
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-26, NO. 7, JULY 1977

Ulrich Kulisch studied mathematics and
physics at the Technical University, Munich,
Germany, and the University of Munich, Mu-
nich, Germany, from 1953 to 1958. He received
the Dr. rer. nat. degree in mathematics in 1961
and the Habilitation degree in mathematics in
1963, both from the Technical University of
Munich.

Since 1963 he has taught mathematics at the
Technical University of Munich, the Universi-
ty of Munich, and the University of Karls-

ruhe, Karlsruhe, Germany. Since 1967 he has been Full Professor of
Mathematics and Director of the Institute of Applied Mathematics at

the University of Karlsruhe. From 1966 to 1970 he was also Director of
the Computer Center of this University. During the years 1969 and 1970
he was on academic leave with the Mathematics Research Center, The
University of Wisconsin, Madison and 1972 to 1973 at the IBM T. J.
Watson Research Center, Yorktown Heights, NY. He has published about
30 research articles in mathematics and computer sciences and two books,
the first one in 1969 together with J. Heinhold on Analog and Hybrid
Computations and the second one in 1976 about Fundamentals ofNu-
merical Computations-Mathematical Foundation of Computer
Arithmetic. Since 1968 he has been editor of the book series "Reihe In-
formatik" and since 1974 also of the series "Jahrbuch Uberlicke
Mathematik" by Bibliographisches Institut, Mannheim, West
Germany.

Floating-Point Computation of Functions with Maximum

Accuracy
GERD BOHLENDER

Abstract-Algorithms are given that compute multiple sums and
products and arbitrary roots of floating-point numbers with
maximum accuracy, The summation algorithm can be applied to
compute scalar products, matrix products, etc. For all these func-
tions, simple error formulas and the smallest floating-point inter-
vals containing the exact result can be obtained.

Index Terms-Accuracy, errors, floating-point computations,
multiple-length mantissas, roots. of floating-point numbers,
rounding.

I. INTRODUCTION

OUR AIM is to approximate functions'
0J f: Rn - RP on a floating-point system T. For b,l e
N, b _ 2, 1 _ 1, the floating-point system Tb,l with base b
and l-digit mantissa is defined by

Tbj: = {°} U {x = *m - be; *EI+,-}, m = 0 - m[1*

m[i] E{0,1, - - - ,b-1}, m[l] 0, e E Z}. (1)
x is then called a floating-point number with sign * =
sgn(x), mantissa m = mant(x), and exponent e = exp(x).
As the base b will be kept fixed throughout the paper, we

Manuscript received January 20, 1976; revised October 15, 1976.
The author is with the Institute of Applied Mathematics, University

of Karlsruhe, Karlsruhe, Germany.
1 N, Z, and R denote the sets of nonnegative integers, integers and

reals, respectively. For any given set S, SP denotes the set ofp-tuples with
components out of S. {xi; P(x)I denotes the set of all elements x with
property P(x).

will suppress the index b and write shortly T1 or T. For the
present, we do not consider the finite exponent range that
is available in practice, as this would necessitate compli-
cated exponent overflow and underflow discussions. In-
stead, we give remarks on the influence of limiting the
exponent range on our algorithms.
The best possible approximation for f(x) is Df(x),

wherein 3: RP - TP denotes a rounding.2 We will restrict
ourselves here to the roundings V, A and 3,. (A = O(1)b).
For p = 1 these roundings are defined as follows:

A vx: = max{y E T;y _ xI
xeR

A Ax: = minly e T;x _ys = -v(-x)
xeR

A 3bx: =Vx AA 3bx: = ax
x o x<o

A 3ox:A= xA A 3ox:= vx
xeo x<O

and for y = 1(1)b -1

A aIVx: forx E [vx,S,(x))
X=o xi x for x E [S (X), Ax]

(2)

(3)

(4)

(5)

(6)A D3x: = -0,(-x),
x<0

2 As regards general definitions, we refer to Kulisch [5].

621

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

wherein the function S : R - R isdefinedbyS(x): = vx
+ (Ax - vx) * gib. V, A, s,b o , map a given real number
x on the closest floating-point number which is equal to
x or less, greater, absolutely less, absolutely greater, re-
spectively, than x. Therefore, v and A are called down-
wardly and upwardly directed rounding, respectively, 0Ob
is called rounding towards zero, and 30 is called rounding
away from zero. If b is an even number, then 0: = Ob/2 iS
the rounding to the closest floating-point number. For p
> 1 the roundings v, A, and o3 (, = O(1)b) are defined
componentwise.
With these roundings, [vf(x), Af(x)] is the smallest

floating-point interval containing f(x); and if b is even,
then 3b/2f(x) is an approximation of f(x) with maximum
accuracy. So the computation of interval bounds for f(x)
and the computation of optimal approximations off(x) can
be substituted by the more general task of computing
of(x) for all 0 E IV,A,Os(g = 0(1)b)}. For these approxi-
mations of(x) of f(x), the following theorem can be
proved, simply by applying the properties of the roundings
V, A, and o. that are studied by Kulisch [5].
Theorem 1: For a function f: R n - RP and a floating-

point system T = Tb,l the following properties hold:

a) A A
xERn OEIV,A,D3j

b) A A
x,yeRn DeIV,A,D j

c) A A
cxe Rn D~OEC3;=0(1)bl

(f(x) & T' .= of(x) = f(x)

(f(x) _ f(y) => of(x) < of(y))

[13] for the arithmetic operations +,-,* ,/, and by Kulisch
and Bohlender [7] for the sum of n floating-point numbers
as well as for the scalar product. Yohe [12] finally gave a
modification of Newton's method which allows the com-
putation of vVx and AVI-x in the special case b = 2.

In the present paper, algorithms shall be proposed for
the functions 2'= iXi, l1 xi, nV\/, wherein xi E T, x E
T, and for functions that are derived from the sum.

Several algorithms for improving accuracy in floating-
point summation are known (e.g., Kahan [4], Linz [8],
Malcolm [9], Pichat [10]). But these algorithms are not
intended to deliver results with maximum accuracy,
smallest interval bounds, and the properties of Theorem
1. The algorithm of Kulisch and Bohlender [7] sorts the
numbers xi according to their exponent. For large n, this
consumes much time, as the time for sorting n numbers is
at least proportional to n rlog2 n]. The algorithm in the
present paper is based on the one of Pichat [10]; it manages
without sorting.

For the computation of the roots of floating-point
numbers, a modification of Newton's method, is used
which determines-under appropriate assumptions-the
smallest floating-point interval containing the zero of a
function. This method is applied on the polynomial x n -
a. In the case b = n = 2, it is equivalent with the algorithm
of Yohe [12].

II. THE SUM OF n FLOATING-POINT NUMBERS

For the computation of the sum 0Ei- xi of n floating-
f(-X)= -f(x) of(-x) point numbers xi, we need not determine 2l= xi. Instead,

we can compute a simpler approximation x with the
= -o3f(x)) property

A (f(-x) = -f(x) => vf(-x) = -Af(x)
xE Rn

A Af(-x) = -vf(x))

d) A A If(x)- Of(x)I e ** If(x)I
xeRn"

wherein absolute values are defined componentwise and

I* -bl-1, if bis evenand = 0b/2

bl-l, otherwise.

e) A A A (f(x) g(x)
g:RRn-RP xeRn 03{V,3,I,}

sf(x) < [g(x)).
Remark: If the exponent range is limited by el,e2 E

Z, then property d) is only valid if no exponent overflow
and underflow occur, i.e., if If(x)I E [bell, (1 - b')

be2]p.
As we want to execute the function f on a floating-point

system T, only arguments x E Tn have to be considered.
The task of computing of(x) for all E {V,A,0(g =

O(1)b)} and all x E Tn was solved by Kulisch [6] and Yohe

n n

A A 3Exi= 3ExXi.
(xi)e 7'n Ee v,,O3,(A=0(1)b)l i=1 i= 1

(7)

We will give an algorithm that computes such an approx-
imation; algorithms for the roundings V, A, o,, (, = O(l)b)
can be found in Kulisch [6].

In the following lemmas, we introduce the notation and
the iteration method that will be needed in the summation
algorithm.

Let us first define a binary relation -< on T*: = U -i
Tb,l

A (x < y: X= 0 v y = 0
X,yET

v (exp(y) - exp(x) _ 1 A y E Texp(y)-exp(x))) (8)
where x -< y means that y = 0, orall digits of x have smaller
exponents than all nonzero digits of y.
Lemma 1: Let T = Tb,l be a floating-point system and

0: R - T the rounding to the closest floating-point
number. Then for all x,y e T, the following properties
hold:

a)s:= O(x+y)e T r:= (x+y)-se T,

b) r -< s

622

BOHLENDER: FLOATING-POINT COMPUTATION OF FUNCTIONS

c) A (z <x A z -< y =*z <r A z < s)
zeT

d) A (x-<z vy-<z r-<z).
zeT

Proof If x = 0 or y = 0, then r = 0. So a), b), c), d) are
fulfilled. Otherwise, we define d: = exp(x) - exp(y) and
assume without loss of generality that d _ 0.

Case 1:

d > 1 - s =x r= y a), b), c), d).

Case 2:

d _ 1 A x +y = =s = r= 0=a),b),c),d).

Case 3:

d I A x +y # O x +y e Tb,21\101
=*x+y= *O.m[1] ... m[211 - be,

with * e {+,-}, m[i] e {O,1-... ,b - 1l, m[1] $0, e e Z.
Then s and r fulfill one of the following two properties:
a) s = *O.m[1] ... m[1] * be

r = *0.m[1 + 1] . . . m[21] - be-1,

f) s = *(O.m[l] * m[l] + b-1) - be
r = *(O.m[l + 1] . . . m[21] - 1) * be-1.

Therein r and s can be denormalized and r can even be 0.
In both cases, a) and b) are evident; c) follows from

z <x A z <y - z <x + y;

d) finally follows from

r = 0 v exp(r) _ min(exp(x),exp(y)). U

Writing shortly (s,r): = x + y for s: = O(x + y), r: = (x
+ y) - s, we can now formulate the iteration method which
is the basis of our summation algorithm.
Lemma 2: Let T = Tb,l be a floating-point system.

Starting with x(0) e Tn, a sequence (x (k))k=0,1,2,...,, X(k) =
(x(k),X k), . . . X(k)) & Tn is recursively defined by

si: = Xik)

(sp+l,X(k+1)): = sp + x(k) p = 1(1)n - 1,

x(k+l) =S

wherein sp e T are auxiliary variables.
Then the sequence (x (h))k=0,1,2,... has the following

properties:

a) A xfk)=fxfo
keN i=1 i=l

b) A A (n-<ki <j xfk) <xk)).
k N i,je Il ,---,nl

Proof: a) is an immediate consequence of Lemma 1-

a). b) is proved by induction over k. It is trivial for k = 0,

so let us assume that it is valid for any k N.
Case 1: If k <n - 1, then 4k) < x)k) whenever n - k

i < _ n. For p = n-k - 1(1)n, the following properties

can again be proved inductively:

n - k - 1 _ i < j _ p - 1 =*X k+l) < X(k+l)

n - k - 1 _ i _ p - 1 > Xk+l) < S

n-k- _ i _ p-1, p+l1_j _ n - >x('+') _X(k)

p + 1 _ i <j _ n ==~x)k) < X5k).

(10)

(11)

(12)

(13)
Properties (10)-(12) are clear for p = n - k - 1, and
property (13) is clear for all p = n - k - 1(1)n. So let
(10)-(12) be valid for any p e In - k - 1, - * *n - 11; then
(10)-(12) can be proved for p + 1 as follows:

X(k+1) ., s
n-k-1 _ip-1

A x(k+l) < X()k) -X n- - - (xtk+1) <Sp+1
ll.c) n-k-l =-i=p-1

A x(k+l) < X(k+l) (A x(k+l) < s
ll.b),d),(10) n-k-1=l=p

n--Aie x(k+l) < x(k+l))
n-k-l =i <j=p

(10),(11) for p + 1.

3) (13) A xP+ < xi , A x -< x5k)
p+2_j_n 11(d) p+2'j_n

= (12) for p + l.
(12)

Therefore, (10)-(12) are valid for allp = n - k - 1(1)n. In
the case p = n, we get from (10) and (11)

n - (k + 1) _ i <j < n =*X(k+1) < X(k+l)
which concludes the induction step over k.

Case 2: If k _n - 1, thenxk) <x (k) whenever 2 _ i < j
< n. So the same assumptions hold as in the case k = n -
2, and the induction step can be done as in Case 1.
Thus b) is proved for all k & N. U
In Algorithm 1, the method from Lemma 2 is applied in

Tb,21 on the computation of the sum of n double-length
floating-point numbers. Some modifications are made: the
index t takes the role of n - k in property b) of the lemma;
zeros are eliminated; the iteration is stopped, if the result
can be determined from the summands easity.
Theorem 2: Let T1 = Tb,j, 1 _ 3, be a floating-point sys-

tem, 0: R -, Tbl , and xi & T21 (i = (1)n) n double-length
floating-point numbers. Then algorithm 1 determines an
approximation s e T21 of 2' 1 xi with the property

n
a) A A O E xi = as.

(Xi)IE7413ae tV, A, m(A=0M1b)1 i= 1

Furthermore, the following properties hold:
b n n n x

b) A A (xi c Tj a= E3 Y, =Xi xi
(Xi)eT2 0eV,Cf1. \i=l i=l i=l

623

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

Algorithm 1. Sum of n floating-point numbers.

624

BOHLENDER: FLOATING-POINT COMPUTATION OF FUNCTIONS

n n
c) A A xi Yi

(xi), (Yi)E 721 03 e I{V, ,&,0 i=1=j
n n

->3 Xi -< r3 ,Yi)
i=l i=l /

n n
d) A A o E (-xi) -3 Xi

(xi)eTI7 a E 11o, =O(1)b)} i=1i

X n n n
A (v E(-xi)' =-A L:xi A A (-Xi)=

(Xi)TIF7 =l'2=l i=

n X
-V Xi)

i=l

n n n
e) A A Xi EXi xi

(xi)ET2 Oe$V,A,O0j i=1 i=l

wherein e* is defined as in Theoreixi 1.
Proof: As we have seen in Lemma 2, the sum of the xi

does not change and they are gradually ordered wrt the
relation <. Therefore, the iteration stops after at most n
- 1 steps.

Case 1: If the algorithm stops because n _ 1, then a) is
trivially fulfilled.

Case 2: If the algorithm stops because t = 0, then all xi
are ordered according to -< and the greatest summand xn
is the result s, unless the last 1 - 1 digits of xn are all zero.
In this case, b-21 has to be added to or subtracted from the
mantissa of xn to take account of the influence of Xn-1 on
the result.

Case 3: If the algorithm stops because the summands
xi, **,Xn-1 have no significant influence on xn, i.e., if they
cannot change sign, exponent and first 1 + 1 digits of xn,
then xn is the result s.
The properties b)-e) follow immedately from Theorem

1. .
Remarks: 1) The approximation s is computed with

double length and rounded to the single-length result os
afterwards. Therefore, it can be expected to be precise
enough after the first pass. When catastrophic cancellation
occurs, additional passes may be necessary to obtain the
desired accuracy.

This result was confirmed by simulations performed on
a UNIVAC 1108. We computed sums of up to 1000 sum-
mands and found that our algorithm was nearly constantly
2.5 times slower than a single precision algol for-state-
ment.

2) If the exponents of the xi E Tbo21 (i = 1(1)n) are
bounded by constants el,e2, i.e., if

A exp(xi) e lel,el + ... ,e2j
i= l(lMn

then an exponent range lel, ... ,e21, el: = el-2 * 1 + 1, e2:
= e2 - rlogb(n)l, is needed for intermediate results in xi
and for s.

This can be achieved by first decomposing the input
data xi into signed mantissas mi and integer exponents
ei.

3) Let xi, yi e Th, (i = l(1)n) be floating-point numbers.

By applying Algorithm 1 on the products xi - yi E Tb,21, the
scalar product o L= xi-yi can be computed for all
roundings o & jv,A,IJM,,(j = O(1)b)). As matrix products
and linear mappings are componentwise defined as scalar
products, we can compute the following functions:

Tn X Tn 3 (x,y) - O(x *y) e T (scalar product)
TnXn X TnX 3 (A,B) -3o(A *B) Tnxn (matrix

product)

Tn x3X (C - x + c) e Tn (linear mapping)
wherein C E Tnxn is a fixed floating-point matrix and c
E Tn a fixed floating-point vector.
Gruner [2] applied these functions on several matrix-

inversion algorithms and got error bounds that are better
than those for single-precision computation by a factor of
about n. Furthermore, these error bounds are valid in all
cases; whereas, for single-precision computation (as well
as for ordinary double-precision computation) additional
assumptions are needed.

4) Algorithm 1 was intended mainly for the computation
of scalar products. Some storage space is wasted, if only the
sum of n single-precision floating-point numbers xi E T
is needed. This could be avoided at the cost of more com-
plicated'termination criteria.
As matrix multiplication is the most interesting appli-

cation of Algorithm 1, we want to mention some properties
that were proved by Kulisch and Bohlender [71 in abstract
spaces. In the context of the present paper, these proper-
ties follow immediately from Theorem 2.
Theorem 3: Let T = Tb,l, 1 _ 3, be a floating-point sys-

tem and Tnxn the set of n X n matrices with components
in T. The floating-point matrix operations ij: Tnxn X
Tnxn o Tnxn are defined by

A A i B: = D (A * B),*E+,-,,
A,BeThnxn

C] E V,A,O&,}.

Then the following properties hold for all * E +,-, *:

a) A A
A,BeTnXn DE3V,A,OM1

(A *Be Tnxn

== AAB= A *B)

b) A A (AEJB.CE3D
A,B,C,DeTnXn oelv,A,o4

=A B.CjD)

c) A A ((-A) m (-B)
A,Be&ThXn oe{o,(gi=0(1)b)B
= -A m B A (-A) E B = A E (-B) = -A El B

A Xn(-A)f (-B)W= -AAB A (-A)Ai(-B)=A,Be Tn

-A7B A (-A) v B=A v (-B)=
-A A B A (-A) A B = A A (-B) =-A AB)

625

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

d) A A IA*B -A + Bl_e*IA*BI.
A,Be,TnXn o3fv,A,o,j

III. THE PRODUCT OF n FLOATING-POINT NUMBERS

If xi e Tb,l (i = 1(1)n) are floating-point numbers, then
their product can be computed exactly in Tb,nl. and
rounded afterwards. But this computation requires n - (n
- 1)/2 multiplications of single-length mantissas. There-
fore, we will replace the exact result lli= xi by a double-
length approximation ~ x1 e Tb, 21 and return to using
lp,=1 xi only if this double-length result turns out to be too
inaccurate. The following lemma gives a criterion for the
property

n
V Cf3 xi= Cl xi. (14)

OEIV,A,01j i=l i=l

Lemma 3: Let T = Tb,l be a floating-point system, 2 _
n _ b21-2 and xi E T (i = 1(1)n) floating-point numbers.
With the downwardly directed rounding V21: R Tb,21
from (2), an approximation P2: = Mt l xi can be defined
by

n
P2: = 1 Sgn(Xi) V21(.' V21(V21(IX1I - IX21)

i=l1

1X31) ... XnI) (15)

With mant(p2) = m = 0. m[1] ... m[21], (14) holds if

O-m[1]---m[1+ 1] <m A 0-m[l]...ml+ 1]
+ b-(1+1) > m + 2(n - 2)b-(21-). (16)

Proof: For x,y E Tb,21, we get from (2) and Theorem
1-d)

72l(IXI IYI) IXI - IYI C V21(IXI jYI)/(A1 -b

Considering that the innermost product in (15) can be
executed exactly, multiple application of this inequality
delivers

IP21 I Xi | P21/(l -b-(21-1))n-2
-i= 1

Using Bernoulli's inequality and the assumption n _
b21-2Iwe find, like Wilkinson [11]

ao

1/1 -(21-1))n-2 I + E((n - 2)b-(21-1))i
i=l1

_ 1 + 2(n - 2)b-(21-1).
Therefore, the following interval I E IR contains the exact
product:

L.II xi| e I: = [IP21,1P21. (1 + 2(n -2)b-(21-))].

(17)

With these preparations, the lemma can be proved as

follows:

(16) == (O * m[11 ... m[1 +l]< m A0O *m[l] ... m[1 + l]
+ b-(1+1) > m - (1 + 2(n - 2)b-(21-1)))

- * I srlTb,l+l = (14)] (17)
As it is convenient to treat signs, exponents, and man-

tissas of the floating-point numbers xi separately, we in-
troduce the following notations:

a) sp E J+1,-11, mp = 0*mp[1] ... mp[l + 2], ep e
z
variables for the sign, mantissa, and exponent of
the product p, respectively; the last digit mp [1 + 2]
of mp may be a dual digit which indicates whether
the result is truncated (mp [1 + 2] = 1) or exact
(mp[l + 2] = 0);

b) mi = mi[O] mi[1] ... mi [1], i = 1()n
auxiliary variables with a carry digit mi [0]; ma, mb,
mc, md alike; m = 0 - m [1] ..* m[21] is a double-
length mantissa;

c) m: = mj X mi
the exact double-length product of the mantissas
mj and mi, provided that neither mj nor mi has a
carry;

d) (ma,mb): = m
the decomposition of the double-length mantissa m
into two single-length mantissas ma: = 0 * m[1] -

. m[l], mb: =O * m[l + 1] ... m[21].
Then the following theorem holds:
Theorem 4: Let T = Tb,l be a floating-point system, n

. b21-2, xi = T(i =(1)nL Then Algorithm 2 determines
an approximation p = 1l xi E Tb,l+2 of 1ll1 xi with the
property

n
a) A A ° I xi = p.

(xi)eTw ,^,C(=()) i= 1

Furthermore, the following properties hold:
n n n \

b) A A (rlxiE T=3 flxI xi= 1 X)
(Xj)e" Q3elV,A,34 \i=1 .i=1 i-

in n
c) A A (II xi ' I

(xj),(yj)e71 r.3 v,Fj ,o,,3 i=l i=

n n
=~0 fi xi .3o1y

i=1 =
n n n

d) A A fix- °flxi _ e lxi
(Xj)e' oesV,A,o,3i=l i=l i-l

Proof: b)-d) follow immediately from Theorem 1, so
we only have to prove a).

Case 1: a) is trivial if the algorithm stops because n _ 1
in the decomposition &.

Case 2: If "error = 0" in the test T, then no rounding
error has occurred in i2. Therefore, mp can be determined
in r from ma and mb. Otherwise, some mantissas md have
been neglected in the course of 7r2. Then condition (16)
from the preceding lemma determines whether the dou-
ble-length resultP2: = sp . (ma + mbh bh-) * be is precise
enough.

Case 3: If md > 0 A 1 > md + 2(n - 2)b-(1-2), then

626

BOHLENDER: FLOATING-POINT COMPUTATION OF FUNCTIONS

condition (16) is satisfied; therefore, the first 1 + 1 digits
of the mantissa mp are correct and mp [1 + 2] = 1 indicates
that some digits # 0 are cut off.

Case 4: If neither of the preceding cases applies, then
generally the double-length result P2 can no longer be
rounded correctly for all ol E 1V,A,0,1}, and the product
has to be computed exactly by the algorithm ir,.

In this algorithm the mantissas mi of the floating-point
numbers xi are multiplied recursively and their products
are stored as multiple-length mantissas in those mi which
are no longer used. So, for all j = 2(1)n, we have
n
yj xi = sp- [(mU) + my). b-I + my)
i=l1

*b-21 +-- m(') -b-(j-1)1)-Mj+l-Mj+2 .. Mn] -bep.

Therein mj+i, *-* *, mn are the mantissas of the floating-
point numbers xj+1, * , xn and mj', . . ., m(/) represent
the multiple-length product Ili=, mi.
The double loop in the normalization algorithm v can

be run through at most n * 1 times, because the product is
not zero. After this loop the jth digit of mi is the first digit
which is not zero. Therefore, the result can be determined
from the following mantissas, and mp [1 + 2] again indi-
cates whether there are digits # 0 truncated off. U
Remarks: 1) Condition (16) of Lemma 3 shows that for

reasonable n the approximation P2 is mostly precise
enough for the computation of the product p. But no
double-length result can be sufficient in all cases to get the
correctly rounded result. This is shown in the floating-
point system T = T10,2 by the following example:

0.2 E T 0.5 E T 0.214 - 0.514 = 0.1 .10-13 E T

but the intermediate result 0.214 = 0.16384- 10-9 is no
double-length floating-point number; i.e., 0.214' T10,4d
Therefore, the product 0.214 00.514 cannot be computed
exactly by recursive double-length multiplication.

2) If exp(xi) E le 1, A* * ,e2 (i = 1(1)n), then

exp (tI xi) E In-el-n+ 1,.--,n-e2l.
i=l

3) The condition n < b21-2 is no serious restriction, as
the constant b21-2 is very large for ordinary floating-point
systems. It can be dropped if the product is computed
exactly for n > b21-2.

4) In the course of the double-length product r2, the
mantissas md are lost. Therefore, the algorithm 7rn cannot
use the results of r2 and has to start anew. By storing the
mantissas md, this loss could be avoided at the cost of
storage space and complexity of ira.

IV. ROOTS OF FLOATING-POINT NUMBERS

For a floating-point number a E T, we will determine
E3 nNa for o E Iv,A,l3j using a modification of Newton's
method. At first, we introduce some notations:

IR: = {[a,b]; a,b E R a hbi denotes the set of all closed
real intervals and IT: = {[a,b]; a,b E T, a _ bl a IR de-
notes the subset of all closed floating-point intervals. Then

the monotone, outwardly directed rounding 0: IR - IT
can be defined by

A x=X [x1,x2]: = [vxi,Ax2] (18)
X= [xl,X2]eIR

and arithmetic operations4: IT X IT IT, * E
{+,-X,I by

A X*$Y: = (X * Y), * & 1+,x/. (19)3
X,Ye IT

In the case of the division, 0 $ Y is assumed. Then the
following theorem delivers-under appropriate condi-
tions-the smallest floating-point interval containing the
zero of a function.
Theorem 5: Let T = Tb,l be a floating-point system, x 1

x&)E T, 0 < x°) < xT), two positive floating-point num-
bers, and f:X(°): = [xt°), xT)] R a real-valued function
with the following properties:

a) A f() = 0

b) A A 0<m1< f(x) <m2<co,
ml,m2eT xeX(0)\t} -X - -

M: = [m1,m2]
c) there is a function F:X(o) n T IT, with

c1) A f(x) E F(x)
xeX(0)nT

c2) A (F(x) ' [0,0] v F(x) _ [0,0])

c3)tE T==F(Q) = [0,0]
where t is the zero from a).

Starting with X(o), let a sequence (X(k))k=0,1,2 ... of in-
tervals X(k) = [x(k), x j)] E IT be generated by
d) X(k+l): = X(k) n ([m(X(k)), m(X())]

0 F(m(X(k))) 0 M), k = 0,1,2,...

wherein m(X(k)) fulfills the condition e) m(X(k)) e X(k)
n Tand

e 1) MX(k)T)e x ik) em (k)

if X(k) n T has at least 3 elements

e2) m(X(k)) = x&) if k is even
if k is odd

Qtherwise.

For this sequence (X(k))k=0,l,..., the following properties
hold:

f) A o Xk]C)
keN

g) A X(k)QnT#(,
keN

3For real intervals X, Y e IR the operations * are defined byX * Y:
= I * y; x e X, y e Y.; the order relations < and < are defined by [xb,x2]

I,Y2]: (xl = y1 X2 Y2), X < Y: (X _Y AX Y).

627

2.
1:

De
co
mp
os
it
io
n.

ta
ls

e
ni

b
mb

-
1

tt
ma

ma
+

b

m
a

<

b-
1

>

m
a

o.
ma

[2
]m

a[
3]

.
.
.

ma
[l
]r
rb
[1
]

smb
o.

rr
b[

2]
rr

b[
3]

..
.

mb
[l
1]
md
[1
]

in
d

o.
rm

.,
d[

2]
md

[3
]

..
.

md
[l

]
o

.,
e

r
;

}
~
~
t
r
7
u
e
Q

[f
al

se
e
r
r
o
r

1

3p
-m
l-
be
p

I>
1pm

l
be
p

_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
-
-
-

2.
2:

Do
ub

le
-l

en
gt

h
pr

od
uc

t.

Al
go
ri
th
m

2.
Pr

od
uc

t
of

n
fl
oa
ti
ng
-p
oi
nt

nu
mb

er
s.

-1

..
.l

rr
ib

[l
]o

_
_
_

v

:2]
n.

. r
b[l

]
o

e
..
..
..
.5
1

+

1v
i -

-

t
r
u
e

~
~

~
~

~
~
~
~
~
~
t
u
e
~
>

-
<

fa
ls
e

=
t
|
u
f

z

2(
1w
;2
) (1

2)
;
>

lf
al

se
|
7p

=
Sp
.
Tr

p.
fb

ea
ls

e

sIfal
se

P
:

sp
=o
xp

-1O
.Ir

,p[..
..

..
..

..
mp

[1
+1

l]
-e

p
l

be
(j
V)

+
~
~
~
~
~
~
~
~
~
~
~
~
~

I
-
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
I

(
i
)

'
..

..
..

Ic
'I
l3

z+
:1

22
P1

J
I

Z
fa

ls
e

fa
ls
e

|
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
e
p

:=
ep

-I
(i
-l
l(j

-
tj

T
.-

.E
:=3

('1
)1=
7
L
T
I
1
l

-

ot
-e
ad
(a
,n
),

v
r_

P-
Rn

~~
~~
~~
~~
~~
~~
~~
~~
.=

[k
]

z

ls
e\

_
fa
ls
e

<a
=o
?
>

er
ro

r
fa

ls
e

|
f
l
e

an
no

un
ce

me
nt

r
t
-

i
-

1)

n
e
v
e
n

x
o2
(
a

)
k

iT
i

t
r
u
e

|
|m
p[

1-
3j+k

+
L]:=

mi
k

Is
:=
+1

I|s
:=
-1

i

|a
=
-
a

|
fa
ls
e

a
:

a,
1]

n
|
1

|
:

[,
a]

|
_

n;
Px
7

n
l

(a
n]

M
:=

[V
n,

n&
6

(a
n-
1)
]

2.
4:

Ex
ac
t
pr
od
uc
t.

2.
5:

No
rm

al
iz

at
io

n.

Al
go
ri
th
m

2.
Pr

od
uc

t
of

n
fl

oa
ti

ng
-p

oi
nt

nu
mb
er
s.

9

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

h) A X(o)DX(l) D ...:DX(ko)
koeN

= X(ko+l) D X(ko+2) = X(ko+3) =

i) X(ko+2) = 0[,] =

Proof: Properties f) and g) have to be proved simul-
taneously by induction. As the properties trivially hold for
k = 0, we can assume that they hold for any given k E N.
Because of property g) for k, m(x (k)) can be chosen ac-
cording to condition e); therefore, X(k+1) exists.
The induction step can be executed similarly as in Ale-

feld and Herzberger [1]:
From the identity

M (X(k)) - f(m(X(k))) (X(k)))
f(m(X(k)))
m(X(k)) -

and property b), we get with the inclusion property of in-
terval arithmetic

[tt= [[m (X(k)), M(X(k))]
- f(M(X(1))), f(M(X(k))) I M.

Note that 0 M and that this property holds also for
m(X(k)) = t. With cl) and the definition of the rounding
0, we get

[m(X(k)), m(X(k))] - F(m(X(k)))/M

a [m(X(k)), m(X(k))] - F(m(X(k))) 0 M

0 k,] a O([m(X(k)), m(X(k))]- F(m(X(k))) 0 M)

= [m(X(k)), m(X(k))] 0 F(m(X(k))) 0 M.

-=> O %l ' X(k+l).

So we have proved f) for k + 1. Property g) is a trivial
consequence of f).

For the proof of properties h) and i), we first define
functionsf1,f2: X(°) n T TbyF(x) =: [f1(X),f2(x)] for

all x E X(O) n T. Then method d) can be expressed com-
ponentwise

L max$x k), m(X(k)) v f2(m(X(k))) A mll,
x(k+1) if f2(m(X(k))) >

0

m(X(k)) v f2(m(X(k))) A Mi2,

if f2(m(X(k))) _ 0

m(X(k)) A fi(m(X(k))) v Mi2,

xik+1) =
p if f,(m(X(k))) _ 0

minlxNk), m(X(h)) A fi(m(X(k))) V ml},
if fd(mX(k))) < 0. (20)

Now we distinguish the two cases of e).
Case 1: X(k) n T- has at least 3 elements. Then xik) <

MB(Xe(f))< X e)g
Because of property c2), we get

a) F(m(X(k)))- 0 fi(m(X(k))) _0 :> X2k+l)
= m(X(k)) A fi(m(X(k))) v m2 _ m(X(k)) < Xk)

or

()F(m(X(k))) _0 = f2(m(X(k))) <0 XXkk+l)
= M(X(k)) V f2(m(X(k))) A m2_ m(X(k)) > X(k)

So, in each case

X2k?+) - xf+1) < Xk) - Xik) > X(k+l) C X(k).

As X(o) n T is a finite set, an index ko must exist, so that
X(ko) n T has at most 2 elements.

Case 2: X(k) n T has at most 2 elements. Then one of
the following two cases occurs. a) X(k) n T has exactly one
element. Then

X(k+l) = X(k) = O [=

X(k+l) = X(k+2) = ... = X(k) = o
X)x(k) n T has exactly two elements. Then one of the

following three cases occurs:

f3) t=x(k)=*f(X k)) = O *F(x(k)) = [0,0]
(32) x= o-* f(x2)) = 0 F(x k)) = [0,0]

,B3) 4k) < <x?k) f(x(k)) <0 <f(X2)

~=~F(xtk)) < [0,0] < F(x(k))
(c)

In case ,B3), we have
X(k) = X(k+l) = 0(

in the two other cases, e2) and (20) imply that either

X(k) D X(k+l) = X(h+2) = ... = kt] = o ktI

or

X(k) = X(k+l) D X(k+2) = .-- = k' I = o [t
Remarks: 1) Method d) delivers 0 [,] = [v4,At], even

ifF is a bad approximation of f (provided that condition
c) is satisfied) and even if m(X(k)) is a bad choice (provided
that condition e) is satisfied). By an inappropriate choice
ofF and m(X(k)), method d) may degenerate into a trial-
and-error method.

2) A similar method was given by Herzberger [3]. But
without the assumptions c2), (3) and e), property i) could
not be proved. In fact, c2) is the crucial additional as-
sumption compared with Herzberger's version of Newton's
method. Without c2) we cannot know whether a given x
E T is left or right of the zero. Therefore, we cannot expect
that i) is valid, and in general we could not even find
[v(,,&] by trying out all floating-point numbers in X(O).

3) The assumptions a) and b) imply that t is the only
zero of the function f in the interval X(°) and that f is
Lipschitz-continuous at the place t. Apart from this, f need
neither be monotone nor continuous.

In the following theorem, the results of Theorem 5 are
applied on the computation of arbitrary roots of floating-
point numbers.

630

BOHLENDER: FLOATING-POINT COMPUTATION OF FUNCTIONS

ca rd1(X,-oT).2? true

false

y := °(xl+x2)/E

I :=X (y,]~G (yny] a,l

I X := xno(Lxl,xl] 62 (0(0,xIix 0 [a,a])OM)-I
IX :- Xn([x2,x2]@ (o [02,021 <3 [a,a]) OM)I|

X s-X I

Algorithm 3. Root of a floating-point number.

Theorem 6: Let Tb,l be a floating-point system, a e T
a floating-point number, and n _ b21-2 a positive integer.
Then Algorithm 3 terminates after a finite number of it-
erations and if a - 0 or n is odd, then it delivers a float-
ing-point interval X e IT with the property

a) A X= [4nVa,Vna] =Vna n /a]
aeT

Provided that nvx/a c R exists, the following properties
hold:

b) A A (n aTona=na)
acT OeIV,A,3oj

c) A A (ac b 3na_n\)
a,beT OetV,A,O}

d) A A InVS-onVl c *InV/I
aET oslv,A,oD5J

and, if n is odd

631

IEEE TRANSACTIONS ON COMPUTERS, JULY 1977

e) A A on -Vna
aeT oDeJo;At=0(1)b1

A (V =a= -& na/ A A&N -a= -vnnVa).
aeT

Proof: a) is trivial for a = 0. For a > 0, Theorem 5 is
used with

X(°)* = J[l,a],
l[a,1],

M: [vn,nAA(an-1)
1[n v (an-I), 2&n

if a _ 1
if a < 1

i, ifa_1
], if a<1

f(x): = xn - a

F(x): = O [xn,Xn] 0 [a,a]

wherein O[xn,xn] = [vxn,AxnI is computed with the
product from Section III. Then assumptions a)-c) of
Theorem 5 are satisfied; therefore, the iteration stops after
a finite number of steps and delivers O [u] =

o [n4,a naI= [VnVa,Anx/a]. For a < 0, nVa does
only exist, if n is odd. This case can be easily reduced to the
case a > 0. Properties b)-e) follow immediately from
Theorem 1. H
Remarks: 1) Algorithm 3 delivers the smallest interval

containing na, whereas in properties b)-e), the rounded
result 3nVa for De v,A,o3,1 is needed. As can be seen

from (2)-(5) and (18), oVn'"a for E lV,A,0o,0b1 can be
determined from o [n'-v'a ,n.va-]. For Do, n\a (, = 1(1)b
- 1), Algorithm 3 has to be executed in T = Tb,l+1.

2) If exp(a) E lei, * * *,e2}, then an exponent range In - el
- n + 1, * *,n - e2l has to be provided for intermediate
results.

3) The speed of the algorithm could be improved by
computing better starting values of X(o) and M and by
replacing the interval M by a sequence of intervals
(M(k))k=0,l,2... (see, e.g., Herzberger [3]).

REFERENCES

[1] G. Alefeld and J. Herzberger, Einfahrung in die Intervallrechnung.
Mannheim: Bibliographisches Institut, 1974.

[2] K. Gruiner, "Fehlerschranken fur lineare Gleichungssysteme,"
presented at the MRI Oberwolfach, 1975.

[3] J. Herzberger, "Ober die Nullstellenbestimmung bei niherungsweise
berechneten Funktionen," Comput., vol. 10, pp. 23-31, 1972.

[4] W. Kahan, "Further remarks on reducing truncation errors,"
Commun. ACM, vol. 8, p. 40, Jan. 1965.

[5] U. Kulisch, "An axiomatic approach to rounded computations,"
Numer. Math., vol. 18, pp. 1-17, 1971.

[6] , Uber die Arithmetik von Rechenanlagen. Jahrbuch Uber-
blicke der Mathematik. Mannheim: Bibliographisches Institut,
1975.

[7] U. Kulisch and G. Bohlender, "Formalization and implementation
of floating-point matrix operations," Comput., vol. 16, pp. 239-261,
1976.

[8] P. Linz, "Accurate floating-point summation," Commun. ACM, vol.
13, pp. 361-362, June 1970.

[9] M. A. Malcolm, "On accurate floating-point summation," Commun.
ACM, vol. 14, pp. 731-736, Nov. 1971.

[10] M. Pichat, "Correction d'une somme en arithmetique a virgule
flottante," Numer. Math., vol. 19, pp. 400-406, 1972.

[11] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Engle-
wood Cliffs, NJ: Prentice-Hall, 1963.

[12] J. M. Yohe, "Interval bounds for square roots and cube roots,"
Comput., vol. 11, pp. 51-57,1973.

[13] --, "Roundings in floating-point arithmetic," IEEE Trans.
Comput., vol. C-12, pp. 577-586, June 1973.

Gerd Bohlender was born in Kandel, Germa-
ny, on November.3, 1950. He received the Di-
plome in mathematics from the University of
Karlsruhe, Karlsruhe, Germany, in 1973.

After receiving his degree he joined the Insti-
tute of Applied Mathematics, University of
Karlsruhe. His current interests are in floating-
point computation and the evaluation of math-
ematical functions.

632

