increases. We think that the FFT implementa-
tion will take an important place in future design, at least
for functionally pipelined architectures or specialized
arithmetic logic units (ALUs, with dedicated modulo-m
operations) coupled to standard processors.
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years and is currently an assistant professor at
the �Ecole Polytechnique de Montréal. His
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