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Abstract

As logic density increases, more and more functionality
is moving into hardware. Several years ago, it was un-
common to find more than minimal support in a proces-
sor for integer multiplication and division. Now, several
processors have multipliers included within the central
processing unit on one integrated circuit {8, 12]. Integer
division, due to its iterative nature, benefits much less
when implemented directly in hardware and is difficult
to pipeline. By using a reciprocal approximation, inte-
ger division can be synthesized from a multiply followed
by a shift. Without carefully selecting the reciprocal,
however, the quotient obtained often suffers from off-
by-one errors, requiring a correction step. This paper
describes the design decisions we made when architect-
ing integer division for a new 64 bit machine. The result
is a fast and economical scheme for computing both un-
signed and signed integer quotients that guarantees an
exact answer without any correction. The reciprocal
computation is fast enough, with one table lookup and
five multiplies, that this scheme is competitive with a
dedicated divider while requiring much less hardware
specific to division.

1 Introduction

Not too long ago, the cost of integer multiplication was
sufficiently high that compiler writers often found it
useful to reduce the strength of a multiplication by a
constant into a series of additions. Lately, such “opti-
mizations” must be done more carefully, since several
current microprocessors include fast integer multipliers.

Integer division has remained an enigma. If a proces-
sor has any support for integer division, it is usually in
the form of a simple iterative divider producing a single
quotient bit per clock. While the dynamic frequency
of integer divides is typically small, the time weighted
impact on path length can be significant. One investi-
gation found nearly 10 percent of all cycles for a spread-
sheet application were devoted to integer division(1]. To
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mitigate this effect, various solutions have been used.
The straightforward iterative divider is area-efficient
but not pipelineable, complicating the instruction is-
sue logic in a pipelined processor. A second option is a
non-iterative array divider, which is pipelineable but not
area-efficient. Both solutions result in divide operations
which take about four times as many cycles as multi-
plies, for 32 bit integers. This is fundamental, since the
partial products in a multiply may be summed in par-
allel while the remainders for divide must be calculated
serially. With 64 bit integers, the divide latency worsens
to around six times longer than that for multiply.

Modern compilers have been effective at reducing the
cost of integer division, as some researchers have devised
methods for dividing by small constants using scaled
reciprocals[3, 9, 10]. This approach is quite effective,
since constant divisors are quite frequent in practice.
However, computing the reciprocal at run-time has been
too costly for integer division in general until now. This
paper presents an integer division scheme which sup-
ports fast division by a constant, is still efficient for non-
constant divisors, requires little extra hardware, and is
pipelinable. The ideas presented reflect the design de-
cisions we made when architecting integer division for
the Tera Computer[2], a new 64 bit machine.

Section 2 refines the integer division problem and infor-
mally describes its solution using reciprocals. Section 3
proves that the outlined division scheme produces the
correct result for unsigned division in all cases. These
results are extended to the division of signed integers in
section 4.

2 Reciprocal Division

Integer division has several forms. Unsigned division
gives the positive quotient and positive remainder from
the division of two positive numbers. Extended pre-
cision division is the same as unsigned division except
the dividend is a double word rather than a single word.
For division of signed integers, two ways of defining the
desired result are common, round toward zero (chopped
division) and round toward negative infinity (floored di-
vision). Thus, there are four common variants of integer
division: unsigned, extended precision, signed chopped,



and signed floored.

unsigned q
extended-precision ¢
signed chopped q
signed floored q

abs(z/y)] * sign(z/y)
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In all thses cases, the remainder is = — g*y (for extended-
precision division, £ = z42%* + ;). The remainder takes
the sign of the dividend in signed chopped division,
while the sign of the remainder matches the sign of the
divisor in signed floored division. FORTRAN requires
signed chopped division, while C leaves the choice to the
implementor. In addition, integer division is implicitly
used in calculating C pointer differences and converting
binary values to decimal for output.

The basic strategy for reciprocal division is to find val-
ues a and sh such that z/y = z+a/2**. For the moment,
consider only the unsigned case 0 <z < 2¥,0 < y < 2%,
where w is the wordlength (our target machine has a 64
bit wordlength). Given a shift sh, the obvious choice

for the scaled reciprocal is a = round(2**/y). Thus,
reciprocal division has the dubious advantage of com-
puting a single division using a division, a multiply, and
a shift. Fortunately, the reciprocal need not be cal-
culated using division, but may be computed using a
Newton-Raphson iterative approximation [13].

To guarantee quick convergence, the reciprocal iteration
must start with an accurate initial guess. The standard
solution, which works well for floating point reciprocals,
is to use a table lookup[4]. The table index is taken
from the k most significant mantissa bits after removing
the leading one (for a normalized binary floating point
number). The easiest way to look up an initial guess for
the reciprocal of an integer divisor is to normalize the
integer by converting it to float and applying the same
lookup method.

While it is possible to convert the initial reciprocal es-
timate back to an integer immediately, we chose to
perform the intermediate iteration steps with floating
point. Since we use reciprocals for floating point divide
as well, this choice allows the instruction that updates
the reciprocal to be used by both integer and floating
point divide.

The other solution is to use an integer iteration. While
this option is conceptually simpler, the floating point
iteration is adequate and reduces the overall architec-
tural impact of divide support. Because the standard
53 bit floating point mantissa does not provide enough
precision for 64 bit division, the result eventually must
be converted to an integer.

When the reciprocal is converted to an integer, the shift
sh must be selected. Essentially, the shift sh must be
large enough for the final shift to truncate away the
rounding error in the reciprocal. This guarantees that
the quotient is either correct or low by one. Conse-
quently, the remainder must be calculated and the quo-
tient conditionally adjusted by one. Alternately, the
shift sh can be made even larger to always yield a cor-
rect quotient. Of course, a larger sh leads to a larger
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scaled reciprocal, with which it is harder to compute.
Thus the shift sh should be as small as possible while
guaranteeing the desired level of accuracy.

Consider the division (2¥ — 3)/(2¥ — 2). Here, a shift
sh of 2w is necessary to compute the correct quotient,
even though a shift of w yields an answer within one.

g=[(2* = 3)* [2°"/(2* - 2)]/2")
gu-sh _1if2< sh<w
1ifw<sh<2w

0 if 2w < sh

For this division to be handled without exception, the
shift of 2w must yield the scaled reciprocal 2 + 3. To
represent this quantity requires w 4+ 1 bits, which is a
challenge. For machines with 32 bit words, the recip-
rocal could be expressed using double precison IEEE
floating point numbers[6]. With our wordsize of 64
bits, a double-extended format with 65 significand bits
is needed to be useful. This width is more than the
de facto standard for double-extended (64 bits in the
8087[7]). In addition, we have no other reason to sup-
port a double-extended format for our machine.

With the above constraints in mind, we present our in-
teger division procedure. Each line represents one ma-
chine instruction. All float variable names start with
f; the others are integers. First, we convert the inte-
ger divisor y to float and compute an initial reciprocal
approximation which is correct to 17 bits. If our ma-
chine had floating point divide in hardware, we could
use that to compute the initial reciprocal. Like the IBM
RS/6000{11], we use reciprocals for floating point divi-
sion. The shift sh is computed by counting zeros at the
left of the divisor (powers of two are handled as special
cases).

fy « double(y);
fa « approx(1/fy);
sh — w + ceil(logz2(y));

Next, we iterate to improve the accuracy of the recipro-
cal. This iteration mirrors the float reciprocal iteration,
except we use the integer divisor to maximize the preci-
sion of the error term e. As a final step, the reciprocal
is multiplied by 2** and rounded to ceiling.

fe « nearest(1.0 - fa*y);
fa — nearest(fa + fa*fe);
fe «— nearest(1.0 - fa*y);

a « ceil((fa + fa*fe)*25h);

Unless the unrounded result of a reciprocal iteration has
at least 2w correct bits, the reciprocal may still need a
correction for proper rounding. For example, consider
y = 2% — 1. On conversion to float, this number rounds
to 2. The float reciprocal will come to 2= and the
scaled reciprocal is initially calculated as 2% + 1. Since
the properly rounded answer is 2% +2, a correction must
be made.

This correction could be accomplished by another re-
ciprocal iteration. Instead, we detect the cases where



the reciprocal is low by one with a trial division of y/y,
which should give one. If the result is zero, then incre-
ment the reciprocal. While this correction is an annoy-
ance, its cost may be amortized over the iterations of
a loop or eliminated during compilation. The cost of a
correction to the quotient, however, must be paid with
each divide.

q « floor y*a/25h);
a—a+ (l-q)

Finally, do the division. The dividend z is multiplied by
the scaled reciprocal a and shifted right by the amount
sh. This multiply-shift logic can be shared with the
logic needed to implement a floating point multiply add
with a single round[5].

q «— floor(x*a/2h);

Notably, the compiler need only load a and sh for di-
vision by a constant, leaving only one operation to be
computed at run-time. In the general case, only five
more multiplies are needed to compute the scaled re-
ciprocal. The only logic specifically needed for imple-
menting integer division is the initial reciprocal lookup
table. This same table can be used for computing float-
ing point reciprocals, so its cost is also amortized over
both integer and floating point divides.

3 Unsigned Division

While the preceding informal discussion identified some
pitfalls in performing reciprocal division, it did not at-
tempt to prove that we avoid them in our procedure.
Here, we formally show that our division procedure de-
termines the correct quotient when applied to unsigned
integers. Let the wordlength be w bits. For a given
divisor y # 0, let sh = w + [logay]. Then a = [2*/y]
implies 2¥ < a < 2¥*!. The ceiling of the reciprocal is
the most useful rounding since the error introduced is
truncated away when the final quotient is converted to
an integer. The ceiling never rounds up to 2¢+!  since
2" /y is never more than 2¥+! _ 1

[logzy] < logsy + 1
2Mieass] < 9,
ollegayl < 9y _ 1
2 < 2v(2y — 1)
[24/3] < 2@y - /4]
a <2t o fy]
a<2wtl 1 (as long as y < 2v)
Now the quotient can be computed by multiplying by a
and dividing by 2°4:

q=|z/y]

[(z/2°7) % (22 /y)]
[(2/2°%) * a]

51 * a)/2’hJ

I
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For what range of values of the dividend z is the quo-
tient ¢ guaranteed to be correct? The boundary cases
arez=¢xyand z = ¢g*y+y— 1. In the former case,
a small negative error in the scaled reciprocal a might
make the quotient one too small. In the latter, a small
positive error in @ may cause the quotient to be one too
large. Since a is the ceiling of the true value and both
z and y are positive, the rounding of a can only cause
the unrounded product z * a to be too large. To show
this error never propagates to the quotient, compare the
computed quotient @) with the true quotient ¢ = |z/y|:

Let r = a*xy — 2°"

T=q*xy+s
0<s<y
Q= {z*a/2?|

L
[(g*y+s)*xa/2*h|

[(g* (axy)+axs)/2°"
[(g%(2°" +7) +axs)/2")
q+ [q*r+a*s)/2"'_[

(L T | I [

For @ to equal ¢, ¢ * 7 + @ * s must be less than 2**.
While ¢ * r 4+ a * s also must not be less than zero, it
is clear that Q > ¢ from the rounding of the scaled
reciprocal. As long as there is a bound on the size of
the dividend, we can choose a scaled reciprocal which
guarantees a correct quotient. The first step is to bound
the term ¢ *r, taking advantage of the fact that r is the
remainder of 2** divided by y:

r<y-1
gxr<qgx(y-1)
gx(y—-1l)=zc—-s-g¢

g¥sr<z—q-—s

When the dividend z is a maximum 2%, ¢ must be at
least one since y cannot be greater than a maximum z.
Thus, the difference z — ¢ cannot be as large as 2¥.

zT—g< 2%
gxr<2¥—s
gxr+axs <2+ (a—1)xs

Similarly, the term a * s can be bounded by recalling
that s is the remainder of z/y and thus is between zero
and y— 1.

s<y-—1
g r+a*xs<2¥+(a—1)(y-1)
g*r+axs<2¥%4axy—a—-y+1
r<y-—1
axy< 2 4y—1
q*r+a*s<2"‘+2"’—a

Finally, the lower bound on the scaled reciprocal a
leaves the desired relation which guarantees the com-
puted quotient is correct.

a>2v¥

grr+axs< 2t
RQ=gq



Hence, @ is correct if z < 2¥. While the dividend =
is never 2* for unsigned division with wordlength w,
the stronger result will prove useful for signed division
where two’s complement allows the value —2¥~1,

We have shown that a scaled reciprocal can be used
to compute a quotient of positive integers exactly. To
achieve this accuracy, we need a reciprocal with one
more bit than will fit in a word. Like a floating point
mantissa, the scaled reciprocal has a leading one which
need not be explicitly represented. With this improve-
ment, the scaled reciprocal nicely fits in one machine
word. To maintain the hidden bit, the shift sh is con-
strained to yield a scaled reciprocal 2¥ < a < 2¥t1,
even though other values of ¢ and sh might work just
as well.

4 Signed Division

In the realm of signed integers, the two most common
definitions of division round the infinitely precise quo-
tient towards zero or towards negative infinity. Round-
ing towards zero (chopped rounding) results in a divi-
sion algorithm in which the operands are separated into
sign and magnitude parts. Except for the extra cases
where the dividend or divisor is —2¥~!, chopped di-
vision is exactly the same as unsigned division with a
wordlength of w — 1 and one sign bit. However, the pre-
vious proof already allowed for a dividend of 2¥~!, so
there is no mathematical problem. The hardware still
must allow w bits for the magnitude of the dividend in
this case. Thus, the signed integer chopped division of
z by y is simply performed:

a = [abs(2*% /y)] * sign(y)
q = |abs(z * a)/2"‘_] * sign(z * a)

Note that the scaled reciprocal computation effectively
rounds away from zero, a round mode that is not part
of the IEEE floating point standard.

For rounding towards negative infinity (floored round-
ing), the handling depends on the sign of the quotient.
For a non-negative quotient, floored division may be
computed exactly as chopped division, since the results
will always match. Complication arises when the signs
of the dividend and divisor do not match. To compute
the quotient as

q=lrxa/2|

the scaled product z * a/2°® must not be less than z/y.
When the quotient is negative, this constraint requires
a to be rounded towards zero. As it stands, we must
round a away from zero when the signs of z and y match
and toward zero when their signs are different. Round-
ing the reciprocal depending on the sign of the dividend
z is inconvenient and reduces the performance improve-
ment possible when the divisor is constant. Fortunately,
there is another solution. We may use the same recip-
rocal as with chopped division by biasing the product
so that any error is one-sided, allowing the exact quo-
tient to be calculated without any correction. While
the same reciprocal is computed as always, the quotient,
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calculation requires the bias b:

a = [abs(2*"/y)] * sign(y)
b=ifz+a> 0 then 0 else 2v~! — 1

¢=[(z+a+b)/2°"

The bias must be large enough to cancel out negative er-
ror when the product of the dividend and the scaled re-
ciprocal is negative. This error is most significant when
the dividend 1s an exact multiple of the divisor: = = gqy.
In this case, the slightest negative error will cause the
quotient to be low by one. To get the correct quotient
from the floor, its argument must not be less than the
true quotient ¢:

(z+a+b)/2" > ¢
zxa+b>qgx2h
b> qx2%h —zxa
b>qx2" —gxyx*a
b>gx(2h —axy)
b> —gqx*r (By definition of r)

Note that r is zero when y is a power of two. Conse-
quently, the bias is constrained by divisors which are
not powers of two. Since £ = —2¥~! can only be ex-
actly divided by powers of two, the minimum dividend
to consider is —2%¥~! 4 1.

r<y-—-1
—qxr< —qgxy+gq
—q*r< —r+gq
—z<ov-l_]
g< -1
—gxr<ov-l 9
b>2v-1 _2 (For a correct quotient)

As an example, consider dividing (-2¥~1! +1)/(2¥~! —
1). We select the shift sh = 2w — 2, yielding the scaled
reciprocal a = 2%~ 42. This requires a bias b > 2¥~1—
2 to get the correct quotient of negative one.

The bias must not be so large that a correct answer is
incremented to become too large (i.e. smaller in magni-
tude). When the quotient is negative, the biased prod-
uct zxa+b is independent of the signs of z and y. Thus,
only the case of negative £ and positive y must be con-
sidered. The answer is most sensitive to the bias when
z =q*xy+y— 1. As before, the critical constraint is to
compute a value which rounds to the correct quotient:

(zxa+b)/2" < qg+1
rra+b< (g+1)+2°
b<(¢g+1)*x2P —zxa
b< (q+1)*2°" — ((¢+ D *y—1)*a
b<(g+1)*(2°" —axy)+a
b< —rx(g+1)+a

If b is less than the minimum value of —r % (q +1)+a,
then correctness is assured. To find the minimum value,
consider each component. Recall that we assume z is



negative and y is positive, yielding a negative quotient
after floored rounding:

=)
+

IVIVIVIA

1
r
—rx(g+1)

Q
g g
(I
—-

NNOOO

:,..
A

We see that the bound on the scaled reciprocal a leads
to a sufficient condition on b for the correctness of the
quotient. In fact, this upper limit for b is also necessary,
since the division —1/1 will not give the correct answer
if b > 2@-1. Thus, the bias of b = 2¥~1 —~ 1 is correct
for all cases with a negative quotient.

Unsigned integer division readily generalizes to signed
integer chopped division. While floored division does
entail extra complication, our carefully chosen bias al-
lows the extra complexity to be hidden from the com-
piler, so that constant divisors may be converted to
scaled reciprocals without regard to the rounding de-
sired for the integer quotient.

5 Conclusion

While reciprocal division has been used for floating
point for many years, until now the ideas have only been
applied to integer arithmetic when the divisor is con-
stant. The division scheme described here is fast in the
general case, requiring only six multiplies and a table
lookup. Our reciprocal division supports unsigned in-
teger, signed chopped, and signed floored division. The
real strength of our method is division by a constant,
which takes only a single multiply and shift, one opera-
tion on our machine. The analysis we presented shows
that the computed quotient is always exact — no ad-
justment or correction is necessary. There is very little
extra hardware required, primarily rounding logic and
an initial reciprocal lookup table. Thus, we believe this
design strikes a balance between hardware and software
support for 64 bit integer division.

Further research is needed to determine how best to im-
plement extended precision division using reciprocals.
Besides generating the correct quotient in the normal
case, extended precision division may result in overflow
if the quotient is larger than will fit in one word. A
simple change to the unsigned division code sequence
seems to allow computing the extended-precision divi-
sion (242" + 1) /y correct to w — 2 bits, although over-
flow is not detected. We are currently investigating the
beit. way to increase the accuracy to guarantee the full
w bits.
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