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ViVjVk[Mi-ak,i--bk' Mjai-a,j..bk +-Pij]- (4)

This can be done in parallel for all the points in P by changing the
order of the operations, i.e.,

VkViVi[Mi-ak,jbk a + Pi] (5)

In other words, to each point in Mi1 we add the value of Pi_ak s-k
and iterate this procedure for all the pairs (ak,bk) that define the
1800 rotation of the given curve. With this procedure, we have to
compute each value for the increment index (ak and bk) only once
for all the points in Pih, which implies that processing time is de-
creased.
But major gain is achieved by the implementation of the algorithm

in a parallel machine [5], [6]. In such a machine, the algorithm can
be executed by translations of the Pii matrix and additions of the
translated array to the Mi matrix; the total number of these parallel
operations is the same as the number of points in the discrete plane
X-Y that define the curve to be detected.
Now, after the accumulation of all the traces, the best candidate

for A' will correspond to the cell with the maximum value in the
matrix M, because through this cell passes the maximum number of
traces, as explained in Section II.
The method described is also suitable for the case in which the

picture Pii, has different grey levels.
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Optimal Piecewise Polynomial L2 Approximation of
Functions of One and Two Variables

THEODOSIOS PAVLIDIS

Abstract-The problem of piecewise polynomial L2 approximation
with variable boundaries is considered. Necdssary and sufficient
conditions for local optima are derived. These suggest simple func-
tional iteration, algorithms for locating the boundaries.

Index Terms-L2 approximation, Newton's method, piecewise
polynomial approximation, variable boundary approximation, varia-
ble breakpoint approximation.
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I. INTRODUCTION

The problem of piecewise polynomial approximation occurs in
a number of applications and it has been dealt with in the recent
literature. Of particular interest is the case when the "breakpoints"
of the approximation are allowed to vary [1]-[4] (See [4] for addi-
tional references to the earlier mathematical literature.)
We present here criteria for optimality for the case of the L2 norm

for both functions of one two variables. These criteria depend only
on the local errors at the dividing boundaries, and they suggest
algorithms for solving the problem of optimal location of breakpoints.

II. THE SINGLE-VARIABLE CASE

Let f(x) be a continuous differentiable function on [a,b] which
is to be approximated by polynomials {pi(x) }I=1 of given degree
m - 1 on intervals (xi_,,xj]ij_" where

'(1)a -x < xi..< xnl < xn = b

in order to minimize

it fxi
E-= ] [f(x) -pi(x)]2 dx.

i=l ri-l

It is well known that under the above assumptions, we can use

differentiation with respect to the breakpoints and polynomial
coefficients to define conditions for the optimal solution.
We introduce the following notation:

(e(t) = col { 1,t,t2,. . . tm-lI

ai = col {aoi,a1i,a2i,. .,am_ ,iI

xZi

Fi = f (t) g (t) dt, xi > xi-I
Zj-1

r-i

p (t) = E aiti = ai'y(t)
j=o

ei (t) =f (t) -ai'i (t)

ei(1) (t) = fail t

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

(3g)

The primed symbols denote the transpose of a vector.
The matrix Mi is usually referred to as the Gram matrix and it is

symmetric and positive definite [5].
Taking the partial derivatives of E with respect to the coefficients

aii of the polynomials yields the well-known [5], [6] system of
linear equations
OEaE 12i

[f(x) -Pi(x) ]]xid = 0,

i= 1,2,*.,n,j = (,1, ** 1 (4)

or in vector form

grad E = Fi-Miai = 0, i = 1,2,***,n
a;

(4')

while the partial derivatives with respect to the xi's result in

= [f(xi) - pi(xi)2 - [f(x)-(+i(xi)]2 = 0,

axi

i = 1,2,..-,n-1 (5)

aE
= ei2(x,) - ei+i2(x) = 0, i = 1,2, t-,n 1, (5')

i.e., a necessary condition that the breakpoints are optimally located

(2)
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CORRESPONDENCE

is that the absolute values of the pointwise errors from right and
left are equal. This means that at any breakpoint, the approximation
is either continuous or symmetric with respect to f (t).
A sufficient condition for a minimum of a function of many vari-

ables is that the matrix of the second derivatives be positive definite.
In order to avoid taking these derivatives with respect to the coeffi-
cients aii as well as the xi's, it is necessary to substitute into (5) the
expressions for the asi's (as functions of the xi's) obtained by solving
(4). The calculations are laborious but straightforward and can be
found in the Appendix. The result is

a'E 2B2'ei(xi),ej(xi-,) (a
oxioxi_1 Xi -i_6
a2E
a E = 2ei (xi)ei(1' (xi) -2eji+ (xi)ei+i(l' (xi)

_2B, e 2(xi) _2B, e,+12(xi) 6
Xi -xi_I Xi+l -Xi

02E 2B2 ei+1(xi)ei+,(xi+l) (6c)
oxiaXi+2 Xi+1 -Xi

02E2E= 0, otherwise (6d)aihaxk

where B, and B2 are given by

B1 = m2

absolute value of that difference must be significantly greater than
the ratio of the absolute pointwise errors over the lengths of the
intervals. Fig. 1 (a) shows such a configuration.

Corollary 2: A sufficient condition for optimal breakpoint location
is that the approximation is symmetric, and the difference of the
slope of f(t) minus the average slope of the approximation has the
same sign as the pointwise error. Furthermore, the absolute value
of that difference must be significantly greater than the ratio of the
absolute pointwise errors over the lengths of the intervals. Fig.
1 (b) shows such a configuration.
The term "significant" must be interpreted according to the

order of approximation and the number of breakpoints. It should
be emphasized that the simplifications leading to Corollaries 1 and
2 are not necessary in actual computation where all the quantities
appearing in (6) may be evaluated exactly (see Section IV).

III. THE TWO-VARIABLE CASE

The situation here is considerably more complex because of the
need to define the form of the boundaries which are to be considered.
A simple case is the following.
Letf(x,y) be a square integrable function over [a,b]X[c,d] which

is to be approximated by polynomials pi (x,y) and P2 (x,y) over
regions R, and R2 such that

Ri= {(x,y) Ia <x <g(y), c <y <d} (8)

R2= f(x,y)Ig(y) <x<b, c<y<d}

B2 = (-1) n-lm

Therefore we have the following.
Theorem: A configuration of breakpoints Xi,X2,. ,Xni1 minimizes

E, as given by (2), if and only if the approximation at any break-
point is either continuous or symmetric with respect to f(t) and the
matrix given by (6) is positive definite.

Verifying the latter condition may not be easy, and therefore we
proceed to derive some simpler conditions. Roughly speaking, the
first two terms in (6b) reflect the change in

ei2(xi) -ei+l(xi)

caused directly by a variation in xi, while the remaining terms in
all equations reflect the indirect change due to the modification of
the approximating polynomials for the new breakpoints. Intuitively,
one expects that these will be less significant. Indeed, all such terms
in (6) are proportional to the ratio of the pointwise errors at the xi"s
divided by the length of the intervals. On the other hand, the first two
terms of (6b) depend on the derivatives of the pointwise errors. For
any reasonable problem, the pointwise errors should be small in
cpomparison to the interval length, and therefore the matrix of the
second derivatives has diagonal dominance.

In the case of a continuous solution [i.e., ei(xi) = ei+i], we have

,92E/Oxil.2_ 2ei (xi) [ei(l) (xi) -ei+l(l) (xi) ] (7a)

and in the case of a symmetric solution [i.e., ei(xi) = -ei+l (xi)],

02E/Oxi.2 ' 2ei(xi) [eiOl (xi) + ei+ (1) (xi) 1.

These expressions also can be written as

,02EIax.2 _ 2ei (xi) [pi(l) (xi) -pi(') (xi) I

(7b)

(7a')

(9)

where g (y) is a polynomial of degree m in y. It is required to chose
pl(x,y), p2(x,y), and g(y) in order to minimize

E =IJ J [f (x,y) -pi (x,y) ]a dxdy

rd rb
+ f [f(x,y) -p2 (x,y)]2 dxdy. (10)

Taking the partial derivatives of E with respect to the coefficients
of g (y) and setting them equal to zero yields

rd

[f(g(y),Y) -p((y) ,y)]2yMdyrd

f[f(g (Y),Y) -p2 (g(y),y) ]iyrdy, r = 0,1, **,m, (11)

i.e., a necessary condition that the dividing boundary is optimally
located is that the integral of the square error along the boundary
multiplied by y, is the same from right and left.
The following is a more general case. Let each region be defined

through

Ri = (x,y).I gi(ai,x,y) > 0}, i = 1,2, s-,n

where ai is a parameter vector. Then

nr
E =E [f (x,y) - pi (x,y) ]2 dxdy,

-1 7i(a,x,y)>o

(12)

(13)

which can be written as

I2E/lxi2 _ 2ei (xi) [2f(l) (xi) -p() (xi) -pi+(1) (xi) ]. (7b')

We can summarize now.
Corollary 1: A sufficient condition for optimal breakpoint location

is that the approximation is continuous, and that the difference of
the slope of the approximation to the right minus that of the left
has the same sign as the pointwise error there. Furthermore, the

E Efd (, Ihii(ai,y)

ill I-1O;(assy)
f(x,y) -pi (x,y) 12 dx) dy (14)

where ki denotes the number of segments along the line y = const
of region Ri and hi and gij their right and left endpoints. The partial
derivative of E with respect to a parameter a,, is
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(a)

/

(b)
Fig. 1. Form of the polynomial approximation at the breakpoints of an

optimal solution.

aE [n qd ki ahi
= iE[| ( U(hi,,y) -pi(ni.,y)]2

&a07 i- i-l aagr

[f(gii,y) -pi (gji,y) ]2 lag }) dy * (15)

This implies again that integrals along the boundaries of the
same form as (11) express necessary conditions for optimality.

Sufficient conditions can be expressed in terms of integrals of the
derivatives, along the boundaries.
The need to specify the form of the regions makes it impossible

to derive a solution for the general case. As a matter of fact, this
problem is ill-defined unless a proper choice of boundary description
is made [7].

IV. ALGORITHMS

Equation (5) suggests that candidates for the optimal solution
can be found as zeros of the vector-valued function V(x):

Vi (x) = ei+ (xi)2 ei(xi)2, i = 1,2,* ,n-1. (16)

Let J denote the Jacobian matrix (OV,l/x,). This is obviously
equal to the tridiagonal matrix of the second derivatives of E given

by (6). Under the rather general assumptions of Corollaries 1 and
2, it has diagonal dominance, and therefore the application of New-
ton's method in vector form is particularly appropriate [8]. Thus
the following iterative scheme is applicable:

Xk-k = Xk - J-1V(xk). (17)

If the terms with the factors Bi in (6) are sufficiently small, then
(17) can be simplified into

Xak+l-X.* + ~ei+1 (Xi)'2 ei (xi).2
xik+1 = xi +-e(x)2[ei+i (xi)ei+i1') (xi) - ei(xi)ei(') (xi)]

i = 1,2,-,n -1. (18)
It is also possible to use a first-order iteration method similar to

that used for the case of the L. norm [4], [9], namely, the scheme

Xik+l = X,k + c[ei+i (xi)' - ei(xi) 2], i = 1,2, ,n - 1 (19)
where

{max aVi/axiI} (20)

with the partial derivatives evaluated at xAk. The assumption that
f(x) is differentiable together with (7) guarantees that c is finite.
However, this scheme will be, in general, slower than those given
by (17) or (18). Cases where

OVi/Oxi = 0
can be excluded since this implies that a local change of the break-
point will have no effect. Such points can be ignored at intermediate
iteration steps.

Similar schemes can be devised for the case of functions of two
variables where coefficients of the boundary curves are varied in-
stead of breakpoints.
A split-and-merge algorithm [10] can be used to obtain a starting

point for these techniques since they converge only in a neighborhood
of a solution. They can also be comnbined with such an algorithm
in order to accelerate convergence.

In the past, the optimization of the location of the breakpoints
has been done by using descent techniques [3], [4], [10]. It has
been observed that the locations obtained in this way satisfy the
conditions of Corollaries 1 and 2 [10, Figs. 7 and 9]. The use of
Newton's method is expected to result in faster convergence.

100



CORRESPONDENCE

CONCLUSIONS

The simple form of the optimality conditions suggests solutions
which are simpler than minimizing the L2 norm via steepest descent
schemes [3], [4]. Furthermore, the same schemes are extendable
to the case of functions of two variables.

APPENDIX

We will compute here the second derivatives of E after the expres-
sions for the optimal coefficients of the polynomial have been sub-
stituted in (2). We note the well-known results [5], [6]

ai = Mi-'Fi

The first two terms are zero unless j = k and then they equal
e1(l) (xi). The last term is zero unless k = j or k = j - 1.
Using (A.6) we find

cOe1(xi) =
4(()xe)(xide x)= ei(l) (xi) - 40 (xi)Mj-oX)e(

Ox1

Oei (xi)
= '(x1) AM1-t0 (xi_)ei (xi-i).

Similarly, we find

d9ei+i (xi)- _ lo, (xi) Mi+I-1 'e (xf+I) ej+l (xi+,)
49xi+l

(A.lOa)

(A.lOb)

(A.10c)
(A.1)

and
rbm-

E = f(t)2dt- Fi'a. (A.2)

A direct differentiation of (3c) and (3d) yields

f(xi) (e (xi), if k-i

a =
i

-f (xi-I) v (xi-), if k = 1 -1 (A.3)

0, otherwise

e(xi) v' (xi), if k = i

OMj = -(xi_1) (0' (xi-I), if k = i - 1 (A.4)
aXk

0, otherwise.

Differentiating (A.1) gives

aXk = M-1M '- Mi-'Fi + Mc-.I* (A.5)
aSk aSOk OXk

Substitution of (A.3) and (A.4) into (A.5) followed by a sub-
stitution from (3e) results in

Oei+, (xi) = -+(x) + ze' (x1)Af1+c'(x)e,+ (x,i). (A.1Od)
Ox1

The above expressions can be simplified on the basis of the follow-
ing lemma.
Lemma: If V(t) is the vector defined by (3a) and M the corre-

sponding Gram matrix for the interval (q,r), then

B
Q(p,q,r,8) e- 9'(p)M'1,(s) =

r -q
(A.11)

if p and s take the values r or q. The constant B does not depend
on r or q.

Proof: First we observe that the quadratic form Q is invariant
under a basis transformation. Indeed, if

'F(t) = Pv (t)
we have

W'(p) {j 'I(t) 'F (t) dt} ' (s)

= (0'(p)P' {P [fj (t)>'(t) dt] P'} P(s)

rr
(OsU(P) 1Os(t) V'(t) dt y (s).aGi-a Mc'v(xi)ei(xi)-

Oa
cda = -Mi- lp, (xi-,) ei (xi-,) .

(A.6a)

(A.6b)

We proceed now with the differentiation of (A.9) while using
(A.3)-(A.6) and (3f):

O3E n [OPtI Oaj1
dzj El[ dzai + Fila,Olx1 a~[x1 Oxi]

= -f(xj) '(x Mx)a1-F/Mi-l (xj)ei(x)
+ f (xi)D'o (xi)aj+, + F,+,'Mi+c-'('(xi) e+i (xi)

= 2f(xi) (0'(xi) (ai+i - a1) + DE' (xi) a112 -[4'(Xj) aj+
= [E '(xi) (a1+j -a) I *[2f (xi) - 0'(xi) a - '(0x) a-+,
= [ee (xi) - ei (xj) ][e+ (xi) + ei (xi) ]

(A.7)= ei'2(xi) -ej+l(xi).

As expected, this is the same as (5).
Furthermore, we have

=IE= 2e (x) 2e+ (x) e+(xi)
OXjOXk aXk OXk

Using (3f), we obtain

,&ej (xi) af (xi) cs(x) ai
-a1' -sl (xi)

OXk CXk AXk Oxk

P can be the matrix of the Gram-Schmidt orthonormalizing process
[5], [6], and therefore Q can be evaluated for a set of orthonormal
functions equivalent to those of V(x). In that case, the Gram matrix
equals the identity matrix and

Q (p,q,r,s) = It'(p) ' (s). (A.12)

Next we note that if *i(x) is a member of a set of orthonormal
polynomials on the interval [q,r], then

2 112 x2x (q + r)
\ r/ q - r /

where *i(x) denotes the corresponding polynomial on the interval
[-1,1] [6, p. 201].
Therefore

(A.13a)'I (q) = qIl)

/ 2 1=2
*i(r) = *i(-1).q- r

It is easy to verify that tj(l) = tj(-1) 1, and therefore

(A.8)

(A.9)

2

Q (q,q,r,q) = Q (r,q,r,r) = - E W (1)
q- ri-i

(A.14a)

2
Q (q,q,r,r) = Q (r,q,r,q) = E t(l)t(-l). (A.14b)

q -r-

(A.13b)
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This completes the proof of the lemma since the sums in (14)
do not depend on q or r. For brevity, we will use the notations

B1 = 2 *i' (1) (A.15a)
i-1

B2 = 2Z (l)'T'-l). (A.15b)
i-i

A simple calculation can show that

B, = m2 (A.16a)

B2 = (-1) mim. (A.16b)

Using the above lemma in (10), we obtain

Oei (xi) Bleei((x)i)
-_ = et(l) (8) -7 (A.17a)

Oxi x;i -xii

I. INTRODUCTION

We shall consider the problem of designing a logic circuit whose
inputs X1,X2,X-,,xXn are constrained by a system of simultaneously
asserted logical relations. These relations are assumed to be of the
universal type (i.e., equations or inclusions, expressed by the affirma-
tive copulas = or <, respectively). Relations of the particular type,
expressed by the negative copulas s'- or <, will not be considered.
The Boolean identity [a < b] [Cab = 0] allows us to transform
inclusions into equations; hence, we shall assume that the relations
among the input variables are expressed by a system of Boolean
equations of the form

oil (xi,*.-,X.) = 31 (xi, -,X)
012 (XI, * * ',X.) = ,(XI, ',X)

ak (Xl, * ',X.) = Ok (Xl, * * ',X.) - (1)xe(xi) B2e(xi-(A.
Ox±i- xi-Xj_l

,Oei+i (xi) B2ei+l (x+,+) (A.17C)
(Xi+l Xi+i -Xi

Oei+,(x1) = eje(')(xi) + B,ei+,(x,) (A.17d)
ax, X+i -Xi

Substituting (A.17) into (A.8), we obtain (6).
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The Constrained-Input Problem

FRANK MARKHAM BROWN

Abstract-Given a combinational output function f and an input
constraint 0 = 0, there is a set G(f, 4) of output functions equivalent
to f with respect to 0. A function belongs to G(f, 4), that is, provided
its evaluations agree with those of f for all argument combinations
satisfying the constraint 1 = 0. We define the constrained-input
problem as that of generating G(f, 4k), given f and +. A general
solution for this problem is developed. Applications to the "don't-
care" problem and to translator synthesis are discussed.

Index Terms-Boolean algebra, Boolean equations, functional
decomposition, input constraints.
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Applying the standard theory of Boolean equations [3], [4], [7],
[10], the system (1) is equivalent to the single equation

(2)0 (X1,X2, *...*Xn) = 0

where the function 0 is defined by the formula
k

4) = (ai ED 0). (3)

Let us call (2) the input constraint and 4, the constraint function.
The logic-circuit under discussion is to realize the switching func-

tion

Z = f (Xl,X2, * * * Xn) . (4)

Given f and 4, there is a set G( f,p) of switching functions, exactly
one of which is identical to f, such that if g E G, then g (x) = f(x)
for all x satisfying the input constraint (2). The logic-circuit will
produce satisfactory z-signals if (and only if) it is wired to realize
a function in the set G (f,); to find the best function (by any
criterion) it is necessary to be able to generate the set G(f,O). We
therefore define the constrained-input problem as follows. Given two
n-variable switching functions f and 4, construct the set

G(f,) = {g +(x) = 0 = g(x) = f(x) I (5)

of n-variable switching functions, where x = (x1,x2, * * ,x,) is a
vector of switching variables, i.e., elements of the two-element
Boolean algebra.

If the input constraint reduces to an identity (i.e., if the inputs
are independent), then G(f,O) has exactly one member, namely,
the function f. If the input constraint is nontrivial, then G ( f,)
contains f, together with functions distinct from f.

II. CONSTRUCTION OF G(f,4)

The constrained-input problem can be phrased as follows. Find a
general solution for g in the relation

= 0 =X g = f.

The relation (6) is equivalent to the Boolean equation
. (of+gf) =0

which is equivalent in turn to the constraint

cf < 9 <'+ +f.

(6)

(7)

(8)

The constraint (8) provides a general solution for g; however, the
prescription

g = $f + Po, (9)

expressing the same information, is sometimes more convenient.
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