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A General Hardware-Oriented Method for Evaluation of

Functions and Computations in a Digital Computer

MILO0 D. ERCEGOVAC

Abstract-A parallel computational method, amenable for ef-
ficient hardware-level implementation, is described. It provides
a simple and fast algorithm for the evaluation of polynomials,
certain rational functions and arithmetic expressions, solving a

class of systems of linear equations, or performing the basic
arithmetic operations in a fixed-point number representation
system. The time required to perform the computation is of the
order of m carry-free addition operations, m being the number of
digits in the solution. In particular, the method is suitable for fast
evaluation of mathematical functions in hardware.

Index Terms-Arithmetic expressions, digital computer arith-
metic, evaluation of real-valued functions, fixed-point represen-

tation, hardware-level implementation, integral powers, linear
systems, on-line algorithms, parallel computation, polynomials,
rational functions, redundant number systems.

I. INTRODUCTION

T HE SUBJECT of this paper is a fast com-

- putational method amenable for efficient hardware-
level implementation. It provides a viable alternative to
the commonly known parallel algorithms implemented in
multiprocessor systems, and to the strictly hardware-ori-
ented algorithms, in which the fixed-point number rep-

resentation system is used [1].
Fast algorithms are of basic interest in the theory of

computation, and of an increasingly practical importance
in the organization and design of computing systems. With
respect to implementation, it is convenient to classify fast
methods as 1) those that use a multiplicity of general-
purpose processors with the corresponding algorithms
specified on the software (instruction) level, and 2) those
that require special-purpose processors with algorithms
embedded in the hardware (operation) level. The first class
is characterized by an unrestricted domain of applications,
while the second class, limited to the special applications,
provides a higher speed and better efficiency of imple-
mentation with respect to a given algorithm.
The evident progress of hardware technology does en-

hance the performance of the methods in both classes, but
the problem of algorithm design, which is optimal with
respect to the given technology and performance criteria,
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becomes even more challenging. When considering a
computational method for possible implementation, one
is usually concerned with 1) its application domain, 2) the
required set of algorithms, and 3) the required set of
primitive operators. With these, one also associates a set
of desired or required properties, for instance, the speed,
the complexity and the cost of implementation, the
fault-tolerance capability, numerical characteristics of the
algorithms, etc. Ideally, an implemented computational
method should have as large a domain of application as
possible, a single but simple algorithm, and only those
primitive operators that are efficiently realizable in the
given implementation technology.
The objective here is to define a method that would have

a sufficient generality in applications and such functional
properties in order to justify a hardware-level implemen-
tation. In other words, the intention is to combine the fa-
vorable properties of the two previously mentioned classes
of computational methods.
One of the original motivations was the problem of fast

evaluation of commonly used mathematical functions. The
proposed method evolved while attempting to solve this
problem in a new way. For that reason, we will restrict our
attention in the remainder of this section to some of the
known practical methods of evaluation of functions. One
class of these methods is based on the classical approxi-
mation techniques, in particular, the minimax or near-
minimax polynomial or rational approximations [2]. These
methods, for all practical purposes, can be considered
general. The other class contains those methods that are
based on certain specific properties of the functions being
evaluated: they are devised with implementation efficiency
and speed as objectives, but they have a limited domain
of application by definition [10]. For the former class, since
the approximation problem can be assumed to be solved,
one is concerned only with the problem of efficient eval-
uation of the corresponding approximating functions. For
polynomials, a direct hardware-implemented evaluation
scheme, based on Horner's or Clenshaw's recurrences,
suitable for the summation of the Chebyshev series [2] in
time with 0(n) multiplications, gives only a slight im-
provement in performance over the software versions, so
that its implementation, except in microprogrammed
machines, is hardly justified. The fast polynomial evalu-
ation schemes, on the other hand, provide a significant gain
in speed at the expense of a considerable hardware com-
plexity. Tung [6] considered the implementation of an
efficient polynomial evaluator, based on the fast primitive
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operators and a redundant number representation. The
structure proposed there is versatile but complex on the
level of the basic building block as well as in the overall
control and intercommunication requirements. For the
rational functions, fast parallel schemes offer even less
efficiency; yet, the rational approximations would be
preferable in many instances. The method proposed here
has the same generality in such an application, but offers
a better performance. Its algorithm is simple and requires
two or three operand additions as the primitive operator
for the evaluation of polynomial or rational functions, re-
spectively. The time required for evaluation is of the order
of one carry-save-type multiplication time if the coeffi-
cients of the approximating functions satisfy certain range
conditions. Otherwise, the required scaling will cause a
logarithmic extension in the working precision. In addition
to a simple basic computing block, the interconnection
requirements of this method are much simpler than those
of the previously mentioned methods. The main limitation
is the restriction to the fixed-point number representation
system.
The second class of methods being considered, as men-

tioned previously, includes those methods that utilize
certain functional properties to achieve an efficient and
fast implementation. Although these methods appear
limited in application, some of them can generate enough
different functions in order to justify a hardware imple-
mentation. Their efficiency comes from simple computa-
tional algorithms and primitive operators, like add and
shift, which can be conveniently implemented. The pro-
posed method is compatible in this respect: its computa-
tional algorithm is simple and problem invariant. There
is no shift operator, which in the previously proposed
methods must have a variable shift capability. When a
redundant representation is introduced in order to increase
the speed of computation, a variable shift operator can
considerably affect the complexity of implementation.
Some of the most important methods in this class are:
Volder's coordinate rotation technique (CORDIC), de-
scribed in [3] and later generalized in the form of a unified
algorithm in [81; the normalization methods, based on an
iterative cotransformation of a number pair (x,y), such
that a function f(x,y) remains invariant as proposed in [5],
[7], [8]; and the pseudodivision and the pseudomultipli-
cation methods for some elementary functions as described
in [4]. A combination of some of these methods provides
for fast evaluation of the most often used elementary
functions (for instance, square roots, logarithms, expo-
nentials, trigonometric, hyperbolic, and their inverse
functions). The method proposed here is more versatile in
this respect and it is generally comparable in speed. Al-
though some of the methods previously mentioned use
fewer implementation resources, the proposed method
excels in simplicity with respect to the basic computing
block, the overall structure, and its control.

Moreover, the proposed method can be applied in
solving problems other than function evaluation. Certain
arithmetic expressions, multiple products and sums, inner

products, integral powers, and solving of systems of linear
equations under certain conditions, are among the possible
applications. Basic arithmetics, in particular, multiplica-
tion and division can be performed by this method. Fur-
thermore, it has a useful functional property in that the
results are generated in a digit-by-digit fashion with the
most significant digits appearing first so that an overlap
of computations can be utilized. The algorithm shares
some properties with the incremental computations in the
digital differential analyzers (DDA), although it is not
based on an integration principle. The potential of such
an algorithm, systematically using variable powers of two
increments rather than constant increments as in DDA,
and its possible application in implementing multipro-
cessing systems have been recognized by Campeau in
[11]-[13].

II. THE COMPUTATIONAL METHOD

The proposed evaluation method, named the E-method
for brevity, consists of the following.

1) A problem-dependent correspondence rule Cf, which
associates variables and constants of a given computational
problem f with a system L of simultaneous linear equations
Ay = b in such a way that a) there is a one-one corre-
spondence between dependent variables (results) of the
problem f and the elements of the solution vector y of the
system L, and b) the elements of A and b satisfy certain
conditions, as specified later. A computational problem f
is said to be L -reducible if there exists such a correspon-
dence rule Cf.

2) A parallel algorithm for solving the system L in time
linearly proportional to the desired number of correct
digits of the solution y, which is also amenable to an effi-
cient hardware-level implementation.
Example 1: Let

P2X2+plx +po
q3X + q2X2 + qlx + .

be a real-valued rational function. Then Cp:R2,3(x) - L
specifies

f(x) = RTh <(x)

1 -x

L: qI 1 -x
q2 1

Lq3

1X rV1 r2i
1L1

so that Yi = R2,3(x). o
Example 2: Letfi(x) = xi, i = 2,3,4. The CIfi:tfi(x)I o-

L specifies

1

L:_

-x i

1 -x Y2 0
1 -1x Y _

so that y5-i = xi, i- = 2,3,4.
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A. The Computational AlgQrithm

The algorithm for solving a system L is of an iterative,
digit-by-digit nature. It generates one digit of each of the
elements of the solution vector in one step, starting with
the most significant digits. Since several functional prop-
erties of the algorithm depend on the redundant number
representation systems, we begin with the following defi-
nitions.

Definition 1: An m digit radix r representation of a
number x, I x I < 1, is a polynomial expansion

m
x = sign x* xir-L

i=l1

where xi E D, V i, and D is a digit set.
Definition 2: Given the radix r, a set of consecutive in-

tegers D, including zero is 1) nonredundant if its cardi-
nality satisfies

IDI = r

2) redundant if

IDI >r.

Definition 3: A symmetric redundant digit set is defined
as

Dp h-p,-(p ere- 1 -p
where

w(i) = r(z(J-l) + Gd(-1)) (1)
where

r the radix;
j the recursion index,
j = 1,2, ... ,m + 1, and m is the number of radix r

digits in the solution;

W(/ = w(JW),. W**,n(j)];
d() = [dl(/), *. ,dn (J)] the jth digit vector;
Z(j) = [Zi(J) *... ,zn(J)] the jth residual vector.

The digits di {J) are defined by the digit selection function
as follows:

di ) = s(Wi())
sign wi(J)L Iw (j)I + 1/2,
sign wi(J)[Iwit'I),

if lwi(j)l < p
otherwise, (2)

where LwJ denotes the integer part of w. The vector se-
lection function is defined as

d(J) = S(w(i)) = [s(wi(i)), ***s(w. (J))].
Clearly,

di i) & Dp = I-p ,-1,0,1,* ,p Vi Vi.
The residual vector z(J) is defined as

z(j) = w(i) -d(i).

(3)

(4)

(5)

r < .
< -1.

Definition 4: A symmetric redundant digit set Dp is said
to be 1) minimally redundant if

IDpl = r + 1

i.e., p = r/2 (assuming an even radix r); 2) maximally re-
dundant if

iDpl = 2r - 1

i.e., p = r - 1. Let D and Dp denote nonredundant and
redundant digit sets, respectively. Then the representation
of a number x is nonredundant or redundant depending
whether xi E D or xi E Dp. The effects of the redundancy
on the performance and the complexity of implementation
of the algorithm will be discussed later.

For an nth-order system L, let G = I - A = (gij)nXn,
where I is the identity matrix and A is the nonsingular
matrix defined by the correspondence rule Cf. Let I IYI I
and I I All denote the maximum vector norm

I Jyj 1 =max lyi

and the consistent matrix norm

JlAIlX = max (E: laijl)

respectively.
Define the basic recursion as

Theorem 1
Let

and

(6)

If

I Iz'l I =l I 'b I <
= Ilbhl < r-

Ild(0)lI =0

d(i) = S(w(i))

(7)

(8)

then
a) IlzU)lI <A, Vj
b) IlY-YII <r-m

(9)
(10)

after (m + 1) recursive steps (1), where y = A-1' b is the
solution of the system L, and

m+1
Y= E d(i)r-J

j=1
m+1 m+1

= di(i)r-j, ..., E dn(i)r-j
j=1 j=1 j

= _

669

0 < a -<
1

1 (r 1) .

r p



IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

is the generated solution of (m + 1) radix r digits of pre-
cision.

Proof: a) The consistency of the recursion (1) with re-
spect to the selection function (2) is shown inductively.
Assume that

llij-l)l < t
Then

IIw(DIl I = rl I z(j-') + G . d(j'-l
< rl Iz(7-')lI + ri IGI I- IId(j-1II
< rD+ rap

= p + ¢. (11)

Since I I d() I I < p, by definition of the selection function
(2), it follows from (5) that

I ZWI I < t

Since IIz()lI I <v and lld(0)lI = 0, the claim a) is
proved.

b) The convergence is proved by showing that the so-
lution error vector

h = [hi,h2, ^ * * hn] = Y-Y (12)

satisfies

Ilhl <r-m. (13)

After m + 1 steps, the following holds:

d(m+l) + Z(m+l) = rm+l * b + G.- E d(J)rm+]-j

-I. [E d(J)rm+-j]

or

r-m-1z(m+l) = b - A -G. d(m+l)r-m-1. (14)

Let

e(m+l) = [ej(m+1),e2(m+ 1) ... en (m+ 1)]

= (z(m+l) + G . d(m+l))rm1

Since y = A-1' b

h = A-1- (-e(m+l)). (15)

After m + 1 steps

I lhl I = I IA-1 . (-e(m+1))l I

< I lA-1lI I I elm+1)l I. (16)

Since I I Gl I < a < 1 for r > 2, the matrix G is convergent,

i.e.,

lim GP =O.

p am

Therefore [18, p. 113],

A-111= IlI+ G+ G2+...I
<III. I +1IGII + 1IG2l1 +-

<1+ E aP
p=l

1 4
1-a 3

Since II e(m+l)I < r-m-l(D + ap)

(17)

(18)
1 +aZp -m= yr-m
-a r

where -y = 1/2(r - 1) for minimally redundant digit set Dp
and y = llr for maximally redundant digit set Dp. Since
,y <1 for r > 1

Ilhl <r-m. 0

Theorem 1 completes the general specification of the
computational part of the E-method, which is summarized
below for reference convenience:

Part 1 (Correspondence): Given an L-reducible problem
f, apply the correspondence rule Cf to the variables and
constants of f in order to obtain the coefficient matrix A
and the vector b of the system of linear equations L. L-
reducibility implies that the system L is nonsingular and
that the elements ofA and b can be made conformable to
the conditions

n

E la1j <. a,
j=i
j#i

Vi

Ibil ' A, Vi.
Part 2 (Computation)

Algorithm E:
/Initialization/

w(°) .0b; d(°) Of (19)
/Recursion/

forj= 1,2, - - *,m + 1 do:

w(') r. [w(f-1)-A-d(A-.)]
d(w) S(wli)).

/Termination/
HALT

The result(s) of f, for the given precision m, are repre-
sented by

m+1
Y d(r-j
j=1

= [,Y2, **--

Several properties of the E-method, which affect the
speed, the complexity of implementation, and the domain
of application, are discussed next. The additional consid-
erations are given in [1] and in Sections III and IV.
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dli) . . . -1 O 1 * *

Fig. 1. Limited precision selection procedure.

B.. Primitive Operators
The primitive operators required for implementation

of the basic recursion (1), are the multiplication by one

signed digit, the multioperand addition, and the selection
function (2). The number of operands in the multioperand
addition reduces to two (three) in the evaluation of poly-
nomials (rational functions). The selection function s (wi(U))
corresponds to rounding of wi U) to the integer part. A more

detailed analysis of the selection problem [1] shows that
the selection can be performed using a truncated value of
wi U), denoted wi U), instead of its full precision value, if the
residual bound v satisfies v > 1/2. This selection procedure
is illustrated in Fig. 1. For v<= 1/2, each subinterval of wi U)

corresponds to a unique value of di U) that must be selected
in order to satisfy the consistency requirement of the re-

cursion. Consequently, the value of wi U) must be computed
in the nonredundant form to the full working precision.
However, if r > 1/2, then an overlap A exists between the
subintervals of wi U) such that the choice of, say, di U) = k
and di U) = k + 1 is equally valid. The freedom of choice in
the selection procedure has two important implications
[20], [21]. First, the choice of comparison constants that
are representable as "simple" numbers (e.g., 1/2, 3/4, etc.)
is possible. Second, the required precision of the argument
used in the selection is of the same order of magnitude as

the precision of the overlap A. The comparison constants
implied by the selection function (2), are "simple" numbers
(+1/2, ±3/2, etc.) by definition; r = 1/2 could be used as

well. However, given an overlap A, it can be easily seen

from Fig. 1 that s(WiZ)) generates a correct digit di U) if

j) wU) < (20)|wi w i 2*(20)
2

Therefore, wiU) can be computed by a limited carry

propagation addition followed by thie carry assimilation

over the - logr I A I most significant digit positions. In
other words, wi U) can always be computed in a redundant
form and then partially converted to the nonredundant
form in order to get wdi .) Thus the time required to per-
form the basic recursive step can be made independent of
the number of digits in the operands. The relationships
between bounds a and A, the overlap A, and the amount of
redundancy are shown in Table I.
The definition of the algorithm and the previous dis-

cussion indicate the necessity and usefulness of the re-
dundancy in number representation systems. The ele-
ments 5i of the computed solution vector y must be in re-
dundant form. Conversion to the nonredundant repre-
sentation can be accomplished in one addition time at the
end of the algorithm. The quantities wi U) should be rep-
resented in a redundant form for the reasons previously
discussed, while all other quantities (the elements aij and
bi) need not be in a redundant form.
The overall simplicity of the algorithm and its amena-

bility to an efficient hardware-level implementation comes
from the following functional properties. The algorithm
generates the most significant digits of the result y first in
such a way that once digit yi U) = di ) is generated at the
step j, a) it will not be affected at any subsequent step k,
k > j, and b) it is used directly only at the step j + 1.
Consequently, the matrix-vector product A * d(U) is simple
to generate, since d(j) is a vector consisting of one digit
components. Clearly, the convergence rate of the algorithm
is limited by definition to one digit per step.

C. Error Behavior

Since the algorithm utilizes only fixed-point addition
operations without overflow, no roundoff errors are gen-
erated. The errors due to the finite precision representa-
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TABLE I
Relationships Between Bounds

Redundancy in D
p

Mode of Operation:
Mlinimal Mlaximal

p r-p 1

RperamndPrecision Dener.dent

A~~~~~~C <

O-perand
Pfeclsn' on TndeDendent,

I ( 1+A)
0e< -2[1br1] ° 2rL1A

O < AE < 2 _1r

, r- 1-.

tion of the elements ofA and b are analyzed in [1]. Ifm is
the desired number of radix r digits in the answer, then the
effects of these representation errors are compensated by
extending the working precision to

m' =m+1+ logr,
2n

(21)

radix r digits, the number of nonzero elements in A is n',
and A is the overlap between wi (7) selection subintervals,
as previously discussed. Typically, 1/16 < A < 1/2. For
example, in the case of rational function evaluation n' =

3, so that the extended working precision is m' = m + 1 +
rlog2 121 = m + 5, assuming r = 2 and A = 1/2.

D. Scaling

In general, an adjustment of the size of the elements aij
and bi, i.e., the scaling, is necessary as implied by the
conditions (7) and (8) of Theorem 1. The simplest problem
in scaling which may arise is that

IhAIIl 1+a
but

IIb i A.

where

lIb'!! = IISbil ' ¢.

The scaling matrix S = (sij),x, is defined as

r-,4y) for i = jsii=O, for i 7j
where a is a positive integer such that

r-l I b II'

(23)

or

(24)

Clearly, in order to retain the same number of significant
digits in y_ as in y, one must carry a extra steps. Then

y S-1y'.

Multiplications with S and S-1 involve only a shift of a

positions right and left, respectively.
The problem of scaling the matrix A may be considered

equivalent to a problem of transforming a given matrix A,
with arbitrarily large elements aij, into a diagonally
dominant matrix A, such that

However, instead of solving

Ay= b

one can solve an equivalent system, scaled as follows:

ASy = Sb

or

IAii I kI Aij I, V1 i (25)
and k is chosen in such a way so that the condition (7) holds
after normalization of the diagonal elements to 1. This, in
-general, requires an amount of work incommensurable
with the expected performance of the E-method since A
depends on the independent variables of the original
problem. If the matrix A is triangular, then an efficient

22) scaling can be devised using only shift operations. Thus an
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INITIAL VALUE )aw] (

ENTRY BUS

Ib:__ _ _ _ _ _ __ _ _ _ _ _ _ _ _

Fig. 2. Elementary

effective scaling procedure exists for polynomials but not
for rational functions. This is implied by the corresponding
rules Cp and CR discussed later. With respect to scaling,
two classes of applications are distinguished. In one class
there are problems, such as the evaluation of mathematical
functions where all parameters are known a priori. Then,
once the best polynomial or rational L -reducible approx-
imation is determined, the scaling is performed once for
a given argument range. The other class contains the
problems with parameters known only at the execution
time so that the scaling has to be done each time the E-
method is applied. In this case, the scaling introduces an
overhead, making the extension of the E-method to a
floating-point number system desirable.

III. ON IMPLEMENTATION AND PERFORMANCE OF
THE E-METHOD

The basic computational block, the elementary unit
EUi, is a hardware structure implementing the basic re-
cursion formula (1) or, more precisely, the corresponding
scalar recursion

Wi(i) = r(wi(j_U)- E aikdk(' 1)). (26)
k=1

As indicated by Fig. 2, where the global structure of the
elementary unit EUi is shown, the evaluation of wi (U) ba-
sically requires a v-operand adder. In many practical ap-
plications v is rather small. In order for the time of addition
to be independent of operand precision, the wi (j) are rep-
resented in a redundant form.
The selection procedure, defined by the selection

function s (wi U)) is performed by the block S which forms
wiU) by converting a few (3-5) of the most significant digits
of wi (U) into nonredundant form. After rounding wi (U), the
integer part represents the selected digit di ). The re-

runit: Global structure.

quired precision of wi U) is basically determined by the
overlap A\ and the number v of summands. The previous
value di (U- 1) is saved in register D. The single, signed digit
radix-r multipliers dk U) are incorporated through the se-
lection networks {SNk }, each capable of forming required
multiples of aik. The carry generator C would be needed
if, for example, a radix-complement representation of
negative numbers is adopted. In that case, the selection
networks merely form direct or complement of a possibly
shifted value of aik. The complexity of the selection net-
works increases for higher radices, and since the additional
multiples appear as summands, complexity of the adder
will also be increased. Therefore, a higher radix, while re-
ducing the necessary number of steps for a given precision,
does increase both the time to perform the basic recursion
and the complexity of the corresponding elementary
unit.
The central part of an EU, the multioperand adder, can

be implemented in various ways in order to achieve the
desired speed/cost factor. The registers Rk store the cor-
responding coefficients aik throughout a particular eval-
uation; their number for the elementary unit EUi is de-
termined by the number of nonzero elements in the ith row
of the matrix G(x); i.e., the number of inputs to EUi.
Register Rw and the corresponding data path must ac-
commodate the redundantly represented wiU). The ini-
tialization, i.e., the execution of the particular correspon-
dence rule Cf, is performed by loading the coefficients aik
and bi via Initial Value Entry bus.
The control requirements of an EU are very simple:

assuming a synchronous mode of operation of the entire
configuration for the elementary units, only the syn-
chronizing pulses on which the transfer of wi U) into Rw
occurs should be provided. By controlling their number
one can achieve a variable precision mode of operation.
The time required to perform one recursive step on an
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elementary unit is defined as

to = tA + ts + tT (27)
where tA is the time to generate wi (U) in a redundant form,
ts is the selection time, and tT is the register transfer time.
Both ts and tT correspond to a few gate delays, (3-4) tg,
so that tA appears as the dominant factor which depends
on the number v of summands and the adder structure. For
practical reasons, v may be defined to denote the number
of radix-2 summands; i.e., the higher radix or redundantly
represented operands are replaced by their binary equiv-
alents. Then a simple adder structure consisting of v - 2
levels of full-adder rows, will have tA = 2(v - 2)tg, as-
suming 2tg per full-adder level. More sophisticated adder
structures [14], i.e., Dadda-type, can considerably reduce
this time. When v is small, as in polynomial evaluation,
then to = O(lOtg), assuming-radix 2.

A. Graph Representation of Computing
Configurations

An L-reducible problem f of order n is solved fastest by
the E-method on a structure consisting of n interconnected
elementary units operating in parallel. The computational
algorithm E indicates that the intercommunication re-
quirements are simple due to the fact that the elementary
units are functionally related to each other only via the
digit vector d. This implies that the physical connection
between the elementary units EUi and EUj- only needs
accommodate a transfer of one signed radix-r digit. In
multiprocessor structures used for fast parallel computa-
tions, the processor intercommunications usually require
a full precision width.
A computing structure for solving a given problem f by

the E-method is conveniently specified by a computation
graph Gf(V, K) where V = {Vi Ii = 1, - - *,n} is a set of ver-
tices andK is a connecting matrix defining a set of directed
arcs. Each vertex Vi corresponds to an elementary unit
EUi symbolically represented as in Fig. 3 where the
outgoing arc di carries the digit generated by EUi and one
or more incoming arcs dj (inputs to EUi) carry the digits
generated by {EUj}. The connection matrix K= (kij)nxn
is in one-one correspondence with the matrix G = I - A
of the system L as follows:

ifg1# 0
if gi1 = 0

d{

Fig. 3. Elementary unit: Graph representation.

denotes the number of ones in the connection matrix
KnXn) then the computational structure requires at most
N(K) + 2n m'-digit registers, n adders with total ofN(K)
+ 2n operands, and N(K) single-digit interconnections.
It is assumed that two registers are sufficient to store wi
value in a redundant form. If Ni = Idk II denotes the
number of inputs to the ith elementary unit, then EU1
requires v = (Ni + 2) operand adder and that many reg-
isters.
The time to required to perform one recursive step is

clearly determined by the parameters of the elementary
unit EUk such that Nk = maxi (Ni). The total time, then,
for the E-method evaluation, assuming an mr-digit preci-
sion, is

TE(f) = (m + 1)to (29)
if no scaling is required, and

TE(f) = (m + 1 + o)to

otherwise. The integer a > 0 is defined by the particular
scaling requirements.
We conclude this section with the following remarks.

The functional properties of the E-method, namely the
step-invariant nature of its computatonal algorithm and
linearity of its primitive operator, makes an adaptation
both to a variable precision mode of operation and a vari-
able number of elementary units rather straightforward.

IV. ON APPLICATIONS OF THE E-METHOD

Several applications of the E-method, beginning with
the evaluation of polynomials, are described. Additional
examples can be found in [1]. In all applications, a fixed-
point number system is assumed.

A. Evaluation of Polynomials

Let

(28)

and ki I specifies that the arc dj is an incoming arc for
the vertex Vi. The use of di for internal functions in EUi,
as indicated in Fig. 2, need not be specified on the graph
unless gii $ 0.
The computation graph Gf may be acyclic or cyclic. The

graph Gf is acyclic if and only if its connection matrix K
is strictly upper (lower) -triangular. In a practical sense, a
cyclic graph Gf corresponds to a problem f which involves
division.
A graph Gf provides a direct estimate of the required

execution time and implementation complexity. If N(K)

AL

PM(x) = Pix
i=O

(30)

be a i.-degree polynomial with real-valued coefficients tPi}
and the argument x E [a,b].
Assume that p and x are vectors with {pi} and all rep-

resentable values of x E [a,b] as the components, respec-
tively.

If

IIPII <

and

lxlla (31)
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Po
P1
P2

p

G d2Pn-1ig5 aCo

Fig. 5. Computational graph Gp.

(35)
ifoteWII >
otherwise.

Yi
Y2
-y3

Ynj

Fig. 4. Correspondence rule Cp.
After ffA and Gb are determined, the scaling is performed

by shifting

then the problem of evaluating the polynomial Pg(x) is
immediately reducible to the system L:A(x )y = b of order
n = ,u + 1 according to the following correspondence rule
Cp:

ai,i+l = -x rA,

bi = Pi-i .r-(Sb-(i-1) A)

for i = 1,2, * * * ,,u
fori=1,2,-...,u+1.

(36)

It can be shown that

1,1
aij = -x,

O,

for i = j

forj = i + 1, i <u
otherwise

=ir-Pi-i, for i =1,2, jt+ l1 (32)

09lO, otherwise

as illustrated in Fig. 4. The system L is then solved using
the Algorithm E, so that after m + 1 steps

m+1

Y= L d(j)r-i
j=1

satisfies

IP,(x) - YiI < r-m (33)
and

PkXk i+Yi <r-m
k=i-1

for i = 2,3, , +1.
The computational graph Gp is shown in Fig. 5. All the

elementary units EUi, i = 1,2, - - ,n are identical: each one

requires an adder with one redundant (wi()) and one

nonredundant (x * dpQ1) operand.
When the conditions on the norms (8) are not satisfied,

the following scaling procedure can be used. Let S =

(Sij)nxn be a diagonal scaling matrix with sii = r-(i-l)A,
and GA a positive integer or zero. Then its inverse S-1 is
also a diagonal matrix with si = r(i-l)A. Consider

S1ASS1y= S-1b. (34)

Let,A* = S-1AS, y* = S1ly, and b* = S-Ib. If

|_gr if I IxI I>a

O, otherwise

then I IA* I I < a. Since I I b* I I < rvaAj bI 1, additional
scaling, as described in Section II-D, must be performed
with

TE(P,) = (m + 1 + Ub)tO (37)

when scaling is required. As an example, we determine the
scaling requirements for the polynomial approximation
Pg(x) log2 (x), [1/2,1] with a precision of 8 decimal

digits [2, pp. 110 and 225]. Assuming an implementation
with r = 2, m = 27, t = 3X4, and a = Y8, we obtain 0A = 3 and
Ub = 29. Therefore, the required number of steps to eval-
uate a given polynomial is m + 1 + 29 = 57.
We now consider the performance of the E-method in

polynomial evaluation relative to a conventional or S-
method and a parallel or P-method. Both these methods
are assumed to be using an iterative multiplication algo-
rithm so that the basic processing unit in all three methods
can be considered equivalent in complexity and speed.
Furthermore, we assume a fixed-point representation
domain with no scaling requirements. Denoting addition
time as to, we have the evaluation times and the number
of processors for E-, S-, and P-method as follows:

TE(P)= (m + 1)to, nE= A + 1

Ts(P) =,umto, ns = 1

Tp(P,) = (log2 A + (0(log2 A)1/2)m)to, np = 2,u.
(38)

We have assumed that the P-method uses the Maruy-
ama-Munro-Paterson algorithm for parallel polynomial
evaluation [16].
Following Kuck [15], the E-method algorithm for

polynomial evaluation has the speedup factor SE

SE = T hiM A
TE m+ f

the efficiency factor EE

(39)

for,u > 1, m > 3

(40)

and the cost factor CE

r1 -x

-x

1 -x

1 -x

1

x
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8 16 32

Fig. 6. Evaluation of polynomials: Performance measures.

CE = nE * TE = (p + 1)(m + 1)to.

Similarly, for the P-method algorithm

Ts

Tp xfKi+ m VWJV14
Sp 1 m

Ep =
np 2v§M xM+ m

Cp 2,u(M + VMm)to

(41) presentation convenience, that to = 10-2 units. Of course,
the speed of a P-method could be increased beyond the
speed of the E-method by using faster multiplication al-
gorithms, but at the expense of increased cost.

B. Evaluation of Rational Functions

Let Rg,,v(x) be a real-valued rational function

(42)
whereM = log2 g. As a reasonable measure of performance,
Kuck su'ggests the ratio of effectiveness, given by speedup,
and cost of the method so that the A-method is better in
performance that the B-method if

/SA SB SA
max CA' CB) CA

It can be seen that

SE m - 1lim = t
,o- CE (m-+ 1)2to mtO

while

(43)

lim-= 0. (44)

With respect to the precision, both limm- (SE/CE) 0O
and limm¢o (SP/CP) = 0, but

lii SE -CP = 2ti1092A > 19 for t > l. (45)
M- CE SP ,u + 1

This indicates that the E-method algorithm is better in
performance than any P-method algorithm for the eval-
uation of polynomials under the stated assumptions.
Furthermore, the E-method algorithm has a behavior of
performance measure qualitatively different from the
considered P-method algorithm, as illustrated in Fig. 6.
In this example, it is assumed that m = 56, r = 2, and, for

A p

~RAIV(x) = P,(x) i- Pi

Q (x) p
E3 qixt
i=o

(46)

Without loss of generality, it is assumed that qo = 1.
Let

L:Ay= b

be a nonhomogeneous system of n simultaneous linear
equations.
Theorem 2

If max(,u,p) < n - 1 and the coefficients aij, bi of the
system L are put into correspondence with the coefficients
pi, qi and the argument x according to the following rule
CR:

1,3

q{ 1,
,qi-,

aij =
Ix,

0)O

for i = J
for j = I and i = 2,3, *.. ,v + 1

forj= i + l andi = 1,2, -..,n-1
otherwise

(47)

= fPi-I, for i = 1,2, ...,, + 1
l 0, otherwise,

then

PY= (x)
Yi = =RAI()Q,(x)

0
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di d n
1d1 j

GR: 1 . C g G

Fig. 7. Computational graph GR.

Proof: By the Laplace expansion of the determinants.
The correspondence rule CR defines a linear system L: Ay
= b for a given L-reducible rational function Rz,,(x). Al-
gorithm E can be carried out on a configuration repre-
sented by the graph GR with n = max (M,v) + 1, as illus-
trated in Fig. 7. The adder structure of the elementary unit
needs to accommodate at most two nonredundant and one
redundant operand and that, for radix 2, can be achieved
with a two-level conventional adder. Note that no explicit
division is required in evaluating rational functions.
No general scaling technique has been found for rational

functions. The conditions under which a rational function
is L -reducible are considered now in some detail. Let

- ~ ~~~IIPlII = max lpi I

1iqll =max lqil
i Po

Ixll= max lxl. (48)
xE [a,b]

Then RR,,(x) is L-reducible if

(i) IIq+ xl I -<a
GOi I IPI I < P-. (49)

The condition is reduced to I I xi I < a for the first row of
A and to IqjI < a for the (v + 1)st row if A v. The scaling
implications of (ii) have been considered in Section II-D.
For convenience, replace (i) with

(i') I Iql I < a(1 - c), 0 < c < 1

(i"1) IIxlx .ca. (50)

Assuming that (i") is satisfied, a rational function Rg,v(x)
with qo = 1 is L-reducible if

II<1 - c
jqil . ~a,c

i=1,2,**,vs.

Derivation of rational approximations under the condi-
tions (i') and (i") is currently being investigated. An ex-
ample of a rational-function evaluation is given in the
Appendix. The relative performance analysis, analogous
to one previously described for polynomials, shows that
L-reducible rational functions are evaluated faster and
more efficiently using the E-method compared to a P-
method, under the stated assumptions.

C. Evaluation of Elementary Functions

With a capability to evaluate polynomials and certain
rational functions, the E-method can be used for the

evaluation of arbitrary functions. The evaluation of a given
function is characterized by a set of coefficients, which can
be kept in a local storage of the computing configuration,
and a number of interconnected elementary units. In
general, given a sufficient number of the two-input ele-
mentary units, an evaluation of a polynomial approxima-
tion would take TE(f) = O(lOm)tg, where tg is a gate delay
and the radix is binary. Since the relationship between the
speed and the cost of the E-method is linear, a wide range
of evaluation requirements can be accommodated [1].
Furthermore, the evaluation could be performed in a
variable precision. For example, the approximation R3,2(x)
to ln r(1/x), for x E [10-3, 12-1] and 42 bits of accuracy,
is evaluated in 43 carry-free additions, using 4 elementary
units. The approximation P8(x) to 2x, for x e [0,1] and 40
bits of accuracy, can be evaluated in 47 steps using 9 ele-
mentary units, or in 94 steps using 5 elementary units.
No attempt has been made to derive polynomial and

rational approximations for the elementary functions
under the conditions (7) and (8).

D. On Performing the Basic Arithmetics

The basic recursion of the Algorithm E can clearly be
used for additions, subtractions, or multiplications. The
result obtained will be in a redundant form. By considering
division as an L-reducible problem [1], Algorithm E can
be used to generate the quotient and the remainder in a
deterministic fashion [17], with basic recursive step exe-
cutable in time independent of the length of the operands.
The computational graphs for division and multiplication
are shown in Fig. 8.

E. Evaluation of Certain Arithmetic Expressions

A set of elementary units can be applied in evaluating
certain expressions, such as the multiple products or sums,
or the inner products. For example, the multiple product
Pc = IIP=lci can be evaluated as a degenerate case of
polynomial. Since

(52)l LCk Yi < rm,

if ci = x, V i, the E-method generates the positive integral
powers of x:x2,x3,x4, ..*xP in (m + 1) steps on p ele-
mentary units. In general, any L-reducible arithmetic
expression can be evaluated in O(m) steps. For example,
to evaluate

a(f + gc) + e(1 + cd)1 +
I + ab + cd
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GO:

(a)

Fig. 8. Computational graphs for division and multiplication.

one may solve

[b I -c] [f]

O d I g
Certain implications of the E-method on the solution

of systems of linear equations, and a possible reduction of
the required complexity of iterative algorithms in general,

are discussed in some detail in [1]. It may be expected that
the proposed computational technique can be used in
many special-purpose computing systems or devices.

V. CONCLUSIONS

In this paper, a general evaluation method, amenable
to an efficient hardware-level implementation, is pre-

sented. The proposed evaluation method is characterized
by several important performance features and appears

applicable in many common computational problems, such
as the evaluation of polynomials and rational functions.
The method illustrates the importance of the following
issues in the design of algorithms: 1) the choice ofproblem
representation; 2) the redundancy of operations; and 3) the
redundancy in a number representation system.
The first issue deals with minimizing the number of al-

gorithms to be implemented in order to solve a set of dif-
ferent problems. As is demonstrated here, the replacement
of a given set of problems by a unique, isomorphic problem
provides a single algorithm to be implemented. The algo-
rithm can, hopefully, satisfy the speed and cost objectives,
among the other properties, such as the small number of
different primitive operators simple to implement in a

given technology, modular structure, and simple control.
In the E-method addition appears essentially as the only
required primitive operator. The problem representation,
considered as a way in which the computations are to be
performed, has direct implications on the available par-

allelism and, hence, the achievable speed. In a traditional
approach, with four basic arithmetics as the primitive,
indivisible operators, the parallelism, is exposed or intro-
duced by transformations of the original computation se-

quence so that the time dependencies between the required
operations are minimized. The E-method demonstrates
another approach in parallelism exposition: a systematic
left-to-right, digit-wise processing which minimizes the
necessary delay between dependent computations and
achieves a parallelism of one digit delay. This approach is
also related to the second issue. Namely, it can effectively
reduce the required complexity of an iteratively defined

algorithm by reducing the number of necessary operations.
It is of interest to remark that in many parallel algorithms
it is, on the contrary, necessary to introduce redundant
operations in order to achieve parallelism [19].
The problem of redundancy in number representation

systems has long been recognized as a central issue in
achieving efficiently fast algorithms [20], [21] and it will
suffice here to note that the E-method is another example
where redundancy in number representation has an es-

sential role.
The method is defined for a fixed-point number repre-

sentation system and this limits its effective application
domain. The extension to a floating-point system is cur-

rently under investigation. The E-method can be incor-
porated in a computing system in two ways: as an auto-
nomous arithmetic processor with several elementary
units, or by providing the processors in a multiprocessor
system with the capabilities of an elementary unit. It would
be also of interest to consider the changes in an instruction
set that could make the E-method efficient for use on a

software level.

APPENDIX

As an example of the E-method, we present the evalu-
ation of R3,4(x) sinh (x), x E [0,1/8], with the precision of
13 decimal digits. The coefficients [2, pp. 104 and 216],
before the normalization to qo = 1, are

PO = 0.0

Pi = 0.5353890456087786*103

P2 = 0.0

P3 = 0.564627450687849*102

qo = 0.535389045608794*103

ql = 0.0

q2= 0.327694331123347*102

q3 = 0.0

q4 = 1.0.

The other parameters are: r = 2, n = 5, D = 3/, and a = 1/8.

No scaling was required since all pi/qo, qi/qo satisfy the
range conditions. For x = 0.1019734533301, the evaluation
is illustrated in Fig. 9. The generated value Yi satisfies
(sinh (x) -y1)/sinh (x) I < 2

(b)
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a ~ ~~~U)
1 C. OC0CooOO JOOOO

2 0.20394690666018

3 C.4C789381332 C36

4 0.81578762664C72

5 -0,36842474671856

6 -C.73684949343712

7 0.52630L013L2576

8 -0.94739791374648

9 0.10520405250304

10 0.21040810500608

11 C.62476311667234

12 -G.75047376665532

13 C.29510556002918

14 Z. 794 15802671 854

15 -0.41L68394656292

16 -C. 8233 6 789312 584

17 0.5572111204C850

L8 -0.88557775918300

19 C.02489757497382

20 0.25374205660782

21 C.30353720655546

22 C. 6070744 L311092

23 -0.78585117 377816

24 C 6 32244 5591 C3 86

25 -0.73 55 10 88179228

26 G.52897823641544

27 -1.14599043382930

28 -0.08803396099842

29 -C.38001482865702

30 -0.55608275065386

31 C.88783449869228

32 -0.42827790927562

33 -0.85655581855124

34 C.28688836289752

35 0.77772363245522

36 -0.64849964174974

37 0.7030007165CC52

38 -0.39005166033878

39 -C. 78C1 C332 067756

40 0.43979335864488

41 1.C8353362394994

42 -0.03687965876030

43 -0.07375931752060

44 C.05642827161898

45 0.112856 54323796

46 0.02176617981574

dl d2 d3 d4f 5

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0

-L 0 1 -1 0

1 0 -1 1 0

-1 0 0 -I 0

0 0 0 1 0

0 1 1 0 0

-1 0 0

-1 o1 0 0

1 0 0 1

1 0 -1 0 0

0 0 1 L 1

-1 -1 I 0

1 0 0 0 -1

-1 -I 1 0 1

0 1 0 1 0

0 -1 -1 I 0

0 0 0 0 0

1 0 1 1 0

L 1 -1 0

1 -1 1 -1

I 0 1 -L 1

1 -1 -1 0 0

1 I 0 0

0 -1 0 1 0

0 1 0 -1 -1

-1 0 -1 C 1

-1 1 1 0

0 0 0 0 0

-1 0 -1 0 0

0 1 0 1 0

1 -1 0 -1 0

-1 0 0 1 -1

1 1 -1 1

0 0 0 -I

-1 0 -1 0 1

0 0 0

1 -1 1 -1 0

0 0 -1 a 0

0 1 1 0 -L

0 0 -1 0 0

0 -1 L 1 0

0 1 0 0 1

0o.00000

OCOUOOOOUOCJOOO
o. oco00oooocoooo

0.12500000000000

0.12500000000000

0.09375000000000

0.10937500000000

0.10156250000000

0.10156250000000

0. 1C5625OOOU 000

0.1 0C253906250000

0 .102.05078125000

U.10205078125000

0 .10217285156250

0.I0217285156250

0. 1021423 339843 7

0.10215759277343

0.1C214996337890

0 .1021499633 7 890

0. 10214996i373890

O. 1C214996337890

0 .102 15 044021606

0.1 C215020179748

0.102L5032100b77

0. 102 15026L40 13

0.IC215029120445

0.10215027630329

C. 10 21 5 02763 0329

0.10215027630329

0. l1215027444064

0.10C2 15027537 196

0.102150275J7196

0.102L50275139L3

0.10215027513913

0.10215027519734

0. 10215027516824

0.l02150275 18279

0.1C215027518279

0.1032150275179 15

0. I C21502751 7915

0.10215027518C06

0.1 0215027518006

0.1C215027518006

0.1021502 75 18006

0. 10215027518006

0. 10215027518006

Fig. 9. Evaluation of sinh (x) - R3,4(x).
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