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BIRTH OF A CRUNCHER 

Its practitioners give it the glorified name of “numer- 
ical analysis,” but for most programmers the field of 
number crunching is a lot like plumbing. We use it 
often, but we don’t think about how it works until 
something goes wrong. 

I once held that Neanderthal view. I was cured by 
a fine course in numerical analysis, which showed 
me the elegance of the field. My appraisal of the 
subject changed from “ugly and useless” to “beauti- 
ful and useless.” I have good numerical routines 
available in libraries; why would I ever have to 
make my own? 

I was recently delighted to discover that even for a 
layman like me, numerical analysis can be very use- 
ful. This column tells how I used some elementary 
techniques to write a simple numerical routine. I 
replaced a library function with a version special- 
ized to the problem at hand; the code grew from five 
lines to a dozen, but the routine was three times 
faster and it made a big program run twice as fast. 

The Problem 
I was working on a program to compute traveling 
salesman tours through point sets. Profiling the 
thousand-line program showed that about eighty 
percent of the time was spent in a five-line rou- 
tine to compute distances. The specification called 
for the Euclidean distance between points in K- 
dimensional space. For instance, the distance be- 
tween the three-dimensional points (aI, az, as) and 
(h , ba, b3) is 

d(aj - b# + (a2 - b2)’ + (u3 - b3)’ 

Program 1 computes the distance between the points 
represented by the vectors A[l. .K] and B[l. .K]. 

sum := 0.0 
for J := 1 to K do 

T := A[J] - B[J] 

SUlll := Sum + T+T 

return sqrt(Sum) 

PROGRAM 1. A Simple Distance Routine 
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Program 1 has the advantage of simplicity: it is 
easy to understand. Unfortunately, it has several dis- 
advantages as well. It may, for instance, generate an 
arithmetic overflow even if all inputs, intermediate 
differences, and the output are in a valid range. Sup- 
pose the machine can represent floating point num- 
bers up to 103’ and consider computing the distance 
between (0, 0) and (3 X lo”, 4 X lo”), which is 
5 X 10zo. Squaring the difference O-3 X 10” yields 
9 x 104’ and an overflow. This problem (and a simi- 
lar problem with underflow) were not important in 
the program at hand; the context ensured that differ- 
ences were neither extremely large nor extremely 
small. 

A second problem with Program 1 is that it is very 
expensive, at least as implemented in C on a VAX 
11/75Oe. The March 1986 column sketched the per- 
formance of that hardware/software system: arith- 
metic operations range in cost from 3.3 microseconds 
for integer addition to 15.7 microseconds for floating- 
point division. When K = 2, Program 1 requires a 
whopping 1140 microseconds to compute the Euclid- 
ean distance between a pair of points in the plane. 
Straightforward experiments showed that the lion’s 
share of that time goes to computing the square root, 
which requires about 940 microseconds. 

My goal for the program was to provide a faster 
distance routine. A method that works in many ap- 
plications is simply to remove the sqrt from Pro- 
gram 1; if distances are only compared, then the 
monotonicity of sqrt makes it superfluous (the Feb- 
ruary 1984 column describes such an application). 
That wouldn’t work on this job; I therefore sought a 
K-dimensional Euclidean distance routine with the 
following attributes. 

Domain: K is in the range 1. .16 (but typically 
2, 3, or 4); the coordinates of points are in single- 
precision. 

Accuracy: The single-precision output should be 
accurate to the last decimal digit, or a relative 
accuracy of about l.Oe-7. 

VAX is a trademark of Digital Equipment Corporation. 
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Robustness: The inputs may be assumed to be 
well behaved; overflow and underflow are not ma- 
jor concerns. 

Performance: The routine should be as fast as pos- 
sible. 

The rest of this column will focus on a routine with 
these characteristics; Problem 17 describes an accu- 
rate and robust method that is somewhat slower. 

Newton Iteration 
Numerical anal.ysts have developed many tech- 
niques for finding a zero (or a root) of a function. 
Given a function f(x), a zero is a real number r such 
that f(r) = 0. To compute & we can find a zero of 
f(x)=?-a;ifr’-a=O,thenr=&.Thusifwe 
can find zeroes we can compute square roots. 

So how do we find the zero of a function? We 
could use our old friend, binary search. If a 2 1, 
then & is in the range [l, a]. We can successively 
halve that range until we get a good approximation 
to &. If a = 4, for instance, we will examine the 
ranges [l, 41, [l, 2.51, [l, 1.751, [1.375, 1.75],... . 
Numerical analysts call this the bisection method; 
each step yields one additional bit of accuracy in 
the answer. 

A superior scheme was invented by Isaac Newton, 
the famous English computer scientist who also dab- 
bled in mathematics and physics. His method does 
not compute a range explicitly, but rather starts 
with an initial guess x0 and generates a sequence of 
approximations x1, x2, x3, . . . . To generate xi+1 we 
must know both f(xi) and its derivative f’(xi). We 
then proceed down the tangent line until it crosses 
the x-axis: 

k 

X, x, -11 

Intuitively, we are approximating the function lo- 
cally by a straight line with equal y-value and slope. 
Mathematically, we compute the next iterate by 

xi+1 = xi - f(Xi)/f’(Xi) 

To use Newton iteration we must be able to com- 
pute both the function and its derivative. 

To find & we will find the zero of f(x) = x2 - a, 
so f’(x) = 2x. Newton’s iteration formula is then 

Xi+1 = Xj - (Xf - a)/2Xi 

= Xi - Xi/2 + a/2Xi 

= (Xi + a/Xi)/2 

For an intuitive appreciation of why the formula 
works, observe that if xi is too small then a/xi is too 
big; the average of the two is a better estimate. 
(Schoolchildren call this the “divide and average” 
technique.) Thus once we reach the final answer, 
we don’t move away: if xi = &, then 

x;+~ = (& + a/&)/2 = J;; 

Figure 1 shows one step of Newton iteration 
for finding &?, in which a = 2, x0 = 2, and x1 = 
(2 + 2/2)/z = 1.5. That figure hints at the rapid rate 
at which this method converges, but the story can’t 
be told graphically. Here are the next few elements 
in the sequence xi: 

2.0000000000000000 

1.5000000000000000 

1.4166666666666667 

1.4142156862745098 

1.4142135623746899 

1.4142135623730951 

The values were computed by a simple “scaffolding” 
program; see Problem 6. The final answer is correct 
to 16 decimal places. 

w 
FIGURE 1. One Step in Finding Sqrt(2) 

A Great Place to Start 
There’s the basic idea of Newton iteration; two prob- 
lems stand between us and a program: 

What is a good initial value x0? 

How many iterations should be made until xI is 
declared to be the final answer? 

We will explore the second question in the next 
section; this section concentrates on the first. 

The example in the previous section showed 
Newton’s method converging very quickly. Each 
iteration roughly doubled the number of accurate 
digits; because the error at the i + 1” step is propor- 
tional to the square of the error at the i’” step, nu- 
merical analysts refer to this as “quadratic conver- 
gence. ” That behavior is typical of the method, so 
long as two conditions hold. The first requirement is 
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that the derivative is not near zero; that is always 
true for square roots (so long as we compute J5 as a 
special case), but it can be difficult for other func- 
tions. 

The second requirement for quadratic conver- 
gence is that the initial guess must be near the final 
root. Table I shows that when the current value is 
far from the square root, Newton’s method gives 
only one bit of accuracy per iteration. (Beware, 
though, that for functions less well behaved, 
Newton’s method will not even converge if it 
starts far from the root.) 

1000.0000000000000000 

500.0010000000000000 

250.0024999960000100 

125.0052499580004700 

62.5106246430170320 

31.2713096020621940 

15.6676329948683660 

7.8976423478563581 

4.0754412405194990 

2.2830928243925538 

1.5795487524060154 

1.4228665795786682 

1.4142398735915306 

1.4142135626178485 

1.4142135623730951 

TABLE I. Convergence to Sqtt(2) 

Most general-purpose square root routines get an 
initial guess by black magic of some sort, such as 
extracting the bit field that is the exponent of a 
floating point number and halving it to approximate 
the square root. (Using the last square root computed 
is very effective in some applications; see Problem 
9.) In the context of a distance function, we can use 
other information to get the initial guess. When K is 
2, for instance, we wish to compute a = &%?: 

c 

IA 

a 

b 

We can use the maximum of b and c (b in the above 
figure) as the initial guess x0. Thus we have the 
inequalities 

so we know that a is in the range [b, & x b]. 
In higher dimensions we will use as an initial esti- 

mate the maximum of the differences in all dimen- 
sions, which we’ll call D. The distance is at least 

D and the sum of the squares of the K differences 
is at most K x D2, so the distance is in the range 
[D, D&l. 

The Code 
We can now write a program for computing Euclid- 
ean distances. Program 2 uses as its initial value 
the maximum difference. It iterates until two 
subsequent values are reasonably close: until 
) xi+1 - xi l/xi+1 is at most the one part in ten million 
that corresponds to single-precision accuracy on my 
machine. 

T := abs(A[ll - B[ll) 
Max := T 
Sum := T+T 
for J := 2 to K do 

T := abs(A[J] - B[J]) 
if T > Max then Max := T 
Sum := Sum + T+T 

if Sum = 0.0 then return 0.0 
/* find sqrt(Sum), starting at Max +/ 
Eps = l.Oe-7 
2 := Max 
loop 

New2 := 0.5 * (2 + Sum/Z) 
if abs(NewZ-Z)<=EpsxNewZ then break 
2 := New2 

return New2 

PROGRAM 2. A General Distance Routine 

Table II (on p. 1159) gives the run time of all pro- 
grams discussed in this column. It shows that Pro- 
gram 2 is about 35 percent faster than Program 1 
when K = 2: the new square root code is indeed 
faster than the system routine. When K = 16, 
though, Program 2 is only about 1.5 percent faster 
than Program 1: the bottleneck in this case is not the 
square root, and finding the maximum difference 
chews up most of the time saved by the faster root- 
finder. Fortunately, the specifications stated that K 
tends to be small. 

There are two ways to improve Program 2: we’ll 
start by speeding up the root-finder, and then 
shortly work on computing the maximum differ- 
ence. The current version iterates until it is close 
enough; the next version will iterate a fixed number 
of times guaranteed to produce convergence. That 
will remove the cost of loop overhead, of testing for 
convergence, and of computing the final iteration 
that is so very close to its predecessor. 

So how many iterations do we need? The specifi- 
cations state that K I 16 and that we must compute 
to single-precision accuracy. Because K 5 16, we 
know that the distance is at most fi X D (where D 
is the maximum difference, max), and therefore in 
the range [D, 401. It seemed that the geometric 
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The Best Possilde Square Root Routine 

This column describes a few hours’ work by an ama- 
teur, using techniques ranging in age from a few 
decades to a few centuries. We’ll now briefly 
glimpse how a world-class numeribal analyst at- 
tacked the problem of constructing a numerical rou- 
tine. Professor LY. Kahan lectured on “Implementa- 
tion of Algorithms” in the early 1970s; lecture notes 
taken by Haugeland and Hough appeared as Berke- 
ley Computer Science Technical Report #20 and are 
now available a.s National Technical Information 
Service Report AD-769 124. Olf the 339 pages in the 
report, 53 are devoted to the construction and error 
analysis of an u:nbeatable square root routine for the 
IBM 7094. 

Kahan starts by specifying the properties that the 
routine should have. Monotonicity implies that 
if x 2 y, then sqst(x) 2 sqrt(y). He demands that 
sqrt(x*x) = x, but observes that one cannot ensure 

mean of that range, 20, would make a good initial 
value. I used my scaffolding program to examine the 
convergence from that midpoint to the bounds of the 
range. I first computed & starting from 2: 

x abs(x-1.0)Il.O 
2.0000000000000000 1.0000000000000000 

1.2500000000000000 0.2500000000000000 

1.0250000000000000 0.0250000000000000 

1.0003048780487805 0.0003048780487805 

1.0000000464611473 0.0000000464611473 

1.0000000000000011 0.0000000000000011 

1.0000000000000000 0.0000000000000000 

Next I computed fi from the same start: 

x abs(x-4.0)/4.0 
2.0000000000000000 0.5000000000000000 

5.0000000000000000 0.2500000000000000 

4.1000000000000000 0.0250000000000000 

4.0012195121951220 0.0003048780487805 

4.0000001858445894 0.0000000464611473 

4.0000000000000043 0.0000000000000011 

4.0000000000000000 0.0000000000000000 

Because Newton iteration scales linearly, these two 
cases model computing m and Jlsis’i from any 
starting value 21). Problem 15 proves that these two 
extremes are indeed the two that are slowest to con- 
verge; the right columns show that after the first 
step the two inputs give the same relative error. The 
process yields the required seven-digit accuracy 

that s9rt(x)*s9rt(x) = x. He gives particularly stringent 
requirements on the accuracy of the routine: his 
code gives incorrectly rounded answers for only 29 
distinct mantissas. 

Kahan’s routine uses a few loop-unrolled Newton 
iterations (which he calls Heron’s rule) after getting 
a good starting value. He observes that the best 
method for finding a starting value is quite machine- 
dependent (on such issues as the relative cost of 
table lookup versus multiplication). Kahan therefore 
built his routine by considering a tree of all possible 
sequences of IBM 7094 instructions: 

You begin by doing necessary things, like loading 
the arguments.. . . I used to work on [the tree] in 
the evenings. It took several-3 or 4 or 5. It did 
cover a big table. I would connect one branch to 
another, indicating that they computed the same 

after four steps. The unrolled loop in Program 3 thus 
computes an accurate answer when K I 16. 

. . . same as Program 2 . . . 
/* compute sqrt(Sum), 

starting at 2.OxMax */ 
Max := Max * 2.0 
Max := 0.5 + (Max + Sum/Max) 
Max := 0.5 l (Max + Sum/Max) 
Max := 0.5 * (Max + Sum/Max) 
return 0.5 (c (Max + Sum/Max) 

PROGRAM 3. A Fast Distance Routine for K 5 16 

Problem 11 suggests a further speedup to comput- 
ing square roots: using table lookup to obtain a bet- 
ter initial guess. The numerical examples above 
show that if we can get the relative error down to 
2.5 percent, then two further iterations suffice for 
single-precision accuracy. 

The final improvements leave the lofty planes of 
numerical analysis to employ a couple of old coding 
tricks. The first one is specialized to the C language. 
Both the real program and the test program imple- 
mented a vector of points as a two-dimensional 
array of floating point numbers. The final program 
introduced two new variables to point to the two 
Euclidean points being compared, and thus replaced 
K two-dimensional array accesses with K references 
to a one-dimensional vector. The second trick is de- 
scribed in Problem 10; it exploits an algebraic iden- 
tity. Because these speedups are quite particular to 
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function, using leftover telephone wire. And he kept perspective on his work: 

His routine was about 20 percent faster than the 
previous system routine, and much more accurate. 
Because he considered the tree of possible programs, 
Kahan could ensure that his program could never be 
beaten. 

Kahan knew that his methods weren’t easy: 

You’re trying to ask me, was it worth the money 
spent. Of course it wasn’t worth the money spent 
if you want to figure it in terms of the number of 
happier users. I probably tested more numbers 
than will be run through the SQRT in a year on 
the 7094. 

[This analysis] may have frightened you into 
thinking that to write a square root routine you 
have to have spent years studying abstruse theo- 
ries. I guess if you want to write the best possible 
square root routine, maybe you do. There is a 
limit to how near perfection it is worthwhile to 
come, and it is not my intention to suggest that 
you should write a program in this way, since 
only a simple program could be optimized by 
examining a tree structure in this way. 

But we are trying to see how well we can do. For 
the practical question, I hope most people would 
have stopped [at an earlier routine]. We can’t af- 
ford too many guys like me. But we can’t afford to 
do without them, either. 

I enthusiastically recommend this document. If 
you’re fascinated by a “best possible” program for a 
substantial task, you can’t afford to do without read- 
ing Kahan’s report. 

the implementation language, Program 4 was timed 
but is not shown in pseudocode. 

The four distance routines are summarized in 
Table II. The speedup from Program 1 to Program 4 
is a factor of 3.5 for K = 2, 2.8 for K = 4, and 1.9 for 
K=16. 

TABLE II. Summary of the Programs 

Routine 
number 

Microseconds 

K=2 K=4 K=16 

1 1140 1270 2030 
2 730 990 2000 
3 350 500 1340 
4 330 450 1070 

Principles 
Distance computations are the workhorse in many 
programs. The new distance routine doubled the 
speed of my loo@line traveling salesman program, 
and similar speedups are common for other geomet- 
ric programs. In addition to producing a useful rou- 
tine, this exercise has illustrated several general 
principles. 

The importance of Context. The process of produc- 
ing a fast distance routine changes dramatically with 
many factors. For instance, most of the work de- 
scribed in this column would have been counter- 
productive on a system with a hardware square root 
instruction. For very large values of K (say, lOOO), 
the cost of the square root is relatively minor; for 

K = 2 (that is, for planar points), the method 
sketched in Program 17 is often faster than Program 
4 and always much more robust. One must know a 
great deal of context before starting to code. 

Newton Iteration. This powerful technique is of 
everyday utility for numerical analysts, and also of 
occasional use to mere mortal programmers (see 
Problem 1). 

Coding Tricks. Though the big improvements are 
usually due to algorithmic changes, little improve- 
ments to code can reduce run time. In this case 
study, unrolling the iteration loop was very effec- 
tive: it removes loop overhead, convergence testing, 
and an extra iteration. Other tricks included exploit- 
ing algebraic identities, optimizing array references, 
and storing precomputed answers in tables (see 
problems 10, 11, and 12). 

The Role of Libraries. An excellent library is a de- 
light to use; most numerical libraries provide accu- 
rate and numerically robust code. It is wise to re- 
member, though, that few routines can be all things 
to all users. In this case study, special-purpose code 
was tailored to the context in which it was used to 
be much more efficient than the general routine. Re- 
usability and numerical accuracy were sacrificed for 
raw speed; in this case, that was a sound engineering 
trade-off. 

Problems 
1. Your library square root routine provides only 

single-precision accuracy, yet your application 
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2. 

3. 

4. 

5. 

6. 

7. 

6. 

9. 

10. 

requires double precision. What do you do? 
On a hand-held calculator, repeatedly take the 
square root of a number then square it back 
again. What does this exercise tell you about 
the calculator’s internal structure? 
Newton’s method does not work when f’(x) = 0; 
this happens for square roots only when com- 
puting &. What happens when Newton’s 
method attempts to compute +.6 from a starting 
value of xc, = l? Does the algorithm have simi- 
lar problems for computing the roots of positive 
numbers near zero? 

12. 

13. 

Study the square root routine provided by your 
system. If :it uses Newton’s method, what is its 
initial value and how many iterations does it 
make? 

14. 

Some computers have very fast hardware multi- 
pliers and no hardware dividers; they imple- 
ment division by multiplying by an inverse. 
Show how to compute l/a by using Newton’s 
method to find a zero of f(x) = a - l/x. Try 
using Newton’s method to compute cube roots, 
or to find roots of arbitrary polynomials. 
Implement a “scaffolding” program for Newton 
iteration. Its input is a number whose square 
root is to be taken, a starting value, and the 
number of iterations to be performed (provide 
defaults); its output is a trace of the values. 
Implement Programs 1, 2, 3, and 4 on your sys- 15. 
tern. How do you test their correctness? Build a 
testbed for timing them; how do your results 
compare to Table II? 
[J. L. Blue] Th is o umn explicitly ignored the c 1 
problems of overflow and underflow in sum- 
ming the squares of differences. Write a pro- 
gram that is sensitive to those problems. 
A common heuristic uses the last square root 
computed as the starting value for the next 
Newton iteration. Measure this in an applica- 
tion. How many iterations does it make on the 
average? How does it compare to other starting 
values? 
The second optimization to Program 4 observes 
that Program 3 doubles Max only to halve it in 
the next statement: 

Max := Max + 2.0 

Max := 0.5 * (Max + Sun/Max) 
16. 

Use a little algebra to speed up those state- 
ments. 17. 

11. Table lookup can speed up a program by trad- 
ing space for run time. How can this technique 
be used in computing a good starting value? 

How could you use table lookup to compute 
Euclidean distances if the planar point set has 
both x and y coordinates in the range 0..9999? 
[A. Appel] Show how the K absolute values 
used by Program 2 to compute Max can be re- 
placed with a single absolute value. (Hint: keep 
track of the largest square seen so far.) 
Hardware designers have observed that a divi- 
sion and a square root box of comparable effi- 
ciency require comparable amounts of hard- 
ware. Show that square root is about as hard as 
division in software, too, by sketching a routine 
to compute X& accurate to one million decimal 
digits. 
[S. Cracker] Consideration of finite-precision 
arithmetic complicates many programs, but 
makes this square root routine particularly 
simple: 

x *- 1 .- 

loop 
NewX := 0.5 + (X + A/X) 
if NewX = X then return NewX 
X := NewX 

Does it converge on your machine for all non- 
zero inputs A? On all machines? (For a better 
starting value, see Problem 9.) 
[M. D. McIlroy] What is the best starting value 
for Newton’s method for square roots in a 
bounded range? Let n be a natural number and 
let a, b, and r be reals satisfying 0 < a 5 r 5 b; 
let R = r2. Given n, a, and b, we desire to 
choose a starting value x0 = x for the Newton 
iteration Xi+1 = (xi + R/xi)/2 to minimize the 
worst-case relative error 

Show that the optimal choice is x = a, inde- 
pendent of the value of n. 

(Hint from Doug McIlroy: Define the ifh rela- 
tive error to be ei(x, r) = (xi - r)/r and find a 
recursion for it. Iterate that recurrence relation 
a few times to guess a closed form, then prove 
it by induction.) 
Problem 15 identifies the best starting value for 
Newton iteration. How many iterations are re- 
quired as a function of the number of dimen- 
sions (K) and desired accuracy? 
Moler and Morrison have described a fast, ro- 
bust, and portable algorithm for computing 
m (see “Replacing Square Roots by 
Pythagorean Sums” in the IBM Journal of Re- 
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search and Development 27, 6, November 1983, 
pp. 577-581). Their algorithm can be sketched 
as 

P := abs(P); Q := abs(Q) 

if P < Q then SwapIP, Qj 
if P = 0.0 then return Q 

repeat IterCount times 
R := Q/P 
R := R * R 
R := R / (4 + R) 
P := P + 2*R+P 
Q := Q + R 

return P 

Its cubic convergence means that the result is 
accurate to 6.5 decimal digits after two itera- 
tions, to 20 digits after three iterations, and to 
62 digits after four iterations; its intermediate 
results avoid overflow and underflow. 
a. Use this code in a subroutine to compute 

planar Euclidean distances. How does 
its run time compare to Program 3 when 
K = 2? 

b. How can you use this routine to compute 
Euclidean distances in K space? How long 
would your code take when K = 1000, and 
how does that compare to Program 3? 

18. How would you write a Euclidean distance rou- 
tine to run on a parallel processor that can per- 
form P arithmetic operations at once? 

Solutions to September’s Problems 
2. Three variations of selection sort are shown in 

this figure, in which the array is represented 
horizontally and time proceeds down the verti- 
cal axis. 

Step 1 

Step N 

Step 2N 
Heap 1 Heap 2 Straight 

The left diagram shows a simple heapsort, which 
builds the heap by sifting each element up the 
partially built heap. The middle heapsort has the 
same second phase, but builds the heap right-to- 
left by sifting elements down. The right diagram 
shows a straight insertion sort; it does not build 
a heap, which avoids the construction cost but 
greatly increases the cost of each selection. 

Further Reading 
There are dozens of excellent textbooks on numeri- 
cal analysis. Which one is best for you depends on 
your desires for breadth and depth and your interest 
in mathematics and code. 

3. The problem asked how programs should be 
typeset to achieve Willamson’s three primary 
goals of correctness, consistency, and clarity. 

Correctness. The best way to get a correct pro- 
gram in a document is to start with a correct 
program on a computer. Life is easiest when one 
can test and typeset the program from the same 
source file; I do that whenever possible. In this 
column, however, I presented the algorithms in 
pseudocode but I implemented and tested them 
in C. I therefore wrote the C programs in a form 
as close as possible to the final pseudocode (for 
instance, I was quite aware of the width of Com- 
munications’ columns), and then used a text edi- 
tor to make the remaining changes (I know--I 
should write a program to do the job). 

Consistency. Programmers should be consistent 
about little details such as capitalization and in- 
dentation Even better than adhering to your 
own standard, follow one that already exists in 
the field. For instance, if I did present C pro- 
grams, I would use the format employed by 
Kernighan and Ritchie in their C Programming 
Language. 

Clarity. The May and June columns showed 
how Don Knuth’s WEB system produces clear 
programs by varying fonts: bold for keywords, 
italic for variables, typewriter for text strings, 
roman for explanation, etc. The programs in this 
column are typeset in typewriter font: that 
fixed-size font reflects what most programmers 
(myself included) see on their terminals, and it is 
still readable even when shrunk to a fairly small 
size. 
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