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Short Notes_

The Relationship Between Two Fast
Fourier Transforms

I. J. GOOD

Abstract-The purpose of this note is to show as clearly as possible
the mathematical relationship between the two basic fast methods
used for the calculation of discrete Fourier transforms and to general-
ize one of the methods a little further. This method applies to all those
linear transformations whose matrices are expressible as direct
products.

Index Terms-Algorithms, circulices, direct product of matrices,
discrete Fourier transforms, fast Fourier transforms, frequency
analysis, Hadamard transform, harmonic analysis, multidimensional
linear transformation, sparse matrices.

A fast Fourier transform (FFT) is a fast method for the
calculation of a discrete Fourier transform (DFT) whose
definition we shall give below in order to make the paper

adequately self-contained. For applications of FFTs and
DFTs see, for example, [1 ]-[4]. See also the bibliographies
[5], [6], [4]. Here we shall be concerned only with mathe-
matical and computational aspects. The main purpose of
this note is to show as clearly as possible the relationship
between the two basic algorithms for FFTs [7], [8]. Qther
methods are refinements of these two. Each method has its
own advantages; one method can be applied to a wider
variety of moduli, the other is more appropriate for a wide
class of multidimensional transforms, not necessarily
Fourier.
A one-dimensional mod t DFT of a vector (a sequence of

t numbers ao, a,, a*,a 1 assumed to be real in this paper) is
another vector of t complex numbers a*, a a*, de-
fined by the equations

t- 1

a= L acor
S=O

(s=0,1,---,t- 1)

where o= exp (2ri/t), a tth root of unity. It has elegant
analogs of the properties of an ordinary Fourier transform
like an inversion formula, a formula for the transform of a
convolution, and even a Poisson summation formula (for
example, [9]-[11]). A multidimensional mod (tl, t2, , t,)
DFT of the n-dimensional array of t,t2 tn numbers ar,
where r is the vector (r,, r2, , rn) (rj=O, 1, -*, tj- 1;
j= 1, 2,5 ..., n), is the n-dimensional array of complex num-
bers a* defined by the equations

a* = E a .r.s. W rnsn
r

(rj,sj=0,l,1 ,t -l;j= 1,5,n) (2)

where coj =exp (27ri/tj) (j= 1, *, n). The arrays ar and a*
can also be regarded as vectors if a rule is given for ordering
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the z = tlt2 ... tn elements of each as sequences or "strings."
When all the tj's are equal to t, we can refer to the n-dimen-
sional mod t DFT. The components of a multidimensional
mod 2 DFT (of an array of real number ar) are all real be-
cause in this case all the oj's are equal to -1. The mod 2
multidimensional DFT is also an example of a Hadamard
transform [12]. The matrix of a Hadamard transform is
orthogonal and each of its elements is + 1 or - 1. It is also
known as an "anallagmatic pavement" [13].
A DFT, unidimensional or multidimensional, is, ofcourse,

a linear transformation of a vector (with t or tJt2 * tn com-
ponents), a multiplication of a vector by a matrix, in which
the matrix of the transformation is (Cw"rs) or (0jjrSls* * nSn)s
In the latter matrix some convention is required for the
ordering of the rows and columns. The simplest convention
is to order the t1t2 ... tn vectors r =(r1,.*. , re)'lexicographi-
cally as if they were words in a dictionary, and similarly
for the "columns" s= (s , , sj). Then the components of
ar must be similarly ordered in order to convert it from an
array into a vector.
The first FFT to be described here depends on the fact

that a one-dimensional DFT modulo T, where T= t1t2 ... tn
and tl, t2, * , tn are mutually prime in pairs, can be expressed
as a mod (t , t2, ,tn) multidimensional DFT. For the sake
of completeness the procedure is quoted from Good [7].1
We first set up (1-1) correspondences between the scalar
r and the vector r and also between s and s in the following
manner.
We begin by recalling the Chinese Remainder Theorem,

known by'Sun-Tsu in the first century A.D. [14], [15]. It
states that if an integer is known modulo n integers (that is,
its remainder is known when it is divided by each of these n
integers), these integers being mutually pfime in pairs (that
is, each pair has highest common factor equal to 1), then it
can be uniquely determined modulo the product. The solu-
tion can be expressed succinctly [9], [7] as follows. If
t,,, t, are mutually prime in pairs and X = t.,* and if
the remainders are sl,,, Sn, or in the standard "congru-
ence" notation, if

s sl(mod tl) * , s sn(mod tn),
then

S Kr) + +
t t1Jt1 tn Vtn

(mod T;0 < s < ;0 < sl < t,,etc.) (3)

where (T/tl)-', for example, means the modulo t, reciprocal
of the integer T/t,. This reciprocal exists and is unique
modulo t1 because the integers T/t1 and t, are mutually

'There are misprints in [7 ]. Four incorrect entries in the matrix at the
foot of p. 363 have been found. On p. 364, line 10, 6 should be 'rV+.
The lower limit of the product at the foot of p. 365 should be 1. On p. 368,
line 13, an asterisk was omitted.
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prime. Hence the first term of this expression for s is unique
modulo T, and similarly the other terms are unique. The
reader can verify at once that the value of s does satisfy
the n given congruences. Moreover, each of the T possible
sets of n congruences has at least one solution given by (3).
These solutions must be unique, since there are only -
residues modulo z and none ofthem can correspond to more
than one set of n congruences. Formula (3) is analogous
to Lagrange's interpolation formula. We use it to set up a
(1-1) correspondence between s and s = s sn) which I
shall call the Sino correspondence or the Sino representation
of s. For example, if t1 =3, t2 = 8, T =24, then s-16s1 + 9s2
(mod 24). Once we fix t1, *, tn the coefficients (here 16 and
9) are known once for all. On the other hand, the (1-1)
relationship between r and r is given by

T ~~~T
r- r, + + rn

tI ~~~tn
(modz0 < r < z;0 < r1 < t1,etc.) (4)

which I shall call the Ruritanian correspondence. Again, if
t, = 3, t2 = 8, T = 24, this gives r_ 8r1 + 3r2 (mod 24).

I now assert that the equations
T- 1

A* E A rsO=
r=0

(oj = e27ri/T)

and
tl-i tn-i

a*= E. a Coijisi . .. nn
r, O rn=O

are equivalent, where ar= ar and a* = a* by definition, and
where the correspondences are Sino and Ruritanian, re-

spectively. To see this, note that

r =-(T/tv)rv (mod tv), s =_ {) (mod tQ)
tv tv tv

so that rs- rVsVT/tv (mod tv) and hence, by Sun-Tsu's
theorem in the form given above,

Trlsl T (T +
rs + Er s Tc/tv.

Moreover,

v

so

a* = a r, 's ....Jf,nSn =
r

as claimed.
A unidimensional mod t1t2 tn DFT can therefore be

computed with about the same speed as a multidimensional
mod (t1, ., tn) DFT where tl, * *, tn are mutually prime in
pairs. Accordingly we now consider the calculation of a

multidimensional DFT, or more generally, a linear trans-
formation from a. to a* of the form

tl-1 tn- 1

a*= arK1(rl,sl) .*. Kn(r ,sn) (5)
rj=O r,=O

where we have replaced co" by K1(r , s 1), etc., and where we
do not insist for the present on any constraints on t1, * t,.
(The following discussion of (5) and (6) was given in [4].)
We shall describe (5) as an n-dimensional K-transform. Al-
though each ofthe functions K1, K2, ... Kn can be regarded
as a square matrix, the right side of (5) is, of course, not as it
stands in the form of the product of a vector by several
matrices, although it can be regarded as the product of a
vector by one large matrix whose rows are indexed by r and
columns by s. This large matrix will later be seen to be the
"direct product" of the smaller matrices, and also to be the
product of large matrices which correspond in turn to K1,
K2, -, K,. For the moment we shall point out a simple
procedure for summing (5) without matrix notation.
The summation can be performed by first summing over

rl, then over r2, etc. The first summation is

E arKI(ri, s1)
ri

and the result is of the form L1(r2, r3, , rn, s1), that is, a
function of r2, r3,.* *, rn, s1. The next stage involves the sum

Z L1(r2, r3,**, r,sn)K2(r2, S2)
r2

and is of the form L2(r3, * , rn, sI' 52), and so on. Thus at
each stage we need store only an n-dimensional array, and
altogether we need do only (t1 + t2 + . + tn) scalar multi-
plications. This is the basis of the method of [7] for forming
a multidimensional DFT, except that it was there expressed
in matrix notation. The method saves arithmetic as com-
pared with the multiplication of the vector by the single
large matrix mentioned above which would require T2 scalar
multiplications. For example, with T= 5.7.8.9 = 2520, the
number of scalar multiplications is less than an eightieth
of what would be required (X2 =25202) if aC were multi-
plied by the X x T matrix K1(rl, s1) . . . Kn(rn, sn).
We shall later discuss the inverse of the multidimensional

K-transform, but first we consider a generalization of the
above simple summation procedure which leads up to the
second method for calculating an FFT.
We consider the analogous multiple sum

tl-1 tn- I

Z ZE arKi(rl, s1)K2(r2, S1, S2)
r=O rn=O

* Kn(rn, S1, S21 . . *, Sn) (6)

and we find that the above argument goes through virtually
unchanged for this more general summation. The sum-
mation of arK, with respect to r1 leads to an expression of
the form L1(r2, .*. ,r , s1); then the summation ofL1K2 with
respect to r2 leads to an expression of the form L2(r3, * , rn,
S1, S2), * , and finally the summation ofLn_ 1K, with respect
to rn to an expression of the form Ln(Sl, S2, '* * sn). At each
stage only an n-dimensional array needs to be stored, but the
dimensions of the array vary from stage to stage unless the
tv's are all equal.
The method used by Cooley and Tukey [8 ] for computing

a one-dimensional DFT is in effect to reduce it to the form
(6). Their method applies to a modulus - = t1t2 ... t, 1, but
it was first spelled out for the case X = 2n, that is t1 = t2 =
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= tn=2. The general case was explained in more detail
by Bingham, Godfrey, and Tukey [16]. In this method the
correspondence between the one-dimensional DFT and a
multiple sum depends on setting up (11) correspondences
between r and r and between s and s different from the
Sino-Ruritanian correspondences or representations. In-
stead r and s are each represented in mixed radix form, but
each with a different kind of reversal, as follows.
r =t1t2 tn-lr1 + t12 tn-t2r2 + ' + tlrn-1 + rn

S = t2t3 ... tnSn + t3t4 *.. tnSn-1 + + tns2 + Sl. (7)

If we think of t1 as analogous to 10, t1t2 to 100 and so on, we
see that the representation of r is mixed radical, but with the
components of r in the reverse order to the digits of r. We
could call this the reversed-digit (mixed-radix) representa-
tion. On the other hand, the representation of s reverses the
order of the radices t1, t2, * , tn but leaves the components
of s in the same order as the digits of s. Thus there are two
different kinds of reversal so the representation of r and s
together could be described as the reversed-radical or re-
actionary representation or correspondence. There are vari-
ants of the method, depending on various mixed-radix
representations of integers, which, of course, are not mixed
whentl =t2- = tn.
The single summation

Z arcos (co = e21riI?)
can be regarded as a multiple summation over the digits of
r in its mixed-radix representation. We also substitute the
mixed-radix representation of s and obtain

the same function. Some such contexts are mentioned, for
example, by Andrews and Caspari [17]. Also, even for the
DFT itself, if very fast special-purpose equipment is to be
built, using fixed values of t1, t2, , t, the Sino-Ruritanian
representation of r and s might turn out to be more con-
venient than the mixed-radical representation.

In order to discuss the algorithms in matrix notation it is
necessary to make use of direct products (=Kronecker
products) of matrices. (See, for example, [18]). The direct
product B x C of two matrices B= (bi) (i, j= 0, 1, . - * ) and
C= (cuv) (j,u v=0, 1, ), which need not be either square nor
of related shapes and sizes, is defined as the block matrix

-booC bo0C-
D= bIOC blC }.

. . . . . . . . . .

this being of course an abbreviated notation for an ordinary
larger matrix whose elements are scalars. This definition is
equivalent to saying that the elements ofB x C are

dr,s = bri,s Icr2,s2 (1 1)
where r = (r1, r2) and s = (s1, S2) are ordered lexicograph-
ically. For example, if B and C are both 2 x 2,

s 00 01 10 1-1
r
00 boocoo0 boocol, bolcoo, bolcol
01 booclo, boocll, bolclo, bo1c11 B C. (12)

10 blocoo, b10c01, blcoO, blc1l

11 F bloclo, bloc,,, blclo, blclcl J

,ar(t1t2 * 'tn-1r, +tlt2 ' 'tn- 2r2 + ' - + tir.- I +r.)(t2 ... tnsn+ +tnS2+Sl) - Z arKI1(rl, sl)K2(r2, Sl, s2) .. KI(r, Sl, S2, ' '
, SO) (8)

r r

where (since (0? = 1)

Ki(rl,sl) =-t tlt2 tn-lrlSI

K2(r2, Sl, S2) _ (ollt2 ...tn- 2r2(t.S2 + SO)

Kn(rn, s1. ..

* sn) = ot)rn(t2
..

tnSn + * + tnS2 + SI ) (9)

If the elements of a. are now permuted in accordance with
the mixed-radical representation of r, the right side of (8)
is of the form of (6) and can be computed by the simple
procedure described above. Note that it would not be strictly
correct to write ar in place of a, in the summation because
we would then be using the symbol a to denote two dif-
ferent functions.

For this Cooley-Tukey or mixed-radix method the trans-
formation from a unidimensional DFT to the multiple sum
does not require that t1, t2, . , tn be mutually prime in
pairs. In this respect it has an advantage over the Sino-
Ruritanian method, being more widely applicable when
we are concerned with DFT's. It is perhaps used most
often with the tv's all equal to 2, which is the simplest case
to program for a binary computer. On the other hand, the
multiple sum (5) is simpler than (6) and therefore more
likely to occur (as a multidimensional K-transform) in con-
texts other than the DFT, especially with K1, Kn all

Thus, for example, b1jcOO corresponds to r1=1, si-.,
r2= 0, S2 = 0. (The reader should now hold in mind Savage's
metamathematical principle: he should sit bolt upright in a
hard chair with a pencil in his hand [19]). The general
definition for the direct product of several matrices is the
obvious inductive one, which turns out to be associative, so
that parentheses are not required. Moreover, formula (11)
generalizes in the natural manner. The direct product of n
matrices,

M(1) x M(2) X ... X M(n)
where M(V)-=(m,j) (i=0, 1, * Pv 1; j=0, 1, ... , qv-1)
has its (r, s) element

N

fl MrIv,sv
v-1

(13)

wherein the ordering of the rows is lexicographic as is that
of the columns. This again is true even if the matrices are
not square and are of various shapes and sizes.

If the ordinary matrix product M(v)N(v) can be formed,
that is, if the number of columns of M(V) is the same as the
number of rows of N(v) (v - 1, 2, * ), then
(M(1) X )(N(') x N(2) X...)

= (M(1)N(l)) x (M(2)N(2)) x . . . (14)
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In particular, ifM is t x t and is nonsingular, then

(M x M x ..* )(M- 1 x M-'1 X * * ) = I, X I, X ...*= t

where I. is the u x u identity matrix. More briefly

(M[n])-1 = (M- 1)[n] (15)
where the symbol [n] indicates the "direct nth power."
Now the n-dimensional K-transform, as defined by (5), has
as its matrix the direct product ofthe matrices K1, K2,-- *, K,,
where, of course, the matrix K1 has Kj(rj, s1) as its elements,
and so on. This is true provided that we order the rows and
columns lexicographically. This explains the relevance of
direct products of matrices to the previous discussion.
Now it is an interesting fact that a direct product of n

matrices can also be expressed as an ordinary product of
sparse matrices in accordance with the following theorem.
(A sparse matrix is one consisting mainly of zeros.)

wise 6b=0.) Note that the nonzero elements of A(v) are,
apart from replications, the same as those of M(v), but its
size depends on all the t's.

Thus A(') is a (P1P2 - * - P.) x (P2P3 ... p.qj) matrix having
at most P1P2 ... Pnq1 nonzero elements. A(2) is a (P2P3 ...p* q1)
X (p3p4. Pnqlq2) matrix having at most P2P3 ... pnqlq2
nonzero elements. A(v) is a (Pv ... Pnq1 ... qv- 1) x (pv+ 1
. pPnql ... qv) matrix having most p,pv+1 ... Pnqlq2 ...qv
nonzero elements. Aln) is a (Pnqlq2 ... qn-1) x (q1q2 . qn)
matrix having at most Pnqlq2 ... qn nonzero elements.
AM ... A(n) is a (P1P2 * * * Pn) x (q,q2 ... qn) matrix, namely M.

The product a'M, where the components of a are
ar(0< r, <P,, , °<rn <Pn) can thus be effected as

(18)
As an example, take n= 2, Pi = 1, q1 = 2, P2 = 3, q2 = 4, and

note that

P2q1°° 01 10 11 20 21 00 01 02 03 10 12 13 14 qlq2

ao0 0 0 0
0 aoo a01 0
0 0 0 aoo

aooboo aOObOl aOObO2 aOObO3
= aOOb10 aOObll aOObl2 aOObl3

[aoob20 aoob21 aoob22 aOOb23
= A x B.

M = M() x pM(2) x x M(n) = A(1)A(2) ... A() (16)

where

A(v) (aV,))
where

4V) m(V)S b6S16S2 ..bsn - I 17
(0 < r1< pv, 0 < r2 < pv+,,,,* * , < rn-v+1 < Png

0 < rn-v+2 < ql, ,0 < rn < qv-1
0 < S1 < Pv+,O° < S2 < Pv+2, SO < Sn-v < Pn

( < Sn-v+e < ql,=1 < Sn <qv)o

(The "Kronecker delta" is defined by 6b= I if a= b, other-

aolboo aolbo1 aolbO2 ao lbo3
aolblo aolbl aOlbl2 aOlbl3
aolb20 a0lb2l aolb22 aOlb23

In this example, ifwe were to multiply a horizontal 3-vector
or a bolt-upright 8-vector by A x B it would involve 3 x 8 x 8
= 192 scalar products, whereas multiplying first by A(') and
then by A , or vice versa, requires only 4 x 8+ 3 x 2= 38
scalar products. Generally, the reduction is from

PlP2 ... Pnqlq2 ...qn
to

(19)EPvPv+ 1 ... Pnqlq2 ...qv
v

scalar multiplications.
The identification of this procedure with that in (5), when

PV= qv= t, (v = 1, 2,... , n), is exemplified by the following
algebra for the case t1 = 2, t2 = 3.

00 01 10 11 20 21 t2t1

[aO, aOl,aO2,alO,all,al2] coo
0
0

0
0

CO, 0 0 0

0 Coo Coi 0

0 0 0 Co0

Cll 0 0 0

0 CIO Ci1 0

0 0 0 C1o

= [aoocoo + alOClo,aOOcOl + alOcll,aOlcOO + alclcO,aOlcOl + allcll,aO2CO0 + a12C10,a02CO1 + a12C1 ]

P1P2
00 [aoo
01 0

02 0

0
0
aoil

boo bo1
0 0
blo bl1
0 0

b20 b21
0 0

0
boo
0
blo
0
b2O.

bO2
0

b02
0
b22
O

bo3
0
b13
0
b23
0

0 0
bo1 bo2
0 00
bl1 b12
0 0
b21 b22

P2q,
00
01
10
11
20
21

bo3
0
b03

b23-

tlt2

00
01
02
10
11
12

0
0
Co0
0
0
C 11
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whose elements are Zriari,r2cri,sa = 1 just as after the can denote the cofactors in M(v) by MM)(i,j= 0, 1 y.. )
first summation for (5). Further, and write B(v) = b(v) where

00 01 02 10 11 12 t1t2

doo do0
0 0
d1o d11
0 0
d20 d2l
0 0

do2
0

0
d22
0

0
doo
0
d0o

d2O

0
do 1

0
d

d2 1

0
dO2
0
d02
0

d22-

t2tl
00
01
10
11
20
21

-= [loodoo + 11odlo + 120d20,loodo, + lodl + I20d21, ,l1d02 + 111d12 + 121d22]

whose elements are Er2 Ir2,Sldr2,s2, as in the second summa-
tion for (5). The first term in this vector is (aooco0 + ajOc1O)dOO
+ (aOlcOO + aj1cjO)djO + (aO2C0O + a12C1O)d20 = Erl,r2 ari,r2Cri,O
dr2,0, and similarly the other five terms also agree with (5).
The theorem given by (16) was proven for the case

Pi= =Pn=q1= =qn in [7], and the proof extends
to the general case.
The inverse of a multidimensional K-transform exists if

the matrices M(v), defined by M(v)= (Kv(rv, sv)), are all square
and nonsingular. This can be easily proved by verifying
(29), which is given in the Summary and Discussion. We
here express the proof in terms of direct products of ma-
trices. If we write a and-a* for the column vectors whose
components are ar and a.*, these components being ar-
ranged in the lexicographic order of r and s, then (5) can be
written

a*' = a'(M(l) x M(2) x... x M(n)) = a'M. (20)

b(v) = Mpv))r Ir2 ... 1brn- (24)
(sl, rn=O0 19 tv-1; S2, r, =0 1, , tv+ I-I; ; Sn-v+ 1

rn-v= 1, , tn-1 ; ; sw, rn- I =0 1, , tv- 1 -1).
Then

A(v)B(v) = A I (25)

This is true even if A(') is singular, in which case the right
side of (25) is zero. If A(V) is nonsingular, it follows from (25)
that (A(v))- = B(v)/A\V. A proof of (25) is

Z£ m(, ql6bq2 ... 1qn-I . M(V) bq 1 bq2 ... bqn- 1

q

= Em(V)qAMIV)qS26S3 ... 6Sn
qn

An ex l vo ( r2 5rn
An example of (25) is

Mo0 Mi1 0 0 Moo 0
0 0 Moo Min Mo0 0

M1o M1i1 0 0 0 Moo
0 0 Mi10 m1J O MO,

Now M(v)(M(v))- l = I,,, and we see readily from (14) that

a' = a*{(MA(l)-fI x ..x(XM(n))-} (21)

It may be noted that the determinant ofM

IMI = Ar/t, A/t" (22)

where AV= IM(v)I. This follows inductively from the case
n=2 which is given by MacDuffee [18] who references
Hensel, Netto, and von Sterneck. In the case where M(V)
is independent of v and has order t and determinant A, we
have

IMI = Antn'. (23)

If we wish to express the inverse multidimensional K-
transform by means of ordinary matrix multiplications, we
can apply (16) to the inverses of the M(v)'s. Alternatively, we

M 0o

Ml, 0 0

0 M1o 0

0 M 1lj Lo

0 0 01
A O O
0 A 0
0 0 A_

where

A = moomln-MO1i,MO0 = M11,M00=-MlO,M10
= -MO1,M11 = Moo.

Note that A(V) and its inverse are equally sparse.
The determinants of A(') can be neatly obtained from (22)

by supposing that A1= ..- A, 1=A,+1= . A,,=1. It
follows from this, together with the omitted argument for
determining the sign, that

IA(v)I = Au(- 1)u(u- 1)/2 (u = T/tj) (26)
and therefore, from (25), or from a familiar property of
adjugates [20, p. 165]

(27)IB(v)l -. (tv 1)/rv(, -)u(u- 1)/2

Of course if all the M(v)'s are orthogonal (or else unitary),
then their inverses are equal to their (conjugate) transposes,
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and the multidimensional K-transform and its inverse in-
volve nearly the same calculation. The matrix of the multi-
dimensional DFT becomes unitary if divided by z/; (or if
each M(v) is divided by t/v), just as the multidimensional
Fourier transform is unitary if a suitable normalizing factor
is used, such as 1/ 2ir per integral. When each M(v) is square,
with pv=q= tv as before, then another way of factorizing
M1) x ... x M(n) into n sparse matrices is [7]

M)x x -M()= C(1)C(2) ... C(n) (28)

where

C() M( )x It2x *-x tn

C(2) =Itl x M(2) x ... x tn

c(n)-It x It x ... X M(n).

This follows from (14) and might sometimes be more con-
venient to use than (16) although the patterns of 1) , C(n)
are less simple than those of A"1, -. A(n).

,SUMMARY AND DISCUSSION
Yates [21 ] introduced a simple adding and subtracting

algorithm for the calculation of the interactions in 2n-fac-
torial experiments. The fact that Yates' algorithm could be
expressed as a multidimensional mod 2 discrete Fourier
transform (DFT) was pointed out by Good [22]. Good [7]
showed that the algorithm can be generalized to apply to
any multidimensional DFT and even more generally. This
depends on the first three of the following facts.

1) A multidimensional mod t DFT is a linear transforma-
tion and corresponds to multiplication by a matrix (oforder
tn where n is the dimensionality) which can be expressed as
the nth direct power of a matrix of order t.

2) The nth direct power of a matrix M is equal to the
nth ordinary power of a matrix A defined as

A = {Mr,sn63S2 .* . . bSn- }

3) Although A is t' by tn it is sparse and contains only t+1
nonzero elements, so that multiplication by M involves
only ntn+1 ordinary multiplications instead of t2". This, and
the remarks under facts 1 and 2, extended readily to the
case ofunequal moduli t1, t2,.*.2 tn and even more generally.
We thus have a fast algorithm for the computation of an
n-dimensional K-transform, defined by (5), of which the
n-dimensional DFT is a special case. The remarks following
(5) give the algorithm in nonmatrix language.
When K1,l , Kn in (5) are all the same function, the

matrices A1),...*, A() are all equal and this matrix formula-
tion is then at its simplest. In equation (6) the K's cannot be
identical unless the equation reduces to (5).
A mod 2 multidimensional DFT is an example of a

Hadamard transform which is discussed and applied by
Pratt, Kane, and Andrews [12]. Another example of a K-
transform is the Andrews-Caspari transform [17] in which
the orthogonal matrix of the transform has elements

mr,s = xnl[r,sl(_l)r s (tv = 2; v = 1, 2, .n

where a is real and positive,
n-1

,l= _1- 2/a, and [r,s] =s (r, E3s,)
j=o

where ( denotes mod 2 addition (EXCLUSIVE OR), but the
summation is ordinary summation which happens to reduce
to counting.

4) If, in (5), which defines a multidimensional K-trans-
form, the functions K1(rl, sl), K2(r2, s2) , when re-
garded as elements ofmatrices, are square and nonsingular,
and if the inverse matrices have elements J1(r,, sl),
J2(r2, s2), etc., then the inverse transform can be written

ar = I a*J,(sl, r,) .. Jn(sn, r) (29)

This can be readily proved by using Kronecker deltas
and is another way of expressing (21).

5) When one wishes to carry out a multiplication by a
large matrix it can be worthwhile to look for a factorization
into several sparse matrices so as to cut down on the work.

6) New coding methods, generalizing the DFT, can be
invented ad lib by taking several sparse square matrices of
equal orders and using their product as the matrix of the
transformation or coding. In order that unique decoding
should be possible, it is necessary that the sparse matrices
should all be nonsingular and convenient if their inverses
are sparse. Apart from the methods discussed in this paper,
the matrices could, for example, be taken as permutation
matrices, these being the simplest and sparsest possible
nonsingular matrices. They might be too sparse for some
purposes since they merely permute the elements of the
vector on which they operate and so have no tendency to
flatten the variation from one component to another. Such
flattening is apt to be convenient for communication sys-
tems, but the permutation by itself gives some robustness
against bursts of noise. It might also turn out to be useful
to use functions K1, K2,.*. , K. as in (6) instead of (5), al-
though it is presumably more difficult to find elegant
schemes of this kind.

7) Unidimensional DFTs can be expressed as multi-
dimensional ones by either the Sino-Ruritanian method or
the "reactionary" method, the latter being more widely
applicable for this purpose. Once in the multidimensional
form, the streamlining described above is applicable. The
paper [7] provoked the influential paper by Cooley and
Tukey in which the reactionary method was described. Their
original acknowledgments to my paper were somewhat too
generous since they gave the impression that the two meth-
ods were almost identical. Their methods more closely
resembled the methods of Runge [23] and Danielson and
Lanczos [24], whose papers had been generally overlooked
by oceanographers, X-ray crystallographers, and many
others who make frequent use of harmonic and spectral
analysis. These authors wrote before the age of electronic
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computers and were in this respect ahead of their time,
although a fast Fourier transform would have been of use
for more than 100 years. In the design of special-purpose
equipment, both the Sino-Ruritanian and reactionary repre-
sentations should be kept in mind.

8) One application of the DFT is for the inversion of a
circulix, that is, a t x t matrix (cs_r) where s - r is taken
modulo t [25]. A 1 000 000 x 1 000 000 circulix could easily
be inverted since it requires only about 100 000 000 opera-
tions instead of some quintillion if the matrix were random.
The eigenvalues of a circulix are given by the DFT of its
top row, and the inverse DFT of their reciprocals gives the
inverse circulix. Similarly a recursively blocked circulix,
defined recursively as either a circulix or a block matrix
whose elements are recursively blocked circulices, or equally
defined as (a, r) where r and s are ordered lexicographically
and s - r is taken modulo (t1, t2, , t), has eigenvalues
given by the multidimensional DFT of its top row, and so
can be inverted in a similar manner. (I have avoided the
name "block circulix" tout court, because a block circulant
is defined by Muir [20, p. 485 ] in a somewhat different sense,
apart, of course, from its being a determinant and not a
matrix.) The eigenvectors of a recursively blocked circulix
are the columns of the matrix (_s1w,,,r22s2 .).

9) Let p be a prime number and g one its primitive roots;
2 ..., -2that is 1, g, g2, gp are all distinct modulo p. Let cxr

(r = 0, 1,... , p -2) be a vector of integers and let us define a
number-theoretic Fourier transform:

p-2
a*= Z rgS (mod p). (30)

r =0

Then it is easily proved that the inverse transform is
p-2

Xr= - Z o*g-rs (modp) (31)
s=

and the transform of the convolution
p-2

E Xqfr- q
q=O

is ax*f*. A (p - 1) x (p - 1) circulix of integers has eigen-
values equal to the transform of its top row, and it can be
inverted modulo p by using modulo p reciprocals of the
eigenvalues, almost as in fact 8. Recursively blocked cir-
culices of integers, modulo p, have their eigenvalues equal to
multidimensional transforms of their top rows, these trans-
forms being defined in an obvious way, modulo a fixed
prime p. These multidimensional transforms could be used
for a coding scheme for vectors of integers modulo p. The
calculation can be done by the simple method following (5),
or by the equivalent matrix methods, except that the arith-
metic must of course be modulo p.

If p is replaced by a composite number m we can define

(r,m) = 1
as* = Z crglS (modm),

r<m

but this seems uninteresting because it does not have an

elegant inverse even when m has a primitive root (whose
powers take all values prime to m). But (30) can be general-
ized in a different direction, as we now indicate.

10) We can generalize (30) and its multidimensional form
to a finite (Galois) field F. A finite field contains a prime
power pv of elements and always has a primitive root g for
which 1, g, g2,*, gp"2 are distinct elements of the field
[26]. If Or (r=0, 1, , pv 2) is a vector of field elements we
can define

pv-2
as = E rgS(s = O, 1 *-l pv 2)

r=O
(32)

as its (unidimensional) Fourier-Galois tranform. Similarly,
for an array caL(r= (r1,... , rj)), we can define a multidimen-
sional transform

0(* = Ea grgs*... grnSn

r (33)

where g1, 92, , gn are primitive elements of F, not neces-
sarily distinct. This can also be written in the form

(X* = EOCrgclrrsl + * * * + c,r,s,ZJ r (34)

where c1,"., C,nare certain constants prime to pV - 1. The
inversion formula is

= (-1)nn *gl rlsl . .. g-rnsn
s

and there is a convolution formula

E ( atxB gr)gsl 1 r,Sn = ac*#*

(35)

(36)

A recursively blocked circulix of group elements has, as
eigenvalues, the multidimensional Galois-Fourier trans-
form of its top row, and, as eigenvectors, the columns of the
matrix (g1S) x ... x (grnSn). The transform could be used for
coding "sentences" of "words" where each word, being an
element of F, could be expressed by means of v modulo p
integers, namely the coefficients of the word when the group
is represented by means of polynomials modulo both p and
a fixed irreducible polynomial [27 ]. (Finite fields have often
been used in other ways in coding theory and in the design
of statistical experiments.)
For the multidimensional transform we can again apply

the simple algorithm following (5), or the equivalent matrix
methods, the arithmetic being in the field. I can see no ele-
gant transformation from unidimensional to multidimen-
sional Fourier-Galois transforms.
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A Universal Cellular Array
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Abstract-A new type of fixed-cell fixed-interconnection homo-

geneous cellular array that is capable of realizing any switching net-

work is developed. The array is composed of identical combinational

logic cells with three inputs and three outputs. The logic cells are

arranged in a rectangular array with uniform interconnection struc-

ture. The signal flow is unilateral in the vertical direction and bilateral

in the horizontal direction. Each n-column array is capable of realizing
any set of n functions of n variables. The functional capabilities of the

array can be changed by appropriately setting the parameters on the

edges of the array. Algorithms for the realization of a set of n functions

of n variables by using this type of array are presented.

Index Terms-Cellular arrays, combinational switching networks,

iterative switching circuits, universal arrays.
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I. INTRODUCTION
Most of the reported work on combinational cellular

arrays considers two main types of arrays, namely, the
fixed cell-function arrays [1 ] and the variable cell-function
arrays. In fixed cell-function arrays the switching function
realized by each cell is fixed. Realization of a logic function
(or a set of functions) is accomplished by modifying the
interconnection structure. In variable cell-function arrays
the switching function realized by each cell can be changed
by means of the cutpoint technique [2] or other methods.
Realization of a logic function or a set of functions is accom-
plished by finding an appropriate configuration of logic
cells in the array. In either type of array it is assumed that
we have access to each cell in order to change the cell struc-
ture, the interconnection structure, or both. This is possible
in present circuit construction techniques where the logic
cells (integrated circuits) are mounted on the printed-circuit
board (which provides the interconnections among the
cells). However, these techniques may not apply to future
generations of microelectronic modules.
With the rapid progress that is being made in the manu-

facturing techniques for monolithic integrated circuits, it
appears that future generations of microelectronic devices
will be the so-called large-scale integrated circuits. Since in
such devices each digital component is fabricated on an
extremely small area of the substrate, it will be impractical
(i.e., very costly to implement), if not impossible, to change
the cell functions or the interconnection structure of the
array once the device is made. Thus it is deemed desirable
to develop a design technique such that a single type of
array can be used to realize many different logic functions
without the necessity of changing the cell function or its
interconnection. One way to accomplish this is to change
the functional capabilities of a cellular array by appropri-
ately setting the parameters on the edges of that array. This
concept led us to the development of the new array design
technique presented in this note. The main theoretical result
is a homogeneous cellular array that can be used to realize
any switching network.

II. SYNTHESIS OF THE ARRAY

Let us denote a sequential machine without output by
S= <Q, 1, M> as usual, where Q is the nonempty set of inter-
nal states, I is the input alphabet, and M is the next-state
function. If III = 1, then we say S = <Q, I, M> is a one-column
(or autonomous) state machine (as defined in [3]).

It is well known [4] that the transition matrices of the
machines G([), G(r), and G(r) shown in Fig. 1 constitute a
generator set that generates all the transition matrices of
all r-state, state machines. Consequently, if N1, N2, and N3
are three n-input (n = [log2 rl), n-output combinational
networks that realize the next-state function of G('), G(r)
and G(r) respectively, then the next-state function of any
one-column state machine with r states' can be realized by

1 If r is not a power of 2, then this state machine can be realized as a

submachine of a machine having 2" states, where n= [log2rl. Thus in this
note we only have to deal with the cases in which r is a power of 2.
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