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A Method Fo_r Solving Polynomial Equations by

Continued Fractions

AMNON BRACHA-BARAK, MEMBER, IEEE

Abstract—A method for the approximation of all the real roots
of an n-order polynomial equation is developed. It is assumed that
intervals containing the solutions are known. Bilinear transforma-
tions are used to approximate the solution. Convergence is achieved.

Index Terms—Bilinear transformation, continued fractions, quad-
ratic equation, Riccati equation, selection rules.

I. INTRODUCTION

N THIS paper we generalize earlier results by the same

author [1] and develop them for finding all the zeros

of an n-order polynomial equation. In [1] it was shown

that for a limited class of functions, such as quadratic or

cubic equations, a solution can be approximated by a
continued fraction of the form

L _pmomo o>
B ait+ae+ +a
where A; and B; are determined from the recursion
A; = qidis + pidis
Bi= qiBiy + piBia i =23,+- @)

(1)

with initial values:
A4p=0 A, = Y41
Bo =1 B1 = Q1.

The digit set for p; and ¢; were selected as simple binary
constants, e.g., 3 or 1, in order to reduce the amount of time
required to evaluate (2). .

In the current paper we show that polynomial equations
of any order can be transformed by a bilinear transforma-
tion such as z; = pi/(¢: + i;.) into another polynomial
equation of the same order, where a simple recursion exists
between the coefficients of the two polynomials.

The result is that if a method for selecting p; and ¢; for
the sth step can be developed, then we can approximate the
solution by using recursion (2). The selection method is
described in Section V.

In Section IV we develop a method for selecting two
constants, @ and b for p;, and ¢; and we show the interval
of solutions that can be approximated by these two con-
stants. By using different pairs of constants we can,
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therefore, approximate different solutions of the given
equation. Theorem 1 gives a proof of convergence, an
important step in the development of the method. Rate of
convergence is discussed in detail in [17].

II. BILINEAR TRANSFORMATIONS

Following the analysis of Wynn [4] we define a con-
tinued fraction as a sequence of bilinear transformations
of the form

- P
g + frrn’

where fi () is a function of « and px, ¢« are constants. The
resulting continued fraction is

fk k = 1,2,---, (3)

f1=£l 22 L
o+ e+ + g+ fan

- An + fn+1An—1
Bn + fn-HBn—l ’

where the functions A; and B; satisfy the recursion (2).

In arecent paper by the author [1] it was shown, follow-
ing a note of Wynn [4], that the solution of the Riccati
equation

Y +aP+by+c=0,

where a, b, ¢ are functions of z or constants, can be ex-
panded as a continued fraction by using a series of bilinear
transformations of the form (3), and such that each func-
tion fi, k = 1,2,--- also satisfies the Riccati equation.
In [1] the recursions for the kth Riccati equation were
developed and a method for selecting px, g: for each step
was shown for several functions.

In the current paper we develop the results of [1] for
polynomials of any order, and we show how the method
can be used to find the zeros of these polynomials.

One important assumption in the development of the
method in [1] was that px, ¢« are simple binary constants,
i.e., 1 or 3, and therefore the various recursions that are
involved require only ‘“‘short” operations. In the current
paper we generalize this result and include other values
for pr and g.

III. THE SOLUTION OF A POLYNOMIAL
AS A CONTINUED FRACTION

We show now how distinct roots of a given polynomial
can be approximated by using bilinear transformations.
First we develop the recursion for the coefficients of the
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polynomial for the ¢ + 1th step by using the coefficient
of the ¢th step, ¢ = 1,2,---
Let

P(2) =2 aplay® =

k=0

4)

be a given polynomial equation of order n. The index 1
refers to the first step in the recursion. In particular, the
index 1 is not an exponent, whereas the index k is an ex-
ponent when used as a superseript.
We use a substitution of the form
Pi

= —", i=1,2,...’

¢ + Tip (5)

where p;,q; are constants to be defined.
Suppose that the ¢th step polynomial equation is of the
form

P, = a2 + apafzimt oot 'z a0t = 0, (6)

then by using substitution (5) we have

Di n—1
R + ap_i® (—’)
(ql + :c,+1) ' Qi + Tip

+eeetat ———+ao =

¢+
Multiply by (g: 4+ 2:11)™ to normalize the coefficient of
a,'. We get
@™ + Gur'Pi (g + i) 000+ a'pi(gs + z) ™
+ a’(qi + ziy))" =0
The recursion that follows is:
a,+ = apf

a1 = a'p: + nao'qs

: )
n—k k + ¢
akH-l = Z an—k—tipi"_k—tq?;‘ k = 0,1,. .

t=0 i

The resulting 7 + 1th step polynomial equation is

<.

P, = a, M2 + @Gna i
deeed etz + agtt = 0.

The method to approximate the solution of (4) can be
used now, if an algorithm for selecting p: and ¢: (¢ =
,*++) is defined. This is the subject of Section V.

IV. INTERVALUES THAT ARE COVERED
BY CONTINUED FRACTIONS

In this section we show how to approximate values of
the solution by using different pairs of constants p; and g..

Let p: and ¢; each assume two given values, e.g., -
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Piq; € {a,b}. Continued fractions of the form (1) assume
all values in the interval [ M,m], where

max lim —

M =
k>0 Bk
m = min hmA—
k-0 Bk )

A simple analysis shows that M can be found by solving
a quadratic equation of the form

_ pmz
Gmin + pmin/ (q"n: + M)

where Doz, qm: = max(a,b), and Pmin,gmin = min(a,b).
Similarly, we have for m

_ pmin
Gz + Do/ (Guin + M)

The resulting equations are

) Qmian + (qmianz + pmin - pmz)M - pmemz = O

and
PminGmin = 0.

qumz + (QmZQmin + Pmz — pmin)m -

Assuming that both p and ¢ have the same range, e.g.,

Pmin = Qmin = &), DPmz = Qmz = b, P,q € {a,b}, then the
equation has the form

aM?>+ (ab+a—b)M — b =

m?+ (ab+b — a)ym — a® = (8)

In Table I we give values of a,b and the corresponding
ranges [m,M ].

If a solution of the given polynomial equation is known
to be in a certain interval, then the appropriate digit set
a,b can be used to approximate this solution.

V. SELECTION RULES

In this section we develop a method for selecting p; and
g: for the case 0 < a < b, m and M positive. With some
modifications the analysis can be developed for other cases.
Assume that a pair of digits, 0 < a < b, were selected
according to the analysis of Section IV. The range of the
solution, e.g., 21, can be found now by solving (8). Since
we are using a substitution of the form (5) our first con-
dition will be

m< 2 <M 1= 1,2,--- 9

By imposing condition (9) we need now only one set of
selection rules for p; and ¢;, ¢ = 1,2,---, in the range
[m,M ].

We write below a version of (4). Let

T = —alt/ X ale (10)

k=1

where it is assumed that m < ; < M.
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TABLE 1
a b m M
(@)t — 1
1 Al 2)1/2
2 5 @)
1 (17Hvz—3 (AN —1
4 2
-4 -6 1 2
We will find p; and ¢; such that
yut
= 11
n @+ z (1)

where m < 2, < M and p,q € {a,b}. Clearly, we have
four possibilities for selecting p: and ¢ and for each such
pair we get different z,. In order to make our selection we
adopt the inverse approach. We assume that condition (9)
exists for z;, and find the range of 2, for each pair of p,
and ¢:.

We start with the pair p, =
have

a, ¢ = b. From (11) we

C c. (12)

a a
“hamZ Tty

Since a, b, m and M are known, C and ¢ can be found and
we have defined a range z; for which a selection of p; =
a and ¢ = b will assure condition (9). Since z; is an
unknown we substitute the results of (12) in (10) in order
to find the allowable range for p; = e and ¢, = b. We have

n
¢ < —a/S adzt < C
k=1

and this result is possible for any ; in the range [¢,C],
therefore we conclude that if the following two conditions
are satisfied

2 alCt >0
k=0

Z ax'ck < O:

k=0

(13)

we select p1 = a and ¢ = b.

The analysis can be carried now for each of the remaining
three pairs of values of p and ¢. Since , has the same range
as z; and satisfies a polynomial of the same degree, we can
use the same procedure for x,, ete.

The result is that the entire range is divided into four
sections. For each section we can choose a pair of p; and g¢;,
such that condition (9) will be satisfied for ziy1.

Clearly, by using only the upper bound in (13), for
each pair of p; and ¢; we can define a unique set of selection
rules.

Our next objective is to show that there is an overlapping
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between two consecutive regions so that by using only the
upper bound for each pair, the entire region is covered.

It can be verified that the four regions defined by (13)
for each pair p; and ¢; are:

p=b g=ua (14a)
p=>b ¢g=0 (14b)
p=a qg=a (14¢)
p=a ¢q=b (14d)

In the theorem which follows, we give a necessary and
sufficient condition, for the overlapping of the regions
defined in (14), for two cases. The analysis for other values
of @ and b is similar and therefore is omitted.

Theorem 1: The regions defined by (13), for each of the
pairs (14) overlap each other if and only if the following
conditions are satisfied.

Condition 1: If 0 < @ < b, then M-m <
Condition 2: If b < a < 0, then M -m >

Nl vl
Pl

Proof: For 0 < a < b the regions defined in (14) are
in decreasing order. Therefore we only have to show that
the upper bound for the pair (14b)—(14d) is greater or
equal to the lower bound of (14a)—(14c) respectively.

For the upper bound of (14b) and lower bound of (14a)
we have,

b S b ’
b4+m " a+ M

(15)

for the second pair we have,

a > b
at+m b+ M

and for the third

LA a .
b+m " a+ M

(16)

The conditions that must be satisfied are:
M—-—m>b—a
M-a > m-b. (17)

From the definition of a,b, the range [m,M ] and condi-
tion (9) we have

b a
a+m—M and b+M_m'

Eliminating a and b we get

_mM(1 +m)

T 1—mM
and

b= mM (1 + M)
T 1-—mM

The first condition in (17) is satisfied if and only if
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mM(1+M —m—1)
M—-m2>2b—a= L= mil
_ mM(M —m)
T 1—mM
or
mM < 3
For the second condition we have,
Mem(1l +m) _ m*M (1 + M)
>
1—mM 1—mM
or
M>m

which was assumed.

For the second case, b < a < 0, the inequalities in (15)
and (16) reverse and therefore the result follows.

In the remaining part of this section we show how to
approximate one solution of a given polynomial equation
of order 5.

Let
Piz) = (¢ +3)(z+2)(z — 1 (z—2)(z — 3)

2t — 1323 4+ 1322 4+ 362 — 36 = 0

I

=x5—

be a given polynomial equation of order 5, and suppose
that it is known that the interval

[(17)1/2 —3 A7)V — 1]
4 ’ 2 ’

contains one solution.

Our first step is to select a pair of digits, a and b, accord-
ing to the analysis of Section IV, such that every value in
the given interval can be approximated by a continued
fraction, p,q € {a,b}. From Table I we havea = 1,b =

The recursion relation between the coefficients of the
+th and ¢ + 1th polynomials of order 5 are:

ast = ap
et = ar* + Sao'qs

a;*! = a'p? + 4ar'pigi + 10a'q?

@™ = ay'p® + 3m'pig: + 6ai'pig® + 10a0°¢:®
ali'+l

as’pt + 2a:'pPqi + 3a:'piqd + 4ar’pigi® + Sav'qit

I

a0t = as'p® + a'pie + a'pied
+ @'pled + a'pigst + e

The selection rules are

— l‘7 172

for Ps* (%L) >0, pi=14q=2;
17)112 — 1)

for Ps‘(”—)4———) >0, pi=1q=1,

for Psi(5 — (17)Y2) 20, pi=2,¢: = 2.
Otherwise p; = 2, ¢: = 1.
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TABLE 11

Eon % A B A /B Error
1 2.0 1.C C.¢C C.10CCD €1 C.C 0.100000 01
2 2.0 1.0 0.20000 01 0©.1000C O1 <C.2CC0CCOQCOCCOQQOC C1 -0.100000 01

€.26CC0 Ol 0.3COCE C)1 C.EEL6€666€6£66666C 00 0.333330 €C
4 2.0 1.0 0.60CCD 01 0.5CCCD Cl1 (€.12CCCCOCCCCCO000D 01 -C.20000C 00
5 2.0 1.0 ©€.100CD C2 0.1100C 02 €.5CSCS090509050S10 0OC 0.509CSD-01
6 2.0 1.C (€.22CCD C2 Co.21CCC C2 C.1047619047€19048C 01 -0.476150-01
T 2.0 1,0 GCe42CCC €2 C.42CCC C2 C.S57674418€04¢5116D 0C €.23256C-C1
8 2.C 1.C C.B6CCC C2 0.85C0C 02 0.101176470588235230 Q1 -0.117650-01
9 2.0 1€ (€.17€CCD €3 (C€.171C0 €3 C.S55415204€7€36257C OC 0.584800-02
10 2.0 1.0 0.342CC C3 0.34100 C3 C.1CC29225€1215¢€4€EC C1 -C.253260-02
11 2.8 1.0 C.682CD C3 C.68300 03 (C.S$5E€5358711566618C 0C 0.146410-C2
12 2.C 1. C.13660 C4 0.1365C C4& C.10CC7226C07326C1C C1 -0.73260D-03
13 2.0 1.0 0.2730D 04 0.2731C C4 C.5556228337€C%273C CC C.2€6170-03
14 Z.C 1.C C.5462D C4 C.54€1C C4 C.1CCC183116€645303C CI -0.183120-C3
5 2.0 1.0 0.10520 C5 0.10520 €5 (€.5555CB450CSSS0150 CC €.91550C-04
16 2.0 1.C C.21850 C5 0.2185C C5 C.10CC045777C€5690C C1 ~0.45771D-C4
17 20 1.C (€.4326SD C5 C.43é6S0 €5 C€.555577111991027SC CC 0.228880-04
18 2.0 1.C C.E738C C5 C.87380 C5 (.1C00011444135453C C1 -Ce114440-C4
19 2.0 1.C ©.1748C C& GC.1748C 06 0.5999942779€5C155C CC C.5722CC-C5
20 2.0 1.C C.34S5D C6 0.34550 C& (C.1CCC0028€1025€678C 01 -0.,286100-05

21 2,0 1.C 0,65510 06 0,69S1C Q& C.5S5SSEE€S4€S2C75D CC G.143C5C-05

22 2.0 1. C.1358D C7 0.13$8D C7 C.1C000007152559C8C 01 -C.715260-06
23 2.C 1.C (C,2756D0 C?7 0.275€C C7 C€.$5555556422372174CC OC 0.35763D-06
24 2.0 1.C 0.5552C C7 0.5552C 07 C.1CCCOCC178E13945C C1 ~-C.17881D-06
25 2.0 1.C C.1118D €8 0.1118C C& (C.55559591C5930355C 0C 0.854070-C7
26 2.0 1.0 0.22370 C8 0.22370 CE C.1CCC0CCC447C3484D C1 ~0.44763C-07
27 2.0 1.C 0.4474C (8 _0.,4474C 08 0.55959951164825830 CC 0.223520-C7
28 2.0 1.C (.BS48C C8 0.ES4ED C8 C.1CCC000011175871C 01 -0.111760-07
29 2,0 1.C 0.17SCC C9_C.17SCD €S C.5S5555554412C€45C OC 0.55879C-08

1.¢ C.357SC €9 0.357SC €9 0.1C0C0000027529¢é8C Gl ~C.2754CD-08
31 2.0 1. C.71%6C €S C.7158D 0S C.$555599986020161C OC 0.13970C-08
32 2.0 1.0 0.1432C 10 0.14220 1C (.1CCCCCOCCCESE4S2D Cl =C. €S84SD-09
€30_10  _0,28630 10 0,55599999965C754CC OC 0.349250-09

34 2.C 1.C C.5721O 10 0.5727C 1C (€.1CCCCCOCCCL74€23C 01 -0.17462C-09
5 45 1 0.114% €.555555995512€€850 CC €.873110-10
36 2.C 1.C C.ZZGIC 11 0.22510 11 C.1CCCCC00CCC43656C 01 =0.4365€60-10
7 0,4%E10 $5€$55995978117 L] 0.218280-1C
38 2.0 1.c Ce 916!0 l.l 0.9163C 11 (.1€CCCC0000010514C C1 -C.1CS14D-10
1633 $5559999999454. Q 0,5457CC~
40 2.0 1.C C.2665C 12 0.36€%C 12 (C.1CCCCOCCCCCO272€C 01 -C.272850-11
4 +C 733C0 12 0.7330C 12 0,$5559999999862870 CC €o126420-11
42 2.C 1.0 C.146€D 12 C.14€€D 12 Co.lCCCCCCCCCCCCEE2C C1 -0.68212C0-12

43 2.0 1.C 0.26320 13 0,2932C 13 C.$$5555555955€5€SD CC 0.341060-12
44 2.C 1.C C.5E640 13 0.5864D 13 C.1CC 170C 61 -C.170530-12
H 13C 14 K] €. $5555555555551417C 0.85265D0~
46 2.0 1.0 0.2346C 14 0.234€C 14 C.1CCCCCOCC0C00043C C1  -0,42633D-13

4 4€S1 $655559555999787 0.21316C-12

[
ce.1€0CCCCOCCCCCO0ICE C1
$56$55955959994 7
C.1€CCC000C0C000C3C O

48 2.0 1.0 0.5282D 14 C.S2€2D 14 -0.10658C~13

$22510-14

16 .
50 2.0 1.0 (€.27530 15 C.2753D 15 ~C.26645C-14

The numerical values for p, qx, A, B, Ax/Bx and the
error for the first fifty iterations are shown in Table II.

VI. CONVERGENCE CONDITIONS

In this section we develop necessary and sufficient con-
ditions for the procedure to converge.
Theorem 2: Let

4_n_ P Pn

T = = +-..——
Qn+xn+1

(18)
B Q1 q2

be a continued fraction representation of a solution of (4)
which was found by substitution (5). piq:€ {a,b}
. € [mM], (¢=12,---), where relations (8) exist
between a, b, m and M.

Necessary and sufficient conditions for (18) to converge
to a solution of the polynomial equation (4) are as follows.

Condition 1:
4 2m 4+ a) > 0.
P
Condition 2:
2+§(a+m—M) > 0.

Proof: Let A./B, be the nth approximation to z;. We
will show that under conditions (1) and (2), for every
e > 0, there exists N, such that foralln > N

A A.

=5 B
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or equivalently that if 7', = §,/8,2 n = 3,4,---, then
under the conditions of the theorem | T, | < 1.
It was already shown in [1] that

T = 1-— (qn/pn)xn
" 1 4 (qu/Dn) (Baes/Bns)’

therefore the condition | T, | < 1 implies
n

Qn Bn—l
- g, <14 2
pﬂ pn Bn-—2

and

_ 3B

—1
pn Bn—2 pn

For the first expression we have
Qn Bn—l
== » —_— 0
Pn (33 + Bn—2) >0

and since this condition is true for every z, it can be re-
placed by m, also min (B,—1/B.—2) = a + m and the result
is

A (@ 4+ 2m) > 0.
p
For the second expression we have

Qn Bn—l )
24+ ={=——2.)>0.
+ pn (Bn—2

Here we substitute M for z, and the minimum value of
B,_1/B.—, and the second condition follows:

2+§(a+m—M)>0.

" VII. CONCLUSIONS

A method for the approximation of real roots of an n-
order polynomial equation is described. The assumption
is that intervals, each containing one solution, are known.
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Those intervals are later used according to the analysis of
Section IV as m and M in order to define a pair of digits
a and b, which will be used in a bilinear transformation such
as (5) to approximate the solution.

The algorithm described in this paper consists of the
following steps.

Step 1: Select a digit set, a and b, which covers one
solution at a time.

Step 2: Use iteration (1) to approximate the solution.

Step 3: Iterate on (7) to get the coefficients of the
i + 1th polynomial from the 7th polynomial equation.

Step 4: Use selection rules, such as (13), which covers
the entire allowable region, for the next p; and g:.

Step 5. Check for accuracy and if obtained divide A by
B to receive one solution.

Step 6: Repeat Steps 1-5 for each interval which con-
tains a zero of the given polynomial equation.

Notes

Note 1: If the condition of Theorem 1 is not satisfied
for a certain interval, this interval can be divided into
subintervals.

Note 2: By using powers of 2 for p; and ¢;, the time
required to evaluate most of the expressions is reduced if a
binary computer is used.

REFERENCES

[1] A. Bracha-Barak, ‘“Application of continued fractions for fast
evaluation of certain functions on a digital computer,” IEEE
Trans. Comput., vol. C-23, pp. 301-309, Mar. 1974.

[2] G. H. Hardy and E. M. Wright, An Iniroduction to the Theory
of Numbers. London: Oxford, 1954.

[3] H. S. Wall, Analytic Theory of Continued Fractions. New York:
Van Nostrand, 1948.

[4] P. Wynn, “On some recent development in the theory and ap-
plication of continued fractions,” SIAM J. Numerical Analysis,
vol. 1, pp. 177-197, 1964.

Amnon Bracha-Barak, for a photograph and biography, see page 309
of the March 1974 issue of this TRANSACTIONS.




