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General Division in the Symmetric Residue Number System
EISUKE KINOSHITA, HIDEO KOSAKO, AND YOSHIAKI KOJIMA

Abstract-In the residue number system, the arithmetic opera-
tions of addition, subtraction, and multiplication are executed in the
same period of time without the need for interpositional carry. There
is a hope for high-speed operation if residue arithmetic is used for
digital computation. The division process, which is one of the diffi-
culties of this operation, is developed in the symmetric residue num-
ber system. The method described here is iterative in nature and
requires the availability of two tables of the symmetric residue
representations of a certain kind of integer. An algorithm for general
division is derived, and the way of choosing the entries which are
used to find a quotient is discussed.

Index Terms-Additive inverse, algorithm for general division,
approximate dividend, approximate divisor, approximate quotient,
division with zero remainder, multiplicative inverse, symmetric
mixed-radix conversion, symmetric residue number system.
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1. INTRODUCTION

N the residue number system, addition, subtraction,
and multiplication are executed without the need
for interpositional carry [1 ]-[3]. In particular, for

the case of multiplication, the need for partial products
is removed. Division, however, is such a complicated
process that it is not easily mechanized. In spite of many
investigations [31, [4], there is much left to study in the
area of residue division.

Several kinds of representations for residue numbers
[3], [5] have been proposed, each of which has merits
and demerits. In the symmetric residue number system
(SRNS), it is easy to find the additive inverse of a resi-
due digit and to detect the sign of a residue number.
The purpose of this paper is to propose a solution for the
division process in the symmetric residue number sys-
tem.
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II. SYMMETRIC RESIDUE ARITHMETIC FUNDAMENTALS Example 2

Before considering the problem of general division, an
introduction to symmetric residue arithmetic will now
be given, sufficient to make this paper self-contained.
The symmetric residue of x modulo m, denoted /X/m,

is the least remainder in absolute value when an integer
x is divided by another integer m (m is called a modulus;
m is assumed positive here). A commonly used form of
this condition is

/ x m\ x,
x- \- M +/

where /X/m is an integer such that -[(m- 1)/2 ] /x/m
< [m/2]. The symbols [ ] indicate a rounding opera-
tion. The quantity [m/2] is the integer value of the
quotient m/2, for example.
For m odd, the quantity (x/m) is the closest integer

to x/m. If rm is even, the quantity (x/m) is again the
closest integer to x/m, except that if x is of the form
nm/2, where n is odd, the quantity (x/m) is the closest
integer to (x-1)/m.

Example 1

Let m=33, x=185. Then (185/33) = 6. Hence,

/X/m = x - (x/m)m = 185 -6 X 33 = -13.

An SRNS is defined by the choice of N moduli
ml, M2, , MN. If these moduli are chosen to be pair-
wise relatively prime, for any integer x in the interval
[-[(M-1)/2], [M/2]] (it should be noted that the
outer square brackets indicate a closed interval), the
symmetric residue sequence /X7m, 7X7m2, * *XN
uniquely represents x; in symbols,

X h/ XIe1e / XIM2e . I XIeN}

where

For mi1=7, m2=11, and m3= 13, the interval of defi-
nition is [-500, 500 ]. Let x = 23, y = 18.

x*-+{2,1,-32 ,y--*{-3,-4,5}
Addition: Moduli: 7 11

23*--> { 2,
+ 18< --> {-3,
41<--> {-1,

Subtraction:
23 {---> 2,

- 18 --> {-3,
5 --> {-2,

1,

-4,
-3,

1,

-4,
5,

13

-3}

5}
2}

-3}

5}
5}

Multiplication:
23 < ---> { 2,

X 18 < -- {-3,
414 ---> { 1,

1,

-4,
-4,

-3}

5}
-2}

If -[(mi-1)/2].a.[mi/2] and /ab/m1=1, a is
called the multiplicative inverse of b modulo mi and is
denoted by a =/'/mi. The quantity exists uniquely if
and only if (b, mi) = 1 and /blmii o0.
Now, the very restricted area of division with zero

remainder will be briefly described. Division with zero
remainder is division where the dividend is known to be
an integer multiple of the divisor and the divisor is
known to be relatively prime to M. The symmetric
residue representation for division with zero remainder
is

x (1
=i X7/X/m,~

Y Y MI17 m

n

H=l
and /X/mi is called the ith symmetric residue digit of x.
The symnietric residue representation for addition,

subtraction, or multiplication of two numbers in an
SRNS is, as long as the operands and the result all fall
in the.interval [- [(M-1)/2], [M/2 ]],
X *

y 1/1/ X/m1 * / Y/mIl/ml // X/m2
*7 Y/m2/m2, . 7// X/mN *7 Y/mN/mN}

where the symbol * represents addition, subtraction,
or multiplication of two numbers.

In an SRNS the quantity /-/x/mj/mj is called the
additive inverse of /X/mj modulo mi. For mi odd, the
quantity /-/x/mj/m is -/x/m. If mi is even, the quan-
tity /-/x/mi/mj is again -/x/m, except that if x= m/2,
the quantity /- x/mXm/mj is defined to be /-x/x/m
+mi/mi =/x/.i

X /X/m2 /

m2 y X/ mN

if, and only if y divides x without remainder and
(y, mi)=1, for all i.

Example 3

Let mi1=7, m2=11, m3=13, x=432, y=18.

x *-{-2, 3,3, yY* {-3, -4, 5}

1 l 23=2,
1 1

= -3 = ~~~5.
14 1 5 13

Hence, for 432/18, the symmetric residue representa-
tion is

{/ 2 X (-2)/7, / (-3) X 3/11, / (-5) X 3/13
= {3, 2, -2} +-+ 24.

The symmetric mixed-radix conversion (SMRC) pro-
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cess is used to convert from the residue code of a num-
ber to its symmetric mixed-radix representation. The
mixed-radix representation is of great importance in
residue computation because it gives an effective solu-
tion for sign sensing and magnitude determination. A
number x may be expressed in symmetric mixed-radix
form as

N-1

x = aN II mi + + a3mlm2 + W2ml + al (1)
i=l

where the aj (symmetric mixed-radix coefficients) are
integers such that - [(mj-1)/2] <.a, [mj/2]. For a
given set of moduli, the mixed-radix representation of x
is denoted by (aN, ,N-i, , ai). Any integer in the
interval [-[(M-1)/2], [M/2]] may be represented
uniquely in this form. Inspection of (1) shows the sign
of x to be given by the sign of the most significant non-
zero coefficient.
The aj are determined sequentially in the following

way. Since all terms of (1) except the last are multiples
of ml, it follows that /x/ml =ai. To determine a2, x-a,
is formed in its residue code and then divided by mi.
This division is actually division with zero remainder
as previously explained. Then

X - aj N-1
= aN II mi + +-a3m2 + a2.

mlin2

If this equation is taken modulo M2, the only remain-
ing term on the right side is a2. Hence /(x-al)/ml/mfi2
=a2. In this manner, by successively subtracting aj and
dividing by mj, all the aj can be determined.

Example 4

Moduli min=7, m2=11, m3=13. Symmetric residue
representation of number to be converted is {3,-5, -2}
<+-479.

SMRC
Moduli: 7

III. GENERAL DIVISION ALGORITHM IN THE SRNS

Consider the symmetric residue system consisting of
the moduli such that

mI < M2 * < miN.

If one of the moduli is even, let the modulus be mi.
The method makes use of division of an approximate

dividend by an approximate divisor. Since, in the gen-
eral case, the dividend and the divisor are not equal to
the approximate dividend and the approximate divisor,
respectively, an error is introduced in the quotient. This
error is then iteratively reduced to zero.

A. Principle of the Method

Let y be the divisor and let xi-, be the dividend in the
ith (i = 1, 2, * - * ) iteration.

Approximate Divisor: The symmetric mixed-radix
representation of y is assumed to be

y (°,.. *,°t-1,0)
where #I3 is the most significant nonzero mixed-radix
coefficient of y. The approximate divisor y is chosen to
be

y=f=#(1/K)mlm2 * MI-I (2)
where K =1/{ 1 +03i/(#3mz_i) } (if I = 1, then K = 1).
Approximate Dividend: The symmetric mixed-radix

representation of xi- is assumed to be

Xi-, + > (0, * ,0) a:k, ak-1 *' al)

where ak is the most significant nonzero mixed-radix
coefficient of xi,. The approximate dividend xi_i in the
ith iteration is chosen to be

Xi-1 = xkMIM2 ..*Mk-l- (3)
Approximate Quotient: A method for finding an ap-

11 13

3

Subtract a, = 3:

Multiply by mi

-5

3

3

= 3 /i3
2

Subtract a2 = 2:

-2 a,i= 3

3

-5

=2

3 a2 = 2

2

1

Multiply by/ 1k /m: 1=! =
/ 1/13

6 a3 = 6

136



KINOSHITA et al.: SYMMETRIC RESIDUE NUMBER SYSTEM

proximate quotient Zi in the ith iteration stage will be and
described.

1) If k _l +2, then the approximation

Zi-= ak(KmI+lmM+2 .* mkl) (j)

is obtained from (2) and (3). Since Zi must be an integer,
Zi is chosen to be

Zi = (sgn 3I) ak(Km1+1mi+2 ' mk-1) I

if |a |$ 1, or akl = I anda1kak-1 =O (4)

Zi = (sgn 31) ak(fk'mz+1m+2 . mk..)M1 )

if alk = 1 and akak-1 < 0 (4')
where K or K' is the approximate value of K, which will
be illustrated later.

2) If k=l+1, then

zi = ak(Km/,13).

The approximate quotient Zi in this case must be again
an integer. Accordingly, the following approximation
will be used to find Zi:

Zi = (sgn 31)atk((Kmi)/ I1

if |ak I # 1, or a|k = 1 andakak-1 _ 0 (5)
Zi = (sgn ,3z)ak((K'im)/ /1 )j

if ak I= I and aakk-1 < 0. (5')
3) If k=l, then

to obtain Zj+±.
This iterative procedure is continued until xi <| y|.

If this occurs on the rth iteration,

r-1

Ezi +z'

where Z' is the correction factor such that

1, if 21 x7 > yandxr_iy > 0

Z' = 1-, if 2 x1 > yandxr_iy < 0

0, otherwise

to obtain the closest integer to the complete quotient
(x/y).
The validity of this method hinges on the following

premises.
1) In the case of k>1, for any i, if the approximate

quotient is so chosen that

(7)o < I zil' < 21 xi

then the subscript k decreases to k <I after a finite num-
ber of iterations.

2) In the case of k=l, if I$1, IxiI becomes less than
|y| after a finite number of iterations, except that
Zi=O, ±1. If 1=1, then |xi| <|y.
These premises are proved by the authors.
It is evident that xi-,1 < y in the case of k <1.

- ~~~xi_i ak

In this case it is not sufficient to choose as the approxi-
mate quotient

Zi = (sgn ak) (sgn B1)K2 akI) (6)

because, in the case of 1 1, the direct use of (6) does not
always terminate the iteration. A means of terminating
the iteration is as follows.

If akakO l .0 and 03j3-1<0, then ak is increased by 1

in absolute value. If akak-1<0 and 3#I-,_ 0, then ak iS
decreased by 1 in absolute value. Otherwise ak is left as

it is. As a result, 0.< lak I< [mk/2]+1 in this case.

After this modification of ak, (6) is used to obtain Zi.
It should be noted that the case of k =I does not re-

quire the use of K.
Once Zi is found, this quantity is used in the recursive

relationships

Xi = Xi_1-yZi, xO = x

B. Tables of Approximate Divisions

To obtain Zi, the proposed method requires the avail-
ability of two tables in a special memory; one is of
(KmI+ImI+2 *.mMk1), and the other is of (ml/l If3I),
((kml)/l11 ), or ( a*| / ,3I , both of which are repre-

sented in the symmetric residue coding form.
Now, it will be shown that 2/3 <K <2 for any set of

moduli. It is easy to show that K takes its minimum
value Kmji when Al =1 and 01-1= [ml-1/2]. Moreover,
K takes its maximum value Kmax when j,B= 1 and
01-1=-[(m 1)/2]. Hence, for mzi- odd,

1 1 2
Kmin =

Ml_l- 1 1 1 3
1+ 1+--

2m_1 2 2mui

and

1 1
Kmax -=K = 2.

mii - 1 mi-i

1- 1-
2ml-i 2mu-

xi
Zi+l -
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Consequently,

2/3 < K < 2.

Likewise, for mil- even,

2/3 _ K < 2.

In the range 2/3_K <2, p values Ki (i = 1, 2, p;
K,<K < **.* <K,) are chosen at equal spacing over
the interval K1 to K,. In addition to the Ki, p values
Ki' are determined by Ki'=Ki-E' (i=1, 2, p),
where e'(>0) is a correction factor of Ki when k>1,
k= 1 and akak-1 <0. Among the Ki or Ki', the closest

value to K is used as Ki or Ki' according to circum-
stances. The way of determining K, (or Kj') will be de-
tailed in the Appendix.

In the following discussion, it will be assumed that
there are q different values Ai (i = 1, 2, ,q) in the
union of the two sets {Ki} and {Ki'}.

Table Composed of (Km1+1m1+2 * * mk-1): For such
k and I as k_1+2 (1=1, 2, N-2; k=1+2,
1+3, *, N), there are (N-2)(N-1)/2 integers of
the form mI+1m1+2 * mk41. The results of multiplying
each integer of them by At (i=1, 2, - , q) are
rounded off to an integer. The integers obtained in this
way are represented in symmetric residue form to be
made into a table. The entry in the table is obtained by
means of K, (or Ki'), k, and 1.

Table Composed of ((kmz / AlI ).and (I ak| /I|3|): It
is assumed that at least one of the Ai is equal to 1. Then
mi/j,3l is expressed in the form of km,/ljll.
Now consider the following two kinds of numbers.
1) The numbers (Ajmbj l3jj, where (A4mi) are the

integers obtained by rounding off Aim, (I=1, 2, ,
N-1; i=1, 2, q).

2) The numbers akl /1f31 where k=l, I=1, 2,
Nand 0.Iak| _ [mk/2]+1.
Each of these numbers is rounded off to an integer.

The mutually different integer values obtained in this
way are represented in symmetric residue form to be
made into the other table. The entry in this table is
obtained by means of Ki (or Kj'), I and |I, or akl
and 113I1.
C. General Division A Igorithm
The proposed method may be summarized by steps

as follows (see flow chart, Fig. 1), where it is often con-
venient to use the notation ((x))<->{/X/ml,, /X/m2.*
/X/mN} .

1) Reset ((Z)) to zero.
2) Perform the mixed-radix conversion on ((y)).
3) If l=N, go to next step. If 1$N, determine K

or K'.
4) Perform the mixed-radix conversion on ((x)).
5) If k<l, go to step 10). If k=l, go to step 7).

Otherwise compare k with l+1. If k=7+1, com-

Fig. 1. Flow chart of residue division.

pute ((Z,)) using (5)' or (5'). If k$l+1, compute
((Zi)) using (4) or (4').

6) Add ((Zi)) to ((Z)), subtract ((y))((Zi)) from
((x)) and return to step 4).

7) If I = 1, compute ((Z,)) using (6) and go to step
9). If I1o, increase or decrease ak by 1 in abso-
lute value according to the sgn of akak-l and
131z-1. Compute ((Zi)) using (6).

8) If ((Zi)) = ((0)), go to step 10). If ((Zi)) = ((± 1)),
go to next step. Otherwise return to step 6).

9) Add ((Zi)) to ((Z)), subtract ((y)) ((Zi)) from ((x)).
10) Compute the correction factor ((Z')) and add

((')to ((Z)).

IV. SAMPLE PROBLEM

In the SRNS consisting of moduli 33, 35, 37, 41, 43,
and 47 ([M/2]= 1770532417), divide x=356271687 by
y = 2887.
The approximate values Ki are chosen, for instance,

as K1 = 0.775, K2 = 1.0, K3 = 1.225, K4 = 1.45, K5 = 1.675,
and K6 = 1.9. The correction factor E' is chosen, for in-
stance, asE' = 0.45. Consequently, K1' = 0.325, K2' = 0.55,
K3'=0.775, K4'=1.0, K51=1.225, and K6'=1.45. (Ma-
terial with respect to the choice of the values of Ki and
Ki' is given in the Appendix.)

138



KINOSHITA et al.: SYMMETRIC RESIDUE NUMBER SYSTEM

TABLE COMPOSED OF (((Kml+lmI+2 .

TABLE I
Mk-1))) AND (((R'ml+lml+2 ... mk-1))) FOR EXAMPLE SYSTEM

K. or K.
1 1 0.325 0.55 0.775 1.0 1.225 1.45 1.675 1.9

m2m3m4m5 ((742003)) ((1255697)) ((1769391)) ((2283085)) ((2796779)) ((3310473)) ((3824167)) ((4337861))

m2m3m4 ((17256)) ((29202)) ((41149)) (53095)) ((65041)) ((76988)) ((88934)) ((100880)1

m2m3 ((421)) ((712)) ((1004)) ((1295)) ((1586)) ((1878)) ((2169)) ((2460))

m2 ((11)) ((19)) ((27)) ((35)) ((43)) ((51)) ((59)) ((66))

m3m4m5 ((21200)) ((35877)) ((50554)) ((65231)) ((79908)) ((94585)) ((109262)) ((123939))

m3m4 ((493)) ((834)) ((1176)) ((1517)) ((1858)) ((2200)) ((2541)) ((2882))

m3 ((12)) ((20)) ((29)) ((37)) ((45)) ((54)) ((62)) ((70))

m4m5 ((573)) ((970)) ((1366)) ((1763)) 02160)) ((2556)) ((2953)) ((3350))

m4 ((13)) (23) ((32)) ((41)) ((50)) ((59)) ((69)) ((78)

m5 (14)) ((24)) ((33) (43)) ((53)) ((62)) ((72)) ((82))

TABLE II
TABLE COMPOSED OF ((((KmI)/I I))), ((((k'mi)/I I))), AND (( Iak I/II l I1)) FOR EXAMPLE SYSTEMa

Storage Residue Storage Residue Storage Residue -Storage Residue
location representation location representation location representation location representation

0 ((0)) 13 ((13)) 26 ((26)) 39 ((45))

1 ((1)) 14 ((14)) 27 ((27)) 40 ((50))

2 ((2)) 15 ((15)) 28 ((29)) 41 ((51))

3 ((3)) 16 ((16)) 29 ((31)) 42 ((53))

4 ((4)) 17 ((17)) 30 ((32)) 43 ((54))

5 ((5)) 18 ((18)) 31 ((33)) 44 ((59))

6 ((6)) 19 0(19)) 32 (34)) 45 ((62))

7 ((7)) 20 ((20)) 33 ((35)) 46 ((66))

8 ((8)) 21 ((21)) 34 ((.36)) 47 ((69))

9 ((9)) 22 ((22)) 35 ((37)) 48 ((70)

10 ((10)) 23 ((23)) 36 ((39)) 49 ((72))

11 ((11)) 24 ((24)) 37 ((41)) 50 ((78))

12 ((12)) 25 ((25)) 38 ((43)) 51 ((82))

a Each location in the memory is assigned an address; the selection of the address is assumed to be performed by means of Ki (or Ki')'
I and I1 1, or ak and BI .

Tables, such as Table I and Table II, must be pro-
vided for approximate divisions in advance.

First perform the mixed-radix conversion on ((y))
as follows:

y (, 0,0, 2,17, 16), 1 = 3, /3i = 2, g z-= 17,
K = 1/(1 + 3zj_/(Ojmi_-)) = 0.8046.

Hence,

=o0.775, K' = -'= 0.325.

The quantities (((mz/ |3j )))=((18)), ((((Km1)/|f31 )))
=((14)), and ((((R'm1)/ f3jr)))=((6)) are read out
from Table II.

First Iteration: Perform the mixed-radix conversion
on ((x)):

x <> (5, -12, 14, -9, 12, -9), k = 6, ak = 5.

From Table I, (((Kml+lm1+2 . mk-1))) = (((0.775m4m5)))
= ((1366)). Therefore,

((Z1)) = ((ak))(((Kml+lmI+l2 mk-l)))(( I-1

= ((5))((1366))((18)) = ((122940))
((xi)) = ((X)) - ((Y))((Z1))

= ((356271687)) = ((2887))((122940))
= ((1343907)).
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TABLE III
AVERAGE AND STANDARD DEVIATION OF THE
NUMBER OF ITERATIONS FOR THE EXAMPLES

Number of Standard
k I Examples Average Deviation

6 1 100 7.18 1.60
6 2 100 6.21 1.40
6 3 100 4.93 1.06
6 4 100 3.66 0.81
6 5 100 1.98 0.45
6 6 100 0.34 0.48
Total 600 4.22 2.22

(((k'm4))) = (((0.325m4))) = ((13)).

((Z2)) = ((1))((13))((18)) = ((234))
((X2)) = ((1343907)) - ((2887))((234)) = ((668349)).

Third Iteration:

x2 <- *(0, 0, 16, -13, -12, 0), k = 4, a,k = 16.

((Z3)) = ((ak))((((K'ml)/ |3l|))) = ((16))((14))
= ((224))

((X3)) = ((21661)).

Fourth Iteration:

X3<-÷ (0,0, 1, -18, -9, 13), k 4, ack = 1, akl1 < 0.

((Z4)) = ((ak))((((k'ml)/ f31|))) = ((1))((6)) = ((6))
((X4)) = ((4339)).

Fifth Iteration:

X4 -(0,0,0,4,-9, 16), k = 3, ak = 4, ak-1 < O-

Since akak-l<O and I131-1i>O, k must be reduced to 3.
The quantity (((3/2))) =((1)) is read out from Table
II. Hence,

((Z5)) = ((1))

((Xs))= ((1452)).

Sixth Iteration:

x5 0,0 1,9,0), k = 3.

Since akak-l > 0 and z3z-i> 0, ((( 1 /2))) = ((0)) is read
out from Table II. Hence,

((Z6)) = ((0))-

Since Z6 = 0, but 2x5 > y and x5y > 0, then ((Z')) =((1)).
Hence,

5

((Z)) = E ((Zr)) + ((Z')) = ((122940)) + ((234))
i=1

+ ((224)) + ((6)) + ((1)) + ((1))

= ((123406)).

Table III lists the average and the standard deviation
of the number of iterations for finding the quotients of
600 division examples in the preceding residue system.
The k and the I are the subscripts of the ak and the 01
which are the most significant nonzero symmetric
mixed-radix coefficients of the dividend and the divisor,
respectively. The dividend and the divisor were pro-
duced by a method of generating uniformly distributed
pseudorandom numbers.

V. CONCLUSION

The preceding work was intended to demonstrate
how information processing might be done to speed up

residue division. An improved residue division algorithm
has been proposed. The algorithm is iterative in nature.
It finds the quotient by summing the entries stored in a

special memory. To reduce the number of iterations re-

quired, it was proposed that each of these entries be an

integer determined by multiplying the product of the
moduli by a certain coefficient. The number of iterations
required for finding the result of residue division was

investigated on 600 examples in the symmetric residue
system consisting of moduli 33, 35, 37, 41, 43, and 47
(see Table III). Within the limits of these examples, the
average number of iterations was reduced by one third
compared with the method which had been used (the
proposed method requires about 4 iterations, whereas
the method previously in use requires 15 iterations on

the average [3]).
APPENDIX

CHOICE OF THE VALUE OF Ki (OR Kj')
It will be described here how the Ki (or Kj') should

be determined to get the desired quotient.
Let e(.0) denote the error generated when K is ap-

proximated to K, and let R denote the least upper

bound of E when (7) is satisfied by Zi computed by using
(4) or (5). Table IV lists a rigid selection ofR values in the
case of aikI 1, or ak =1 and akak-lO_. It is neces-

sary, first of all, to calculate the minimum value Rmin
of the R in Table IV for given moduli. Then, the value
E and Ki are determined so that they satisfy the follow-
ing inequalities:

Ki+l Ki _ 2E < 2Rmin,

Second Iteration:

x1i- (0, 1,-10, 17, -16 15), k = 5, ak = 1, ak-1 < 0.

From Table I,
Therefore,
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TABLE IV
VALUES OF R FOR ak # 1, OR ak =1 AND akak-1.O

R Values forO < Zi <2-,ITyI

6f3imiimi _m____ _1 1 I= 2,3, * ,N-2;ii = 2,[ml/2]

(2mi +i3) (20zmil + 2 ['p2] + I) imz-i + [m -] 2mi+1

3813mi.i _ 3zmi_i 1 + 2ei~13i,S 1= 2,3, * ,N-1;1z=1,2, [ml/2]
2fimi- + 2[m-i] + 1 /3imii + Fm[i] 2mi

2(0, P = 1

TABLE V
VALUES OF R' FOR I= 1 AND akak-a1<0

R' Values for O < IZi

I3imz_i 1 + 2e1i1
M___ _-i 2m

I = 2,3,* , N - 1;,B = 1, 2, [ml/2|

1+
[2]1--

2mi

TABLE VI
VALUES OF R" FOR ak =1 AND akak-1 <0

R" Values for Zi<

____________________ - +- - + +e; I =2,3,.*, N-2;1= 2, [ml/2]
(2mi+01) (213mzi - 2[-i +] ) 1mi - [mi- 1] 2mj+j

-201mi - 3-Ii + 1 + 2c-101-2,B +1 l3mti- 1] + 2m-i+, = 2, 3, .,N-1;=1=1, 2, [ml/2]~m_-i 1- mi_-1 2mi
2,Bomi-_- 2 _ 2 + I gimi_l - _ 2

4 4m

2/3 - E < K1 . 2/3 + e

and

2 - E . Kp < 2 + e.

Next, let E'(>0) be the correction value of K in the
case of ak = 1 and akak-l <0, and let R' and R" be the
least upper bound and the greatest lower bound, respec-
tively, of E' when (7) is satisfied by Zi computed by
using (4') or (5'). Table V and Table VI list rigid selec-

tions of R' and R" values, respectively. Now, it is essen-
tial to calculate the minimum value Rmin' of the R' in
Table V and the maximum value Rmax" of the R" in
Table VI, using the e previously obtained. Then, the
values C' and Ki' are determined so that

R < C < Rmin'
and

iK2-i= 1,2, ..,P.
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For the example system in Section IV, Rmin = 0.18663.
If e is chosen as e=0.1125, Rmin'=0.54668, Rmaxi"
=0.37059. Hence e' is chosen, for instance, as e'=0.45.
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