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Numerical Technique for the Convolution
of Piecewise Polynomial Functions

ROBERT J. POLGE AND R. DUANE HAYS

Abstract-This paper describes a general systematic procedure for
the convolution of functions that are piecewise polynomial. The
procedure can be implemented by hand using a simple table format or

programmed for execution on a digital computer. An algebraic con-

volution law is dermed to replace integration; this provides an efficient
digital computation algorithm. Thus, convolution operations of any

complexity can be transformed into the algebraic manipulation of
numbers by a digital computer.
Examples in statistics are included. The technique is useful for the

study of linear systems.

Index Ternns-Convolution, delta function integrals, piecewise poly-
nomial functions.

1. INTRODUCTION

UITE OFTEN it is difficult or impossible to obtain a

Q mathematical expression for the convolution integral,
and numerical techniques are required. Samples of the con-

volution integral are computed from the samples of the two
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functions to be convolved. Discrete convolution corresponds
to the approximation of the integral by a Riemann sum.

Cyclic convolution makes uses of the fast Fourier transforma-
tion to substitute a product for convolution. The computed
samples cannot be exact unless both functions are bandlimited
and finite.

If a continuous function can be represented by a finite
number of polynomials, one for each interval, it is called
piecewise polynomial. Each interval of a piecewise polynomial
function is described exactly by the coefficients of the cor-

responding polynomial, and the entire function is completely
defined by the matrix of coefficients. Piecewise polynomial
functions can be used to represent, or approximate: finite
duration waveforms, filter impulse responses, probability den-
sity functions and distributions, power spectra, and certain
other functions of interest in radar, communications, and
statistics.
This paper shows that the convolution of two piecewise

polynomial functions is a piecewise polynomial function, and
it presents a numerical technique to compute the set of inter-
vals and the set of coefficients for each interval. The main
advantages of the proposed technique are that: 1) it is fast,
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exact, and requires little storage; and 2) it is both algebraic and
numerical and yields a simple mathematical expression for the
resulting continuous function.
Section II shows that a piecewise polynomial function can

be defined either as a set of polynomials, or by a cumulative
expression valid for all times. These representations will be
called, respectively, the per interval representation and the
\delta function integral representation. Formulas and trans-
formation matrices are derived to provide a systematic means
of going from one representation to the other.
The main purpose of Section III is to review the convolution

properties of delta function integrals [1] and to develop a
numerical technique for the convolution of the sum of delta
function integrals.
Section IV illustrates the procedure. The technique can be

implemented by hand using a simple table format, or pro-
grammed for execution on a digital computer.
In Section V, two examples are presented to show the

practical use of the method for certain statistical applications.
Other applications can be found in communications and radar,
probability, and networks.
Section VI contains the summary and conclusions.

II. REPRESENTATION OF PIECEWISE POLYNOMIAL
FUNCTIONS

A function f(t) is called piecewise polynomial if its domain
can be divided into a finite number of intervals, over each of
which f(t) is a polynomial. Denote by f(t; i) the expression
for f(t) in the ith interval, then

f(t)=f(t;i), for ti t S<til 1 Ai<

Mi
f(t; i) = E: aim tm-1(1

m =1

where Mi - 1 is the degree of f (t; i) and I is the number of
intervals. The representation of f(t) for all time requires I
polynomials such as (1), and the set [ti] which defines the
lower bounds of the intervals. IfM is the largest value of Mi,
the per interval representation is

M

f(t; i) = Gaim tm-l (2)
m =1

where aim = 0 for m > Mi. In matrix notation, (2) can be
written as

[f(i;i)] = [aim I [tm 1] (3)

wherei= 1,2, ,Iandm= 1,2,- ,M.
Another way to describe f(t) in the ith interval, called

cumulative representation, is to use the relation for f(t) in
the (i - l)th interval and add up a corrective polynomial
starting at the ith interval:

M

f(t;i)=f(t;i- 1)+ E cim M(tn- ti)
m -1

(4)

where f(t; 0) = 0, m > 1, and 6'-m (t) is the mth order integral
of 6(t), the Dirac delta function. In matrix form

(5)

where

6-m (t - ti) = O,
(t - ti) m -1

(m- 1)! '

The cumulative expression for f(t) in
by iteration

for t < ti

for t > ti. (6)

the ith interval follows

i M

f1(t;i)m==£ lm a-m (t - t)
1=1 m=I

(7)

where ti < t < ti,+. The upper limit of 1 can be changed to I,
because 6 -r (t - t,) = 0 when t < t1, which occurs when 1 >
i + 1. Thus

I M

f(t; i)=1 £cm m-M(t-t).
1=1 m=1

(8)

This shows that (8) is valid for any interval and that the
parameter i can be dropped. Therefore, using 6-function
integrals, f(t) can be represented by one single expression
valid for all times

I M

f(t) = m=c1m 6-m (t tl).
1=1 m =1

(9)

The per interval representation is useful because the poly-
nomial coefficients for each interval are computed indepen-
dently; the delta function representation is useful because the
piecewise function is represented by a single expression valid
for all times. Transformation formulas and transformation
matrices to go from one representation to the other are derived
next.
Substituting (2) into (4) and differentiating (1- 1) times

yields

M

£ (aim - a(i-i)m) ((m - 1) *(m - + 1)) tm=-=
m =1

M

Cim 6-(M-l+l) (t- ti). (10)
m =1

Let t = ti, note that &-1 (o) = 1 and 6-k(o) = 0 for k/ 1, and
interchange I and m, then

M (1- 1)! t? m
Cim= (i-rn)! il -1)) ('11)

Equation (11) defines a set ofM linear equations that can be
solved to yield

M (- ti)n-1
aim a(i-l )m -= F. (1-m)!( -I CiE (12)

where aom = 0.
For a given interval i, (11) and (12) are easily expressed in

matrix form
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[Cim I = [ail - a(i.1 ) I] [elm (i)]
[aim - a(i-.)m] = [cil] [elm (i)]

(13)

(14)

where ao, = 0, elm (i)= em()= 0for m =1, 2, - ,M, and
I<m, and

elm ()=( 1*ti ; el2()= (t)

with 1 and m denoting rows and columns, respectively.
The following example illustrates the per interval and delta

representation of a piecewise polynomial function.
Example: Let f(t) be defined in the per interval notation as

f(t;O) = 0,
f(t; 1)= 1 + t,

for t <0

for 0. t < 1

f(t;2) = 5.4- 4.6t+ 1.2t2, for lSt<2

f(t) = 1 + t,

f(t)=1+t-3.2(t- 1)+2.4 2

f(t) = I + t - 3.2(t - 1) + 2) (t 1)2
2'

(t+ 1)2

f(t) = 1 + t - 3.2(t - 1) + 2.4 2 1)

+2.3(t-2)- 2)

(( 2
- 4+0.5(t-5)+ (t-52

for 0. t < 1

for 1 . t <2

for 2 < t < 5

for 5 S t. (17)

f(t;3)=-6+4.5t- 0.5t2,

f(t;4) =0,
These relations define three matrices:

for 2 < t < 5

for t > 5.

5.4 -4.6 1.2
[f(t;i)1 4 X1; [aim] = 4.5 -0.51

_° 0 0 14X3

[t11 =0
L5 ]4X1

Using (1 1) or (13), the delta function coefficients are obtained:

L -3.2 2.4
[Cim ] 0 2.3 -3.4

L_-4 0.5 1 -4X3

The delta function representation of f(t) follows, using (9),
[ti],and [Cim]

I=4 M=3
f(t) = :; ECIM 6 -m (t - tl)

1=1 m=1

=6 t(t)+6-2(t)- 3.26-2(t- 1)+2.46-3(t- 1)

+ 2.3 6-2(t - 2) - 3.46-3(t- 2)- 46 1(t- 5)
+ 0.5 6-2(t - 5) + 6-3(t - 5). (16)

Formula (16) defines f(t) at all times. Consider an interval
t1 < t < ti+1, where delta function integrals may originate at
time tl, but not within the interval. The expression for f(t) in
this interval is obtained by replacing, in (16), 6-m(t - tl) by
zero for t <t and by (t- t)mrnl/(m- 1)! for t >t. Thus,
continuing the example,

f(t)=0, fort60

These expressions can easily be simplified, and written in the
(15) format of (15). One could also go directly from the delta

function representation to the per interval representation by
using either (12) or (14), where

I 0 0,

t? /2 -ti 0.5l

Fig. 1 shows the graphical construction of f(t) in the per
interval and delta function integral notation. The delta func-
tion representation is cumulative with respect to time as
shown, i.e., it contains terms that begin at specified times and
end at infinity. The piecewise polynomial f(t) is obtained by
a simple algebraic addition of the component terms where
ak6 (t - ti) = ak((t - t)m l/(m - 1) !), for t > ti and zero
otherwise. The advantages of the delta function integral rep-
resentation are that one formula defines f(t) for all t and that
the convolution of two delta function integrals is a simple
operation.

III. CONVOLUTION OF TwO DELTA FUNCTION INTEGRALS

At this point it is convenient to introduce a linear translation
operator YT defined by Tff(t) = f(t - r). With this notation,
the convolution of two delta function integrals can be written
as

Ai6-m (t - ti) * Bk6 -n (t - tk) = AiBk ( fti -m (t) * k6-n (t))

where * denotes the convolution operation. Since translation
can be factored out of convolution [21, the convolution ex-
pression can be rewritten as

AiBk fti+tk (6-m (t) * 6-n (t)).

An equivalent expression is [2]

AiBk -Tti+tk (6- m -n (t) * 6 (t)).

Finally, noting that 5 -m -n (t) * 6 (t) = 6-m -n (t), the formula
for convolution of two delta function integrals is obtained:

Ai r1ti6 -m (t) * Bk -ftk6 -n (t) = AtBk Jfti+tk 6-m -n (t). (18)
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f(t)
6.
5.
4.
3.
2.
1.

i ~ ~

1 2 3 4 5 6 7 8

(a)

1 -2 (b)
0J A (t) + A (t)
} -3.2 a (t-1) + 2.4 -3(t-1)

2.3 82(t-2) - 3.4 8 (t-2)
(3 -1 ( 0.52 -3-4 8 It-5) + . 2(t-5) + A3(t-5)

Fig. 1. Graphical construction of f(t). (a) Per interval construction of
f(t). (b) Delta function integral construction of f(t).

Each delta function integral term can be represented by a
triplet consisting of its coefficient, its time translation, and its
exponent. For example,

A4ftj5&m(t)+ i 1

-mi
The convolution of two delta function integrals can be written
in triplet notation. Equation (18) becomes

_Ai_ Bk AiBk
ti * tk = ti + tk (19)

-m n-n -m -n_
where the ordered triplets contain the coefficient, translation,
and exponent of the delta function integral terms, respectively.
Equation (19) shows that the convolution integral has been re-
placed by three elementary operations on the triplet elements:
1) multiplication of coefficients; 2) algebraic addition of trans-
lations; and 3) algebraic addition of exponents.

IV. CONVOLUTION OF PIECEWISE POLYNOMIAL
FUNCTIONS

Formula (19) provides a very efficient technique for the
convolution of piecewise polynomial functions. The technique
can be implemented by hand using a simple table format, as
illustrated below, or programmed for execution on a digital
computer. The latter approach has been used by the authors
to perform convolutions of very complicated functions.

H
fI(t)

1I

-3 -2 -1 0 1 2 3 4 5 6

f2(t)

3 2 1 0 1 2 3 4 5 6

f3(t) = f1(t) * f2(t)

-3 -2 -1 0 1 2 3 4 5 6

Fig. 2. Piecewise polynomial functions f, (t), f2 (t), and f3 (t).

The convolution technique is best illustrated by an example.
Consider the piecewise polynomial functions shown in Fig. 2.
We wish to form f3 (t) by convolving fi (t) with f2 (t),

f3(t) =fl(t) *f2(t).
The delta function representations are, respectively,

fi (t) = S_3 6 (t) - T~-26 (t)

f2(t) = 282 (t) - 4 Jo.s 2 (t) + 2 f1 5-2 (t) + 2 2 6 2(t)
- 45[2.5 6-2 (t) + 24f3&2(t) +
- 4f4. 56-2 (t) + 2f56-2 (t).

To perform the desired convolution, place the triplet rep-
resentation for fi (t) along the left margin of a table, as
depicted in Fig. 3, and the triplet representation off2(t) along
the top margin. Then, at the intersection of each row and
column, perform the elementary operations defined by (19).
Finally, triplets with equal time translations and exponents are
added algebraically, and f3(t) can be written in the delta
function integral representation. The sum is ordered for in-
creasing delays and delta exponents, as shown in Fig. 3. One
can easily convert f3(t) to the per interval representation, if
desired, by using either (12) or (14).
This example illustrates that the convolution of two piece-

wise polynomial functions fl(t) and f2(t) can be obtained
very simply, without integration. The procedure begins by
expressing fl(t) and f2(t) in delta function integral repre-
sentation. If fi(t) and f2(t) consist of M and N terms, re-
spectively, their convolution is obtained quite easily as a sum
of MN delta function integrals (or triplets) using (19). The
terms are arranged in increasing times of occurrence (ti + tk)
and degree (m + n); those with equal occurrence time and de-
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f2(t)

F t)

[12

2
O

2_2

-2
-2
-3

4

0.5
-2J

4
-1.5
-3

L2]-2
L2]

22

-2 -2
-1 0
-3 -3

[2]
23

4 -2
0.5 1
-3 -3

2
4

=2 [4K5

-2 4
2 2.5

-3 -3

L2]25

-2
3

-3

f3(t) = f (t)

-3 -3 -3 -3= 2 r36 (t)-4 r25t (t) +4r154 (t) - 4r56 (t)

+ 4 t-3 4 1 6 (t) + 4 3 (t) - 2 73 6 (t

where

2 ,363(t) ] -4 5 (t) etc.

Fig. 3. Convolution of piecewise polynomial functions.

gree are combined algebraically. The delta function integral
representation obtained for the result f3(t) is quite practical
as shown by (16) and (17). However, one may prefer to have
the final result in the more familiar per interval representation.
This is done easily using the transformation matrix presented
in Section II.

V. APPLICATIONS
The formulas and techniques presented in this paper have

several useful applications. This section presents two examples
in statistics.

A. Probability Density for a Sum ofIndependent, Polynomial
Distributed Random Processes

It is well known that the probability density function for a
random process r(t) that results from the sum of several
independent random processes xi(t), i = 1, 2, * - *, N, is found
by convolution. Let pr(r) be the probability density function
of r(t) and pi(xi) be the probability density for xi(t), i=
1,2,-- - ,N. Then,if

r(t) = x1 (t) + x2 (t) + + xN(t)

and

p (X1, X2, * ', XN) =pI1 (XI1) P2 (X2 ) ..PN(XN)

we have

Pr(r) = P1 (X1) * P2 (X2) * PN(XN)

Clearly, if the p(xi) are piecewise polynomial, or very nearly
so, then pr(r) can be obtained very easily by repeated use of
the techniques in Section IV.
For example, the result of convolving two uniform proba-

bility densities, each defined by

PX(X)- (X) 16 (X)
is given by

py(x) = Px(X) * Px(X)
= 5-2 (x) - 2 516 2 (x) + -262(x).

Convolution of py(x) with a third uniform probability density
of the same form would yield

Pz(x) = Px (x) * Px (x) * Px(X) = Py (x) * Px (x)

=53(x) - 3yf1 5 3 (X) + 3 T2 5-3 (X) - 5 -3 (X)

and so on. Each resulting convolution is determined almost by
inspection when using the tabular form of Fig. 3.

B. Power Spectrum at the Output ofa Nonlinear Device
The autocorrelation oyy (r) at the output of a zero-memory

nonlinear device can be expressed as a polynomial in terms of
the input autocorrelation function Poxx (r). It follows that the
output power spectrum can be obtained by a combination of
convolution and superposition operations on the input power
spectrum.
Consider, for example, a full-wave square-law detector where

the input is a narrow-band Gaussian noise,

x(t) = E(t) cos (wct + fp(t))

and the output is

y(t) =
a
E2(t) +

a
E2(t) cos 2(Qo,t + (p(t))

2 2

or

a 2 (t)

when the high-frequency term is neglected.
autocorrelation functions are given by [3]

The output

pyy (T) = a2 (2 fxx ('r) + (p2 X (o))-
The output power spectrum is obtained by Fourier transfor-
mation. Let ,yy and Dxx be the Fourier transform of epyy and
and pxx, then

Dyy (f) = a2 [2xx(f) * x (f) +a2t. (o)6 (f)I

In general, 4.xx (f) is (or can be approximated by) a piecewise
polynomial function, and 4xx(f) * Vxx(f) is obtained easily.
For example, assume that the input power spectrum cJ.x (f) is
made of two triangles of width B and height A, centered at
frequency -fo and fo. The condensed delta function integral
representation of xx (f) is

B (fo-B - 2ffo + T-f0o+B + ifof.B - 2 foB

+ 5-of+B) 8(f)
where 6-2 (f) has been symbolically factored out because it
belongs to every term. It follows that

1 2 - 4 2 2 - 4 2 2 - 4 2
-3 -3 -2.5 -2 -1 - 0.5 0 1 1.5 2

-1- -3 -3 -3 -3 -3 -3 -3 -3 -3
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(f) =jB2 (-2fo -B 2 L-2fo + T-2f,+B

+ 2T-B - 4T0 + 29B

+ J2fo -B -2 g22fo

+ 2f0+B) (f)

from which 4?y(f) can be written in o-function form or in

per interval notation.

VI. SUMMARY AND CONCLUSIONS

This paper presents an algebraic technique for the convolu-
tion of functions that are piecewise polynomial. The functions
are expressed as a sum of delta function integrals, where each

delta function integral is represented as a triplet. Convolution
reduces to simple operations on triplets. Two examples show-
ing its practical application to problems in statistics are

presented.
Transformation matrices are derived to go from the per

interval representation of piecewise polynomial functions to
the cumulative delta function representation, and vice versa.

While a piecewise polynomial is a continuous function, it is

represented by a finite set of triplets. The convolution of two
piecewise polynomial functions can be pictured in a table that
shows the combinations of all the triplets. The result of the
convolution is a piecewise polynomial function that is obtained

by multiplying or adding triplet components, instead of

performing a complicated integration. Such operations can be

performed numerically on a digital computer.
Digital computer programs have been written to accom-

modate functions of high complexity, and to perform suc-

cessive convolutions as required in some applications. In

particular, if fi is a function represented by M polynomial
pieces and f2 is represented by N polynomial pieces, then

f3 =f, * f2 requires MN polynomial pieces, in general. Direct
computation of f3 would require the evaluation ofMN inte-

grals, and becomes rapidly impractical. On the other hand, the

procedure outlined in this paper allows the convolution to be

performed systematically, and efficiently, on a digital com-

puter. Moreover, the computations are exact, and in many

applications, are more efficient than cyclic convolution using
the fast Fourier transform.
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