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Using an Efficient Sparse Minor Expansion
Algorithm to Compute Polynomial

Subresultants and the Greatest
Common Denominator

MARTIN L. GRISS, MEMBER, IEEE

Abstract-In this paper, the use of an efficient sparse minor
expansion method to directly compute the subresultants needed for
the greatest common denominator (GCD) of two polynomials is
described. The sparse minor expansion method (applied either to
Sylvester's or Bezout's matrix) naturally computes the coefficients of
the subresultants in the order corresponding to a polynomial remain-
der sequence (PRS), avoiding wasteful recomputation as much as
possible. It is suggested that this is an efficient method to compute
the resultant and GCD of sparse polynomials.

Index Terms-Inners, minor expansion, polynomial GCD,
subresultants, sparse matrices, sparse polynomials.

I. INTRODUCTION

mHE EMPIRICAL study ofpolynomial resultants by Ku
and Adler [1], the discussions of the subresultant

greatest common denominator (GCD) algorithm by Brown
[2], [3], and the use of "inners" (subresultants) [4] for a
multivariable polynomial greatest common factor (GCF) by
Bose [5] suggest that the direct application of minor expan-
sion to either the Sylvester or Bezout matrices is an efficient
and interesting method ofcomputing theGCD oftwo sparse
polynomials.

It will be shown in this paper that the process of comput-
ing the subminors required in an efficient sparse minor
algorithm [6], [7] quite easily and naturally yields the
requisite subresultants and GCD. The crux lies in an appro-
priate reordering of either Sylvester's or Bezout's matrix,
very similar to that studied in [7].
A number of authors have studied the problems of

computing determinants of matrices with polynomial ele-
ments. When the polynomials are sparse (many zero
coefficients in a full expansion), minor expansion is
significantly more efficient than elimination methods [8], [9].
A particularly effective iterative algorithm [8] processes the
rows of an N x N matrix in order, computing the minors of
all of the m x m submatrices consisting of the first m rows
and m of the N columns. This set of m x m minors is then
combined (with due attention to sign) with the elements of
them + 1st row to produce a new set of (m + 1) x (m + 1)
minors.
When the matrix itself is sparse (many zero elements), a

careful choice of the order in which the rows are processed
can have a significant effect on the total storage and time

required to compute the-determinant. An efficient sparse
minor expansion algorithm, using a sparse matrix represen-
tation and careful row ordering has been discussed by the
author [6], [7].

II. SUBRESULTANTS AND SYLVESTER'S MATRIX
The method will be described using the notation ofBrown

and Traub [3], which we briefly review here. We are
interested in computing the resultant or GCD of two
multivariate polynomials, F and G. Expand F and G
(assumed to be primitive) with respect to a "main variable,"
X.

0 Y

F(x)-= fix+-', G(x)= E gix - j
i=O j=o

withV.>y. (1)

The coefficients {fi, gi} are polynomials in other variables,
and i = 0(F), y = @(G) are the degrees of the polynomials.
Brown and Traub define the subresultant, Sj(F, G) as

SJ(F, G)

fo fl .. fy-j- 1 * *t+7-2j-2 Xy-j- 'F
fo ... fy-2-2 x2 - -2F

=det 0 q,-- I

go 91 .. - 9*-j- I gq,+y-2j-2 Xt-j-2l
go0g g2-j-2 G

go 9'Y - j- GG
(2)

where fk=O if k > i, gk= 0 if k > y, and 0 <j <
min (i/, y) = y. (This matrix is the transpose of that given
in [3].)

Expanding the polynomials in the last column, it is shown
that

j

Sj(F, G) = E sjlxj- I

1=0
for O < j < min (i, y) =y. (3)

The coefficients, Sji, are determinants of
(i + y - 2j) * (/ + y - 2j) matrices, Sjl:

(i + y-2j) columns

Sji=
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fo ft f2 *-- h±f -2--2

fOt ***1t+y-2j-3foP

fo f* * ,-i- I

g0 g1 g2 ... 9V+y-2j-2
g0 g*1 gt+y-2j-3

.o.*.*. gtk- j- 1

+ 7y- 2j+1-2

fql+ - 2j+ l- 2

flk-i+l
gq,+y-2j+i- I

9P+ y- 2j+ 1- 2

gy-j+l

the

(Y -j)
rows

I
rows

I
(4)
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where g9 andfk are 0 ifk is out of range, and 0 <. < min (/,
y) = y, 0 < I <j.
Now SOO is, of course, Sylvester's matrix, and det Soo = soo

is the resultant R(F, G). The matrices Sj, are submatrices of
Sylvester's matrix, Soo, hence the term subresultant for SJ(F,
G).
The fundamental theorem presented by Brown and Traub

[3] is the relation between a polynomial remainder sequence
(PRS) {Fi}, generated from a pair ofpolynomials F1 and F2,
and the subresultants Sj(Fl, F2), for 0 <j < (F2).
For each j, 0 < j < a(F2), either Sj(F,, F2) - Fi for some

Fi, or Sj(Fl, F2) =0. Hence, since GCD (F1, F2)- Fk for
the "last" polynomial Fk in the PRS, GCD (F1, F2)
Sj(Fl, F2) for some j. (Here "s" is similarity and j is de-
termined such that Sk(F, G) 0 for k < j.) Further details,
and the exact similarity coefficients can be found in [3].

If we now reorder the rows of SOO as suggested in [7], we
obtain the matrix

Soo =

90 91 92 ...
go 91 * -
g. go

fo fi

the sparse minor expansion algorithm. The matrix would be
even more sparse than indicated above, since certain of the
{]f} and {9g} coefficients can be zero as well.

III. USE OF THE SPARSE MINOR EXPANSION METHOD
As in [7] the matrix will be converted to a sparse form, a

list of sparse rows. Each column (c) will be identified by its
"key" 2c. The essence of the sparse minor expansion algo-
rithm is as follows:

1) Each sparse row is represented as a list

SROW = ((2ji fjl)(2i2 .f) * . (2i' *f))
where the {ffjj are the nonzero elements in this row and 2jiis
the associated key;

2) An m x m minor, consisting of the first m rows and
columns (Ii' j2, , Im)' is identified by a
key = 2il + 22 + ... + 2"m;

... flp

... fA

... 9n

I

9,

I
I11

( - Y)
base rows

(5)

y pairs

This is a "good" order for efficient computation using the
sparse minor expansion algorithm. We apply this algorithm
first to the "base" set of rows of G coefficients (if * y), to
produce a set of (i/ - y) * (/i -y) minors. At each succes-

sive step, k = 1, 2, , y, we merge in a "shifted" pair of FIG
rows,

ooofO
0

(6)

(000 0 go (6. gy

to obtain a new set of (@ -y + 2k) * ( y-v + 2k) minors.
The subresultant coefficients, sj1, will be among the minors
in the set fork = y-j,j =0, * ,-1. If atanystepk + 1,
the new set of (nonzero) minors is empty, the coefficients of
the GCD (F, G) are among the kth set, and thus,

y-k
GCD (F, G)~ E sy-,_lx 1 (7)

0=0

[in fact, GCD (F, G) = pp(Sj(F, G))].
The minor set at step k will also include additional minors,

required to compute the new k + 1st set. The most inter-
esting point is that this method will compute all of the
subresultant coefficients required, sharing as much as pos-

sible the computation ofcommon subminors, and generates
these coefficients in the order required to compute most
easily the GCD. As suggested by Brown [2] and Ku and
Adler [1], this minor expansion method should be very
effective for sparse polynomials and, of course, Sylvester's
matrix is rather sparse and structured, motivating the use of

3) A set ofm x m minors will alsobe represented as a list:

DLIST = ((KEY, - D1)(KEY2 D2) ... (KEY, - DJ))
(Thus, a sparse row can be thought of as a set of 1 x 1
minors.)

4) Minor expansion is accomplished by "merging" an
"old" set of m x m minors (DOLD) and the m + 1st row
(sRow) to produce a new set (DNEW) of (m + 1) x (m + 1)
minors, using a function DMRG1:

DNEW +- DMRG1(DOLD, SROW);
DMRG1 simply collects contributions to an (m + 1) x

(m + 1) minor D, with Key = 2il + 2i2 + . + 2jm+1, from
each m x m minor Dk and row elementfg, such that Keyk +
2C = Key; c is clearly one of the {jji. The sign of the
contribution is obtained from the number of transpositions
of [.l, .. JM+ 19 c] to obtain the orderjl< i2 ..mik- 1 < C <

jk + 1 < .* <im + 1. The details ofan efficient implementation
of DMRG1 are given in [7].
F and G will be written as ordered sparse rows:

F = ((20 fo)(21 fl) ... (2* * fo))
G-= ((2°_ go) ... (21 - g-,)) (8)

representing polynomials with coefficients in other variables
(and the main variable x suppressed), lc(F) = fo, @(F) = 0.
As can be seen by examining (3) and (4), Sj1 is theminor of

a submatrix of S00, composed of the (VI + y - 2j- 1) col-
umnsO0. i+y-2j- 2,andacolumnq= (1+l+y-
2j- 1), 1 = ... j selected from the remaining columns. We
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identify sjl by the key

KEY (Sjl) = KEY (0, 1,", + y-2j-2,

1 + / + y -2j- 1)

= 20 + 21 + ..+ 2x-1 + 2x

= (2x 1) + 2x 21,

I= 0 j with x = + y-2j- 1. (9)

Recall that j =y-k, k = 1 . 7 so that

KEY (sj1) = (Bk- 1) + Bk * 21

where

Bk = 20+Y+2k-2y-1
= 2q y+2k-1 = 4 * Bk-1 (10)

Now Bo _ 20-Y 1 and is computed while computing the
"base" set:

B 1/2;
SET := NIL;
FOR I = 1: (/-y) DO

<<SET DMRG1 (SET, G);
G :=SHIFT (G, 2);
B =2 * B>»;

where SHIFT (G, 2) simply "shifts" all keys of G by multiply-
ing by 2. Now the main loop begins:

J:=y- 1;

STEP: NSET =DMRG1 (DMRG1 (SET, F), G));
IF NSET = NIL THEN GOTO DONE;
SET :=NSET; B =4 * B;
IF J = 0 THEN GOTO DONE;
F :=SHIFT (F, 2); G =SHIFT (G, 2);
J:=J- 1;
GOTO STEP;

Finally we compute the coefficients sjl:
DONE: Bi :=B - 1;

GCD := NIL;
FOR L:=O: J DO
<<GCD :=LOOKUP (Bi + B, SET) *GCD;
B =2 * B>>;

GCD :=REVERSE GCD;

which computes the GCD in a nonsparse form. The actual
program is given in the Appendix, in MODE REDUCE [7], [10].
(MODE REDUCE is a computer algebra system with a Pascal-
like type definition facility.)

In order to find the GCD of nonprimitive polynomials,
the above algorithm will be applied recursively to the
coefficients, to obtain GCD (cont (F1), cont (F2)), as sug-
gested- in [5], so that finally,

GCD(F1, F2)
= GCD(pp(Fj), pp(F2))*GCD(cont(F1), cont(F2)) (11)

Once the "base" set has been computed, subsequent sets of

minors always involve a joint shift of F and G:

NSET 4- DMRG1 (DMRG1 (SET, F), G));
F +- SHIFT (F, 2); G f-SHIFT (G, 2); (12)

If we first make up a set of 2 x 2 minors,
FG +- DMRG1 (F, G), and generalize DMRG1 to accept 2
sets of minors (as suggested in [7]), we find a simpler form

NSET 4- DMRG2 (SET, FG);
FG 4-SHIFr (FG, 2); (13)

where the 2 x 2 minors in FG are therefore computed only
once, saving repeated computation.

It is interesting to note that the elements of Bezout's
matrix (a i/ x matrix derived from Sylvester's matrix) are
simple sums of the 2 x 2 minors in FG. This suggests that
the above method be directly applied to Bezout's matrix,
producing an even more efficient method, discussed in the
next section.

IV. BEZOUT'S MATRIX

The following 4' x 4lmatrix B (known as Bezout's matrix)
has been used by Ku and Adler [1] to compute the resultant,
S(F, G)= det (B):

go g1 92
go 91

All

Ayl

A12
go g1

A13

The Aij are sums of 2 x 2 minors, Dij,

Dij = figj -fjgi

(wherefi or gi = 0 if i is out of range); and
w

Aij = E DkJ+k
k=0

fr-y base
I rows

I
y rows

(14)

(15)

(16)

with

w = min (i -j, / - i - 1j - 1, X'-j - 1).

The Aij are obtained from the
homogeneous system of equations
matrix is obtained from the system

x*1- G(x) = 0

x*-2G(x) = 0

x°G(x)= 0

x-1- F(x) = 0

x°F(x)= 0

coefficients of x in a
[1], just as Sylvester's
of equations

(17)
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We first define partial sums ("head" and "tail" polynomials)
of F(x) and G(x):

k *

Fk(x) = fixki Fk(X) = Efix
i=O i=k+l

k

Gk(x) =E gix
i=O

y

Gk(x) = Z giXy-i
i=k+ 1

(18)

x(-YG(x)== -

x°G(x)= 0

Fo(x)Go(x) - Go(x)Fo(x) = 0

Fy_ l(x)Gy--(x)- G, I(x)F,- I(x) = 0.

(21)

sothat given in [1].
50 that This derivation shows that if the columns of Sylvester's

matrix are labeled with.powers of x, [x* 1, x*+ -2, * *,
F(x) = F,(x) = F_ 1(x) x°] [corresponding to the system of equations in (17)], the

transformation (19) corresponds to simple row operations
= Fk(x) x -k + Fk(X), k 0 ...* on (say) x'F(x), adding multiples of other rows. This can be

used to show the equivalence of det (S00) and det (B).
G(x) = G7(x) = G_ l(x) We can now show rather simply that the determinants of

the matrices Sjl (selected from the first q/ - y + 2(y- j) rows
= Gk(x) * k + Gk(X), k = 0 ... Y. (19) of SOO) are identical to a similar process applied to the first

il - y + (y -j) rows of Bezout's matrix B. These are smaller
We n cm e proqt0 minors, and the process will therefore be more efficient thanWe now combine y pairs of equations xFx) = O' direct application to Sylvester's matrix as in Section III.XO'- Y +'G(x) = 0 as i 0 ... y 1:

We permute the first -y + 2(y-j) rows of 300 to
correctly pair the xiF(x) and x'-Y+'G(x) rows:

fo
g0

fo fi
go

fo
-go 91
excess columns

[x'F(x)]Gi(x) - [x-Y +G(x)]Fi(x) = 0

= xzGi(x)[Fi(x)x-i + Fi(x)]

-x*-Y+Fi[Gi(x)xy-' + Gi(x)]
= x'[Gi(x)Fi(x) xYGi(x)Fi(x)] (20)

which eliminates all powers of x greater than x*- y - 1. This
leads to the q/ equations:

o Do,
go 91

0 0 D02
go g1 92

*.. ggygo g1
go gy

... gy
fy ..-ffi

91

fy
gy

I-Y
rows

I
2(y-j)
rows

(22)

We now eliminate all {Fi} coefficients in the "excess col-
umns" of the F rows, by performing the row operations
indicated in equation (19), using the Fi and Gi row "labels":

row x'F -+ x'F Gi(x) Fi(x) *x" "-G(x). (23)

This multiplies eachF row by go, and adds (or subtracts) a
multiple of other rows. Thus, det (Mi) is increased by g97j.
Mj now contains the principal segment of B, and additional
rows of G:

4- I

..jgY

D 12

(Do3 + D12)

0 0

go g1

(24)

Fo
Mj= Go

F,
GI

Gy_
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Each of the determinants s£l now corresponds to a deter- applying the stepwise method of Section III to Bezout's
minant of Mj, with I selecting one of the last j columns. The matrix B. A program can be easily devised to compute the
excess triangular portion of G rows can be replaced by 1 Aij elements as the minors are generated in a stepwise
(after dividing by the gy0- factors) so that the determinants fashion.
sjl are obtained from the matrix IV. CONCLUSIONS

... g 0

... gy

The application of the efficient sparse minor expansion
0 algorithm to the direct computation oftheGCD via genera-

tion of all requisite subresultants is quite simple and
efficient.

9 I am grateful for many enjoyable discussions on this
Doe, subject with D. Yun, M. Rothstein, and S. Brown. The
Di,, method can be applied either to Sylvester's matrix or to

Bezout's reduced matrix, leading to an even more efficient
method. When the input polynomials are sparse, Sylvester's
matrix and even Bezout's matrix will be rather sparse,

(25) clearly motivating the use of a sparse minor expansion
method.

APPENDIX
USE OF THE EFFICIENT SPARSE MINOR

ALGORITHM TO COMPUTE GCD

Load SPARSE MINOR package (ref. 7) to define sparse minor
data structures and procedures:

MODE ELEM =POLYNOMIAL, EROW=LISIOF ELEM; Dense row
MODE DELEM=STRUCT(KEY:INTEGER,DETM:LLEM),

DROW =LISTOF DELEM; Sparse row

Procedures: DMRG1(drow,drow)->arow hinor expansion
SHIFT(drow,integer)->drow Shift columns

ELEM PROCEDURE LOOKUP(K,D);
% Lookup K'th entry in minor list D;

DCL K:INTEGER, D:DROW;
IF NULL D THEN 0
ELSE IF KEY(HEAD D)=K ThEN DETM(hEAD D)
ELSE LOOKUP(K,TAIL D);

EROW PROCEDURE EGCD(E1,E2);
A Generate minors in "good-order" to obtain Subresultants or GCD;

BEGIN
DCL PHI,GAMMA,M,B1,B,J,L:INTEGER, E,GCD:EROW,

F,G,SET,NSET:DROW;
A Ensure PhI>=GAMMA;

PHI:=LENGTH El -1; GAMMA:=LENGTh E2-1;
IF GAMMA > PHI THEN <<M:=PHI; PHl:=GAMMA; GAMMA:=M;

E: =El1; £1: =E2; E2: =E>>;
A Convert to sparse rows;

G:=DROW El; F:=DROW E2;
h:=PhI-GAMMA;

A Block of PHI-GAMMA "short" rows;
IF M>O THEN <<SET:=F; h:=M-1; B:=1;

FOR l:=l:M DO <<F:=ShlFT(F,2);
B:=2*B;
SET:=DMfiGl(SEl,F)>>;

F:=ShIF'T(F,2) >>
ELSE <<SET:=DMRG1(F,G); GAMMA:=GAMMA-1; B:=2;

G:=ShIFT(G,2); F:=ShlFI(F,2)>>;
J:=GAMMA;

STEP: % Merge successive rows, until NSEI is empty;
NSET:=DMRG1(DMRGl(SET,F),G);
IF NULL NSET THEN GOTO DONE;
SET:=NSET;
IF J=O ThEN GOTO DONE;

X Shift columns by 1 place;
G:=SHIFT(G,2); F:=ShIFT(F,2);
B:=4*B; J:=J-1;
GOTO STEP;

DONE: A Produce list of subresultants (or GCD);
Hi : 'B-i
GCD: =NIL;
FOR L:=O:J DO

<<GCD:=LOOKUP(b1B,SET) . GCD;
B:=2*B>>;

RETURN REVERSE GCD
ENE;

Do,
D02 (Do3 + D12)
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