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Abstract—This paper proposes a computational method for 
polynomial-modulus residue number system (PMRNS), a 
system in which residue is calculated after decomposing the 
numbers into polynomial of desired radix. This residue can be 
used to find product, sum, and difference so that different steps 
(e.g.  finding the residue, addition/subtraction etc. of residues, 
conversion of result into an integer) can be performed in 
parallel to enhance the speed of operation. The advantages of 
the proposed method are:  i) it does not need to calculate 
multiplicative inverse for conversion from the residue product 
to the number, and ii) it does not need to increase the number 
of modulus as the number gets larger, instead radix can be 
increased to meet the computational need. 

I. INTRODUCTION  
 

     It is known that it is possible to uniquely determine a 
nonnegative integer given its residues with respect to a set 
of moduli, provided that the integer is known to be smaller 
than the product of the moduli. This can be accomplished by 
Chinese remainder theorem (CRT) 
 
      The obtained advantage is that by considering the 
residue of large integers modulo a set of moduli, these large 
integers are decomposed into smaller ones that can easily be 
added, subtracted and multiplied. These operations are 
performed in a carry free fashion implying speed and 
parallelism. 
 
     In a ring of polynomials over any field, there again is a 
Chinese remainder theorem, here Polynomial 
multiplications can be performed in the same way as 
integer, by taking polynomial residues, large polynomials 
can be decomposed into smaller one that are easy to 
multiply, add and subtract. Following two theorems 
describes the above concepts. 
 

 
Theorem.1: Given a set of polynomials 
m x m x m xn( ) (1) ( )( ), ( ),..........., ( )0  that are pair wise 
relatively prime and a set of polynomials 
c x c x c x( ) (1) ( )( ), ( ),........,0  with deg c xi( ) ( )  > deg 

m xi( ) ( )  then the system of equations c x c xi( ) ( ) ( )= (mod 

m xi( ) ( ) ) i k= 0,.....,  has at most one solution for c x( )  

satisfying  deg ( )( )c(x) m x
i

k
i<

=
∑ deg

0

   [3]. 

 

Theorem.2: Let M x m xr

r

k

( ) ( )( )=
=

∏
0

 be a product of 

relatively prime polynomials; let M x M x
m x

i
i

( )
( )( ) ( )

( )=  and 

N(i)(x) satisfy N x M x n x m x xi i i i( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ).+ = 1  
Then the system of congruences be a product of relatively 
prime polynomials; let ( )c x c x m x i ki i( ) ( )( ) ( ) mod ( )= = 0…  
is uniquely solved by  

( )c x c x N x M x M xi i i

i

k

( ) ( ) ( ) ( ) mod ( ) [ ]( ) ( ) ( )=
=
∑ 3

0

 

 

Specific application of the above two theorems by 
Skavantozos and Taylor[2], results in the development of 
Polynomial Residue Number System(PRNS). 

The Polynomial Residue Number System (PRNS) 
examines the problem of multiplying two (N-1) st-degree 
polynomials mod ( )x n ±1 , over some  modular ring 
z mm = −{ , , }0 1 1… , a ring which is closed with respect to the 
operations of addition and multiplication mod m [2]. 
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First known modular polynomial basis multiplier over 
GF m( )2  was proposed by Mastrovito[4] and  extensive 
research has been made on this algorithm using different set 
of polynomials and many different formulation of Mastrovito 
algorithm has been proposed. 

 Sunar and Koc[5] mdified the Mastrovito algorithm 
using trinomials  and have shown the m2 1−  XOR and m2  
AND gates are sufficient to implement the multiplier. 
Halbutogullari and Koc[6] developed a method for 
constructing Mastrovito multiplier for arbitrary irreducible 
polynomial, trinomials, all-one polynomials and equally 
spaced polynomials. So far for these special polynomials, 
XOR gate count and time delay of Halbutogullari-Koc 
algorithm appear to be lowest. Comparison of complexities 
of Halbutogullari-Koc and Mastrovito for related s-ESP-
based multipliers are shown Table I. 

Best known time complexity for multiplying large 
integers using software has been developed by Dan Zuras[7] 
having  time complexity  O n( ).1365 . 

To satisfy the high speed requirements of multiplier, 
proposed technique introduces a new concept of multiplying 
large integer numbers, decomposing it into smaller one and 
perform the arithmetic operation and also  the range change 
can be done without increasing the number of moduli, 
thereby increasing the speed. This technique addresses not 
only conversion into residue and multiplication but also 
inversion process. 

II. BASIC DEFINITIONS. 
     Definitions1: Monic Polynomial is a polynomial whose 
coefficient fn  with largest index is equal to 1. 
 
     Definitions2: Remainder Theorem states that when a 
polynomial f x( )  is divided by ( )x di−  in F x( )  is 
f di( ) . 

III. PROPOSED TECHNIQUE. 
Step 1:  Integer to polynomial conversion. 

Conversion of integer number into polynomial of 
desired radix. All numbers in computer are stored in binary 
form i.e in radix 2. Now to change the radix from 2 to 2n , 
the n digits are taken at a time from the least significant 
position to the most significant position. 
 
Step2: Calculation of residue:  
              If we choose the root of the modulus to 0 or 2n , 
the residue conversion is only a shift and add operation. 
This is done by conversion matrix such that all residue can 
be calculated in parallel. 
Step 3: Multiplication of residues. 
            Most efficient multiplier for small numbers can be 
used. 
Step 4: Inversion of polynomial product into number. 

            This is obtained by multiplying polynomial product 
by the inversion matrix. This also can be done in parallel.          
    

IV. SELECTION OF POLYNOMIAL MODULUS AND  RESIDUE 
COMPUTATION. 

 
     PMRNS performs the mathematical operations by 
expanding the numbers into polynomial, such that the 
indeterminate x  of the polynomial 
A x a a x a x a xr n

n( ) = + + + + −
−

0 1 2
2

1
1……  is the radix r can 

be any integer. By increasing the value of r we can reduce 
the degree of polynomial. 
 
Example 1: Let A = 570 and if radix r = 10 then 
A10

22 710 510= + +. .  can be represented as polynomial 

A x x x10
22 7 5( ) = + +  having degree of 2. Now we can 

reduce the degree of the same number if we choose r = 100 
generating polynomial A x x100 72 5( ) = +  and degree of 
1. 
 
     Each modulus should be monic polynomial of degree 
one. From Chinese remainder theorem we know that the 
solution of n-tuple residue set is unique if the number 
represented by n-tuple residue set is less than the product of 
the modulus M m m m md= 1 2 3. . .…… . 
 
    If we choose a set of polynomial modulus  
m x x d1 1( ) ( )= − , m x x d2 2( ) ( )= − , m x x d3 3( ) ( )= − , …. 
m x x dk k( ) ( )= −  then the product of modulus is 
M x x d x d x d x dk( ) ( )( )( ) ( )= − − − −1 2 3 …  = p p x0 1+ +  

p x p xk
k

3 +…… . It is obvious the solution of the n-tuple 
polynomial residue set will be unique if the degree of the 
polynomial represented by the product of  the polynomial 
modulus M x( ) is greater than the degree of 
A xr ( ) otherwise the number cannot be represented 

uniquely. Careful choice of the di  can reduce the 
magnitude of the residue. 
 
Example 2: Using remainder theorem it is very easy to 
calculate the remainder of the polynomial. If m x x1 1( ) = −  

and A x x x10
22 7 5( ) = + +  then residue R1

22 71 51= + +. . = 
14. 
      

V. PMRNS  THEOREM AND PROOF. 

A
m
l

R
ii

k

i=
=
∑

1

 where m r di j
j i j

k

= −
= ≠
∏( ),

&1

  l d di i j
j i j

k

= −
= ≠
∏( )

&1

 

and the product of modulus M x x d x d x dk( ) ( )( ) ( )= − − −1 2 …… . 
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Proof: The proof can be obtained by mathematical induction 
and it is omitted for brevity. An example is given for 
illustration next. For simplicity let us assume 
A x a a x( ) = +0 1  and M x x d x d( ) ( )( )= − −1 2 . Here the 

degree of M x( )  is k=2. Now R A d a a d1 1 0 1 1= = +( ) , 
R A d a a d2 0 1 22= = +( ) , m r d1 2= −( ) , m r d2 1= −( ) , 
l d d1 1 2= −( )  and  l d d2 2 1= −( ) . Therefore 

A
r d
d d

a a d=
−
−

+
( )

( )
( )2

1 2
0 1 1  +  

( )
( )

( )
r d

d d
a a d

−
−

+1

2 1
0 1 2  = 

( )( )
( )

a a r d d
d d

0 1 1 2

1 2

+ −
−

 = ( )a a r0 1+ . 

 

Example 3: If A = 115 , B = 308  and r = 8 then 
A = + +3 6 8 182. .  and  B = + +4 6 8 4 82. . . Therefore, 
A x x x( ) = + +3 6 2  and B x x x( ) = + +4 6 4 2 . Let 
M x x x x x x( ) ( )( ) ( )( )= + + − −2 1 1 2  then 
R A( ) { , , , , )= − −5 2 310 19  and ( )R B = { , , , , }8 2 4 14 32 . The 

product  R A R B( ). ( ) { , , , , }= − −40 4 12 140 608 . Applying 

PMRNS theorem we get A B.
. . .

. . .
( )=

− − − −
9 8 7 6

1 2 3 4
40  + 

10 8 7 6
1 1 2 3

4
. . .

. . .
.( )

− − −
−  + 

10 9 7 6
21 1 2

12
. . .

. . .
.( )

− −
 +

10 9 8 6
321 1

140
. . .

. . .
.( )

−
 + 

10 98 7
4 321

608
. . .
. . .

( )  = 35420. 

 

VI. A  METHOD FOR PARALLEL COMPUTATION. 
 

Maximum speed could be achieved by parallel 
calculation of residues and the co-efficient of the 
polynomial, this is done by developing three matrix  [ ]D , 
[ ]a  and [ ]D −1 . 

Where  [ ]D

d d d d
d d d d
d d d d

d d d d

k

k

k

k k k
k
k

=























0
0

1
0

2
0 0

0
1

1
1

2
1 1

0
2

1
2

2
3 3

0 1 2

.

.

.
. . . . .

.

.  

[ ]a  is a row matrix made by the co-efficients of the 
polynomial as  [ ] [ ]a a a a ak= 0 1 2 .  and  [ ]D −1  
matrix is the inverse of the matrix [ ]D .  

      After inverting [ ]D , we may find some of the elements 
are fraction. To avoid fraction multiplication, multiply each 

element of the [ ]D −1  by the l.c.m L (least common multiple) 
of the denominator of each element and generate a matrix 

[ ]D
−1

 then divide by L to get [ ]1 1

L
D

−
. 

     Now if we multiply matrix [ ]a  and matrix [ ]D  we get 

the set of residue { }R . After the required mathematical 
operation we can convert those residues to the co-efficients 

of the polynomial just multiplying by the matrix  [ ]1 1

L
D

−
. 

Example 4: Multiplication of two numbers A=115 and B 
=308. 

     Let  r=16, m x x1 2( ) ( )= + , m x x2 1( ) ( )= + , m x x3( ) = , 
m x x4 1( ) ( )= − , m x x5 2( ) ( )= −  and 

( )M x x x x x x= + + − −( )( ) ( )( )2 1 1 2  then A = +3 716.  and  

B = + +4 316 1162. .  can be represented by A x x( ) = +3 7  
and B x x x( ) = + +4 3 2 . 

  [ ]D =

− −

− −



























1 1 1 1 1

2 1 0 1 2

4 1 0 1 4

8 1 0 1 8

16 1 0 1 16

, [ ]D − =

− −

− −

−

−

− −

































1

0
1

12
1
24

1
12

1
24

0 1
3

2
3

1
6

1
6

1 0
5
4

0
1
4

0 2
3

2
3

1
6

1
6

0
1

12
1
24

1
12

1
24

.  

 

Here lcm = 24 therefore [ ]D − =

− −
− −

−
− −

− −























1

0 2 1 2 1
0 16 16 4 4

24 0 30 0 6
0 16 16 4 4
0 2 1 2 1

 

[ ] [ ]I L Dn = =

− −
− −

−
− −

− −























−1 1
24

0 2 1 2 1
0 16 16 4 4
24 0 30 0 6
0 16 16 4 4
0 2 1 2 1

1  

[ ] [ ]a = 3 7 0 0 0  and [ ] [ ]b = 4 3 1 0 0  

 

[ ][ ] [ ]R A a D( ) = = − −11 4 3 10 17  

( ) [ ][ ] [ ]R B b D= = 2 2 4 8 14  

( ) ( ) [ ][ ]R A R B Rp. = − −22 8 12 80 238  

[ ] [ ] [ ]A B R Ip n. .= = 12 37 24 7 0 = 12 3716 2416 7162 3+ + +. . .  = 
35420. 
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The limit of maximum number can be increased without 
any alteration of M x( )  but just by increasing the radix r. 

Example 5: If A = 308 , B = 4627  and radix r=16 then 
A x x x( ) = + +4 3 2  and B x x x x( ) = + + +3 2 2 3 . The 

degree of  the polynomial of the product A x B x( ). ( )  is 5 
which is equal to the degree of M x( ) , therefore, we cannot 
get unique result. Thus increasing the radix r=32 we get 
A x x( ) = +20 9  and B x x x( ) = + +19 16 4 2 results in 3 as the 

degree of the polynomial of  the product A x B x( ). ( )  which 
is less than the degree of M x( ) . 

VII. CONCLUSIONS. 
PMRNS performs the residue conversion, multiplication 

of residues and inversion from the product of the residue 
simultaneously in a pipeline. Similar research is scarce to 
find for comparison. Best known complexity of multiplying 
large integers is in the range from O N( ).1465  to O N( ).1365 [7], 
depending on length of the number. This research leads to 
this method which finds the complexity of multiplying to 
integers in the range from O N( ).15 to O N( ).124 as shown in the 
Table 2. This method also has the following advantages. 

1. Limit of the maximum number does not depend on the 
value of M x( )  but on the degree of the product of the 
polynomial-modulus. 

2. Any number can be used as a radix. 

Above two criteria provides PMRNS highly flexible in 
increasing the maximum range of the number. Also VLSI 
implementation requires less space. 

3. To accommodate a larger number, each time we do not 
have to increase the degree of the polynomial, just by 
increasing the radix to a higher number during the initial 
conversion will do the job. 

4. By appropriate selection of the set di  we can make 
most of the element of the matrix [ ]D  and inverse of [ ]D as 
power of  2 such that residue and coefficient calculation will 
be only shift and addition operations. 

5. In the computer, numbers are represented in binary. If 
we select r as power of 2 then the calculation of the co-
efficient of the polynomial is instantaneous. 

Therefore, PMRNS provides much faster residue 
conversion than RNS system because RNS needs division 
for getting residue. 

6. This system splits a multiplication into several small 
multiplications such that all of them can be done in parallel 
thereby farther reducing the total computation time. 
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Table 1 
Comparison of Related s-ESP-Based polynomial Basis multiplier 

Reference #AND #XOR Time delay 

Mastrovito[4]        m2  
2 1

2
3
2

2s
s

m m
+

−   T m TA x+ +( log )1 2

Halbutogullari-
Koc[6]        m2  m s2 −   T m TA x+ +( log )1 2

 

Table 2 
For N=1024 

Regular 
Multipliction 

                            PMRNS 

Complixity Run Time Bit-Time#Modulus Precision 
N1.5   32768    3       Double 
N1.4   16384    3       Single 
N1.38   14263    5    Double O N( )2  

 N1.24 5405    5    Single 
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