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Corollary 8: For Sn', 1< i < k, let yi be the greatest com-
mon root of 3 and f3i when they are commensurable, and let
yi be unity otherwise. Let

m < min {(ni- 1) log flpi + logj yTi (25)

and let Qi=RiR,' for 1<i<k. If Q=Q.Q' for any 1<j<k
where Q' is composed from the mappings Qi, 1< i< k, then
Q = Qi.
The fact that m must be bounded from above in (25) in

order to guarantee control of accumulated error and avoid
situations such as that exhibited in Fig. 10 demonstrates
that the phrase "carry more digits" does not always mean
that greater overall accuracy will follow, and such cliches
should not be used as a substitute for a true understanding
of the formal structure of floating-point number systems and
base conversion.
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The Correspondence Between Methods of

Digital Division and Multiplier
Recoding Procedures

JAMES E. ROBERTSON, MEMBER, IEEE

Abstract-This paper relates previous analyses of the binary SRT
division to the theory of multiplier recoding. Since each binary quo-
tient digit has three possible values, the quotient resulting from the
SRT division is in recoded form; in this paper it is shown that the
recoding is a function of the divisor, and the method for determining
the characteristic Boolean function of the recoding is presented. The
relationship between the division and the recoding is established by

scaling the division in such a way that the scaled "divisor" becomes a
constant. Higher radix results are also discussed.

Index Terms -Binary arithmetic, division, minimal representa-
tions, multiplication, multiplier recoding, redundancy.

INTRODUCTION
STATISTICAL analyses of the so-called SRT' method

of binary division have been conducted by Freiman
[1 ]2 and Shively [8]. At each recursive step of this di-

vision procedure, three alternatives are possible; shift left,
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1 The earliest published description of a binary division involving re-

dundancy in the representation of the quotient is contained in [4].
2 Numbers in brackets refer to articles listed in the Reference section.

add and shift left, or subtract and shift left. One may there-
fore take the point of view that each quotient digit corre-
spondingly has one of the three values 0, -1, or + 1. Thus
the division procedure results in a quotient in redundant re-
coded form. It is the first purpose of this paper to establish
the correspondence between the quotient recodings and a
class of multiplier recodings.

It is first necessary to review some aspects of the theory of
multiplier recoding. For the binary case with recoded digital
values of + 1, 0, or -1, a recoding can in general be char-
acterized by the choice of two Boolean functions. For the
important class of arithmetically symmetric recodings
(defined below), the two Boolean functions are duals of one
another; hence this class of recodings is characterized by
the choice of one Boolean function. A third class of recod-
ings is next defined by restricting the Boolean functions in
such a way that each function can be determined by the
choice of a single binary numerical parameter in the interval
0 to 1. It is this third class of recodings that corresponds to
the quotient recodings of the SRT division.
The next step in establishing the correspondence is that of

scaling. It is obvious that the value of the quotient remains
unchanged if both the divisor and dividend are multiplied
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by the same parameter; similarly the detailed rules for each
recursive step can be scaled in such a way that both the
value and the particular recoded form of the quotient re-
main unchanged [3]. One further observation is that, al-
though in practice the divisor for the SRT division is re-
stricted to the range from 1/2 to 1, the method is valid for all
divisors greater than 1.

Although the primary emphasis here is on the binary case,
with redundancy limited to the use of three digital values
-1, 0, and + 1, procedures and examples are described for
establishing a correspondence with known division methods
involving greater redundancy with radix 2, and with higher
radix division methods.

REVIEW OF THE THEORY OF MULTIPLIER RECODING

A multiplier y is represented in radix r by a sign digit yo
and m nonsign digits Yl, Y2, n,Y. The algebraic value of
a fraction y in radix complement representation is then

m
Y = -Yo + r Yi.

i= 1

The multiplier y is said to be in conventional form if the sign
digit yo is either 0 or 1 and if each nonsign digit yi has one
of the r values 0, 1 2, r-1.
The effect of recoding is to transform y into m digits

y' (i= 1, 2, , m), with each y' selected from the extended
set of values -(r-1), ,1, , 1, r-1 or from a sub-
set thereof. If the extended set of values over which yj may
range has more than r values, the recoded representation is
redundant.
The basic equation for multiplier recoding follows from

the observation that the addition of a mode digit mi in digital
position i is compensated for by the subtraction of rmi in
digital position i+ 1. The net effect at the ith digital position
is then

Y.= yi + mi - rmi1. (1)

The requirement that the algebraic value of y shall remain
unchanged by recoding is expressed as

m m

_yo + r-i = Er-iY' = y
i=l i=l

and by substitution of (1), leads to the boundary mode
conditions mo=yo and mm=0. Restriction of the range of
yj to -(r-1), , -1, 0, 1, r-1 restricts each mi to
one of the two values 0, 1.
The more usual practice in multiplication is to inspect

first the least significant digit Ym and direct attention there-
after in a serial fashion to digits of greater significance to the
left of ym. The recodings considered here are right-directed;
that is, the most significant digits are inspected first, and
attention is directed thereafter serially to digits of lesser sig-
nificance to the right.

For a right-directed recoding, (1) is applied recursively
with i assuming the values 1, 2, , m, in ascending order.
For each value of i, the values of mi -1 and yi are known,
and mi and y' are to be determined.

For the binary case (r= 2), each yi and mi have one of the
values 0, 1 and may be treated as Boolean variables, and yv
has one of the three values -1, 0, 1. The sign of yv is mi -1,
the magnitude of y' is yi(mi (where 03 is the symbol for
EXCLUSIVE OR); therefore

yi = (-l)ri-l(yi mi). (2)

The unknown mode digit mi can be determined by the
Boolean equation

Mi= m1iylYi v jiJf v mi_gi (3)

in which mi- 1gi, for example, means mi -1 AND gi, the sym-
bol v represents the INCLUSIVE OR, and yi means NOT yi.
The Boolean functionsfi and gi are in theory arbitrary func-
tions of conventional multiplier digits other than yi. For
the right-directed recodings discussed by Penhollow [5],
the functional dependence of fi and gi was restricted to
digits Yi j, for j. 1, that is, on multiplier digits to the right
of Yi.

It is sometimes convenient to impose the restriction of
arithmetic symmetry on the recoding. A recoding is arith-
metically symmetric if the recoded representation of -y
can be found from the recoded representation ofy by replac-
ing in each digital position 0's by 0's, + l's by - l's, and - l's
by + l's. The effect of arithmetic symmetry on (3) is that f1
and gi are dual Boolean functions, i.e.,

gi= f

THE SIMPLEST MINIMAL RIGHT-DIRECTED
BINARY RECODING

A binary recoding is minimal if the probability that yv is
nonzero is minimal. The simplest such right-directed recod-
ing [5] is obtained if, in (3),

fi = Yi+lYi+2; gi = ff = Yi+1 v Yi+2- (4)
Since gi=fD, the recoding is arithmetically symmetric.
The tabular equivalent of (2) and (3), with fi and gi defined

by (4), is given in Table I. Table II presents the numerical
example of the recoding of the binary fraction 45/256
=0.00101101, using the rules embodied in Table I.

DIVISION AS A METHOD OF RECODING
The recursion relationship applicable to many varieties

of division is

Xi = rXi, - qid, (5)
in which r is the radix, i is an index ranging from 1 to m, the
number of quotient digits, d is the divisor, Xi- 1 and Xi are
successive partial remainders, and qi is the ith quotient digit.
The initial partial remainder X0 is the dividend. The basic
problem in division is that of selection of qi; this selection
is based on the values of the shifted partial remainder rXi1
and the divisor d.
The problem of selection of qi is eased if qi is redundantly

represented, that is, if each qi may have more than r values.
The rules for selection of qi, coupled with (5), characterize
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TABLE I

THE SIMPLEST MINIMAL BINARY RIGHT-DIRECTED RECODING

mi-l Yi J'+i Yi+2 mj Y'

0 1 0/1* 0/1 0 1
0 0 1 1 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
1 1 1 1 1 0
1 1 1 0 1 0
1 1 0 1 1 0
1 1 0 0 0 It
1 0 0/1 0/1 1

* 0/1 indicates that the digit may be either 0 or 1.
t 1=-i.

TABLE II

RECODING OF 45/256. THE RESULT OF THE RECODING IS
0.001 l00I1 =45/256.

Digits Corresponding Result of
Inspected Values Recoding Comments

1 mOY1Y2Y3 0 0 0 1 ml=O y'=O 1
2 M1Y2Y3Y4 0 0 1 0 M2=0 Y2=O
3 m2Y3Y4Y5 0 1 0 1 m3=0 Y3=1
4 m3Y4Y5Y6 0 0 1 1 M4=1 Y!4=1
5 m4 y5 Y6 Y7 1 1 1 0 m5=1 yS =O
6 m5Y6Y7Y8 1 1 0 1 m6=1 Y6=°
7 m6Y7Y8Y9 1 0 1 0 m7=1 Y7=1 2
8 M7Y8Y9Y10 1 1 0 0 M8=0 Ay=1 2,3

Comments: 1) mo=yo is the left boundary condition.
2) y9 and YIo are assumed to be zero.
3) The right boundary condition m8 =0 is satisfied.

.a method of division, aside from special procedures pre-
liminary to and following the recursive steps.

Division may be regarded as a recoding procedure if the
resultant quotient is represented in other than conventional
form. Let

TABLE III

SRT DIVISION OF 15/128 BY 2/3. THE RESULT OF THE DIVISION IS
45/256 = 0.001 1001 1.

2 xO
Xi = 2 xO

2 x1
X2 = 2 X1

2 X2
-d

X3 = 2 X2 - d

2 X3
-d

X4 = 2 X3 - d
2 X4

X5 = 2 x4
2 X5

X6 = 2 x5
2 X6
+d

X7 = 2 X6 + d
2 X7
+d

X8 = 2 X7 + d

= 0.001111
= 0.001111
= 0.01111
= 0.01111
= 0.1111
= 1.010101
= 0.010001
= 0.10001
= 1.01010
= 1.11100
= 1.1100
= 1.1100
= 1.100
= 1.100
= 1.000
= 0.1010
= 1.1010
= 1.010
= 0.101
= 0.000

15/64
q, = 0

15/32
q2 = 0

15/16
q3= 1

13/48
13/24

q4= 1

q5 = 0

q6 = 0

q7= I

q8= I

- 3/24 = - 1/8
- 1/4

- 1/2

- 1

- 1/3
- 2/3

0

Although the method is normally used with the divisor
normalized (i.e., either 1/2 < d <1 or -1 < d< - 1/2), the
method remains valid if the upper limit on the magnitude of
the divisor is removed (i.e., either d . 1 or d < - 1).
The recoding equivalent to that of Table II is obtained if,

in (6), d = 2/3, Q = 45/256, and Qd =15/128. The division
Qd/d illustrated in Table III, using the rules of the SRT di-
vision, yields a quotient Q', each digit qi of which is identical
with the corresponding digit Yj resulting from the right-
directed recoding of Tables I and II. The division example
of Table III is artificial in the sense that the divisor d= 2/3
cannot be represented in a binary computer of finite pre-
cision. In the table, 2/3 is represented as 0.1010 or a variant
thereof, with the length of the stroke indicating the period
of the repetitive pattern.

Q
Qd

(6)

where Q is the number to be recoded. Both the divisor d and
the product Qd are in conventional form; division by d then
produces Q', an algebraically equivalent but recoded version
of Q.
The simplest division with redundancy in the representa-

tion of the quotient is the binary SRT method. With r= 2,

each quotient digit qi may have one of the three values
-1, 0, or + 1. The selection rules are particularly simple;
they are:

1) if - 1/2<2Xj 1 < 1/2, qi=0;
2) if d20 and 1/2<2X -1, then qi=1, and if d20 and
2X_ 1 < -1/2, then qi= -1;

3) ifd<0and2Xi1l<-1/2, then qi==l, and ifd<0 and
1/2<2X-1, then qi= -1.

THE SCALED DIVISION
Many of the properties of a division method remain in-

variant under scaling by an arbitrary multiplicative factor
z, provided that not only (5) but also the rules for selection
of quotient digits are scaled by the same factor z.

Fig. 1 illustrates the mapping of IrXi - onto Xi| for the
SRT division with d= 2/3. The analysis of the division of
Fig. 1 is similar to that of Freiman, but differs in two impor-
tant respects.

1) The interval of shifted partial remainder magnitudes
(i.e., of 12Xi-1 ) is (0, 1) rather than (1/2, 1).

2) One step corresponds to the generation of one quo-
tient digit, rather than an addition or subtraction fol-
lowed by normalization.

The quantity 1/2, the abscissa of the discontinuity in the
mapping function in Fig. 1, is called the comparison con-
stant since the comparison of |2Xi 1 with this constant
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0 1/3 1/2 2/3 1

4- a-a3 yt r 8
1/2 1/6 1/6 1/6

12Xjl
Fig. 1. Conventional SRT division with d= 2/3.

0 1/4 3/6 1/2 3/4

W a' + 'y'+ 8'

I2uj_1

Fig. 2. Scaled SRT division.

determines whether qi is zero or + 1. The comparison con-

stant plays the following important role in the analysis of
the SRT division. If (1/2)- and (1/2)+ are defined by

I= lim
k2 Q)

I= lim A> 0,() o(2A)292 o(A +2 \' ^2O
then endpoints of intervals are 1/2 and the images of (1/2)-
and (1/2)+, namely 0, 1/3, 1/2, 2/3, and 1. The intervals thus
found are oc, /3, y, and 6 and the steady-state probability
that j2Xi 1j lies within each interval is 1/2 for cx and 1/6 for
,B, y, and 6. The probability that |qil is 1 is then the probability
that l2Xi-1I is in the interval (1/2, 1) and is 1/3. Since the
shift average <s> is the reciprocal of this probability,
<s>=3.

Fig. 2 shows the effect of scaling Fig. 1 by the factor
z= 1/2d= 3/4.

If the scaled partial remainder is denoted by ui, then
ui= zXi for each value of i. Thus each partial remainder,
including the dividend xo, is scaled. The divisor scales to 1/2,
and the comparison constant scales from 1/2 in Fig. 1 to

1/2z = 3/8 in Fig. 2. The images of the comparison constant,

i.e., the endpoints of the intervals, are also scaled by the
factor z. The probabilities associated with the intervals re-

main invariant; the probability densities, due to the scaling
on interval lengths, are scaled by the factor z- '. Equation
(6), with z= 1/2d scales to Q' = (1/2)Q/1/2, and the quotient
Q' resulting from the scaled division are identical not only in
algebraic value but also in digit pattern to the quotient
resulting from the conventional SRT division.

In effect, the conventional SRT division is characterized
by a comparison constant which is always 1/2; the divisor
value is the parameter that determines the properties of the
recoding. The choice of the scaling factor z= 1/2d results in
a procedure in which the "divisor" is always 1/2 and the
comparison "constant" (1/2)z becomes the parameter which
determines the properties of the recoding. More complicated
methods of division involve addition or subtraction of more
than one divisor multiple of the form nd, and perhaps values
of the radix r greater than 2. (The radix r is an integer, and
n is usually an integer, but is sometimes a simple rational

1/2

lxjl

0

3/8

lujI
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TABLE IV

SCALED SRT DIVISION WITH (1/2)Z= 3/8

xO
xo

2 x0,X1= 2 X0

X2 = ZX1
2 x2
-d

X3 = 2 X2 - d
2 X3
-d

X4 = 2 X3 - d
2 X4

X5 = 2 X4
2 X5

X6 = 2 X5
2 X6
+d

x7= 2 X6 + d
2 x7
+d

X8 = 2 X7 + d

= 0.000101101
= 0.00101101
= 0.00101101
= 0.0101101
= 0.0101101
= 0.101101
= 1.1
= 0.001101
= 0.01101
= 1.1
= 1.11101
= 1.1101
= 1.1101
= 1.101
= 1.101
= 1.01
= 0.1
= 1.110
= 1.100
= 0.1
= 0.000

q, = 0

q2 = 0

q3= 1

q4= 1

q5 = 0

6 = 0

q7 = 1

q8 = 1

fraction.) For these divisions, the scaling factor is z= 1/rd,
and the "divisor multiples" are, after scaling, of the form n/r.
The scaled version of the SRT division example of Table

III is presented in Table IV. The scaling factor is z= 1/2d
= 3/4, the dividend is (1/2)Q = 45/512, the "divisor" is 1/2,
and the comparison constant is (1/2)z = 3/8. The detailed
rules for selection of quotient digits are those given for the
SRT method, with the comparison constant 1/2 (and its
negative) replaced by 3/8 (and its negative) and with each
partial remainder Xi- 1 replaced by the corresponding
scaled partial remainder ui- 1. Note that each quotient digit
resulting from the scaled division is identical to the cor-
responding digits of Tables II and III. Equation (5) becomes
ui=2ui-1 -(1/2)qi, with the dividend uo=(1/2)Q=45/512.

THE CORRESPONDENCE BETWEEN MULTIPLIER RECODING
AND THE SCALED DIVISION

The first step in establishing the correspondence is to
show that the basic equation for multiplier recoding (1),
when augmented by the weighted sum of multiplier digits
Yi+ j, 1 <j<m - i, can be interpreted as the recursion rela-
tionship for the scaled division. The second step is to trans-
late the detailed rules for selection of quotient digits into
Boolean functions or an equivalent statement of the rules
for a right-directed recoding.

Equation (1) may be rewritten as

-mi1i + r-lyi = r-l(y'-mi) (7)

in which, for a right-directed recoding, mi 1 and yi are
known, and yj and mi are to be determined. Adding

rn-i

Z r-yj-1y
j=1

to both sides of (7) yields

mn-i 7 m-i

-mi_1 + E r--'yij = r-y-m + -yi+ (8)
j=O j=l

If rui- 1 is defined as
m-i

rui_1 = -m -1, + E r-j yi+j,
j=O

then
m-(i+ 1) m-i

rui = - mi + Z r iYi+j+1 = -mi + Z r-jyi+j.
j=O j=1

Substitution in (8) yields

rui-, = r '(y' + rui),
or

ui = rui- -ry-r (9)

Equation (9) can be interpreted as the recursion relation-
ship for division, (5), scaled so that the divisor becomes 1/r;
that is, z= 1/rd. The quantity rui-1 is identified with the
scaled shifted partial remainder, which is known, ui is the
partial remainder to be determined, and y' is identified as
the quotient digit to be determined by the selection rules.
The mode digit mi is identified as the sign digit of the partial
remainder ui.
The above analysis indicates that (5) for division and (1)

for recoding are of the same order of generality. Just as it is
necessary to augment (5) with a specific set of selection rules
in order to completely characterize a division, it is also
necessary to augment (1) with specific rules for determining
the values of recoded digits. One of the advantages of the
correspondence established here is now obvious. Sets of
selection rules augmenting (5) are known for a wide variety
of division procedures, including use of a higher radix than
the binary, and including use of quotient digit values which
are not integers. On the other hand, rules augmenting (1)
have been limited to radix 2 with recoded digit values of -1,
0, and 1. Thus, the translation of the quotient digit selection
rules into rules for right-directed recodings, to be discussed
in connection with specific methods of division in examples
to follow, can be expected to provide additional insight into
the theory of right-directed recodings.

THE CLASS OF RIGHT-DIRECTED RECODINGS CORRE-
SPONDING TO THE SCALED SRT DIVISION

The analysis of the previous section indicates that for a
binary radix the scaled partial remainder 2ui -1 is related
to the Boolean variables employed during recoding by the
equation

m-i
2ui-1 =-m_1- + E 2-i 'yi+j.

j=O

Equation (3), for an arithmetically symmetric right-directed
recoding, is

Mi = Mi_ lYi v iijv mif1f. (10)

Thus, 2ui-1 contains all the information necessary for the
determination of mi since the functional dependence of
f1 and fD is on the yi+(j.> 1). Furthermore, the quotient
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digit resultant from the division is equivalent to the recoded
multiplier digit y', which is easily determined once mi is
known, from the equation

Yi=(1)ri1(y m)

It remains to be shown how, given the quotient digit selec-
tion rules, the function fi can be determined.
The quotient digit selection rules for the scaled SRT

division with the scaling factor z= 1/2d becomes

1) if -2_' < 2ui_i < 2' Yi =° (ll(a)
2 2'

2) if < 2ui_-1, y' = (lib)

z

These rules, with the recursion relationship [(9) with r= 2],
namely

ui 2ui -1-y, (12)

completely describe the scaled division. In these equations,
the scaling factor z is a parameter in the range 0<z <1,
corresponding to oo > d .1/2. The choice of z determines
fi (and its dual) for substitution in (10). Note that (11)
implies arithmetic symmetry; hence the use of ff in (10)
rather than the arbitrary function gi of (3). The proof
of arithmetic symmetry follows from the fact that if two
divisions are performed with scaled dividends uo and -uO,
(11) guarantees that in the two resultant quotients, corre-

sponding digits will either both be zero or negatives of one
another.

Given the value of z, the function f1 can be determined in
the following way. Express z as a binary fraction of the
form 2 -kZ, where k is an integer (O< k< oo) and Z is an odd
integer such that 0<Z <2k f is then a function of k digits

Yi+J, forj= 1, 2, -, k, and has 2k_Z terms in its canonical
expansion. Each minterm has k digits; the jth digit may be
either yi+j or ji+j and is assigned a weight wj equaling 1 and
0, respectively. The nth minterm itself can be associated
with a weight WI,

k

Wn -E 2 -iwj,
j=l

which never exceeds 1-2-k. The canonical expansion of f
is then the disjunction of all minterms with weights in the
range z.. < 1-2 k. As an example of the determination
of fi, consider the simplest minimal right-directed recoding,
which corresponds to a scaled SRT division of Table IV,
with z=3/4. For z=3/4, Z=3, 2k=4, and k=2. f1 is then a

function of yi+ 1 and Yi+ 2' and has 2k _ Z= 1 minterm. The
four minterms involving yi+1 and Yi+2 are, respectively,
Yi+lYi+2, Yi+lYi+2, Yi+lYi+2, and Yi+lYi+2 with respective
weights 0, 1/4, 1/2, and 3/4. The only acceptable minterm
with weight > z = 3/4 is the last one, therefore Ji=Yi+ lYi+2

and ffI=Yi+1 vYi+2-

ANALYSIS OF THE SRT FAMILY OF
RIGHT-DIRECTED RECODINGS

The SRT division has been intensively analyzed by Frei-
man and Shively. The crucial step of identifying the Markov
chain as the mathematical model of the SRT division was
made by Freiman. In Shively's model, one time step corre-
sponds to the generation of one quotient digit, including
zero values with partial remainder magnitudes in the range
[0, 1]. In contrast, one time step in Freiman's model corre-
sponds to the generation of one nonzero quotient digit with
as many partial remainder normalizations as are required,
and partial remainder magnitudes are in the interval [1/2, 1].
Although Shively's results were originally given for the
SRT division with the divisor magnitude |dI in the range
[1/2, 1], and with jdi as the independent variable, his results
are restated here for the scaled SRT division with the scaling
factor z= 1/2d as the independent variable, with z in the
range [0, 1 ]. Thus, the trivial extension of Shively's results to
include the divisor range 1 < |dl < oo (or 0<z< 1/2) is pre-
sented here.

Shively's results are summarized with reference to Fig. 3,
which shows the location of the lower order discontinuities
(see 4a, 4b below) in the steady-state probability density of
the scaled partial remainder magnitude u as functions of the
scaling factor z.

1) The range of u is [0, 1-z] for 0<z<1/2 and is [0, z]
for 1/2<z< 1. Therefore, the probability density is zero
outside these ranges, namely in the triangular region
bounded by u= 1, u=Z, and u= 1-z.

2) The probability density p(u, z) is symmetric about
u= 1/2; for a fixed value zo of z,

P + 0 zo) + P - 0 Zo) =2 forO < 0 < - (13)

Symmetry of this form implies that a plot of the locations
of discontinuities in the probability density in the u, z plane
for u> 1/2 is the mirror image of the plot of discontinuities
for u < 1/2. Furthermore, for each value zo of z, if p(1/2+ 0,
zo) is known, p(1/2 -0, zo) can be determined from (13). In
particular, symmetry and result 1, above, imply that the
probability density of u is uniformly 2 for the triangular
region, bounded by u=0, u= z, and u=1-z.

3) For fixed z= zo, p(u, zo) is a monotonic function of u
for 0< u< 1. This result guarantees that p(u, zo) is uniform
between negative jumps in the value of p(u, zo) as u increases.
The next two results are concerned, respectively, with deter-
ministic procedures for finding the locations and magni-
tudes of the discontinuities in p(u, z). Some indication of the
complexity of the pattern of discontinuities is given by Fig. 4.

4) The locations of the discontinuities in p(u, z) are found
as follows.

a) The zeroth order pair of discontinuities is u' = 1- z
and uo= z. In the triangular region of Fig. 3 bounded by
u= 1, u= 1 -z, and u= z, p(u, z)=0. Since p(u, z) is positive
and nonzero elsewhere in the unit square, there is a negative
jump in p(u, z) in the upper half (u> 1/2) at u= 1- z(z < 1/2)
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Fig. 4. Discontinuities of order five or less.

698



ROBERTSON: DIGITAL DIVISION AND MULTIPLIER RECODING PROCEDURES

and at u= z(z .1/2). By symmetry, there is a negative jump
in p(u, z) in the lower half (u < 1/2) at u= z(z .1/2) and at
u= 1 -z(z. 1/2).

b) Given the kth order pair of discontinuities, with the
equations Uk= 2 -bk and uk= (bk +1)-2kz, the (k+ 1)st
order pair is formed as follows [cf. (11), (12)].

i) If Uk < Z/2, then Uk +1 = 2Uk= k z-2bk. For
ut > 1-z/2, uk + =(2bk )-2 1z.

ii) If u4<z/2, then uv + 1 = 2u4= (2bk+2)-2k+z. For
Uk>1 -z/2, Uk+ 1= 2(Uk-1/2)= 2 z-(2bk+ 1)

Thus, bk+1 is either 2bk or 2bk+ 1, depending on whether Uk
or u' is less than z/2. Note that the two lines forming each
pair of lines of discontinuity are symmetric. The two lines
are symmetric if Uk+ U'k= 1; since the rules for generating
pairs of lines result in Uk+ 1 + uk + 1= 1, symmetry is preserved.

c) For an interval of z, the process of generating pairs of
lines of discontinuity terminates when Uk and uk are in the
interval (z/2, 1 - z/2) of u. Let the value of k for the terminat-
ing pair of lines of discontinuity be T - 1. The lines are
UT1-2 z-bT-1 and uT 1=(bT+1 T)-2Tz. These
lines intersect at u= 1/2, z= (2bT 1 + 1)/(2T), and the interval
of z for which no additional lines of discontinuity can occur
is

2bT-1 2(bT-1 + 1)
2at 2 +f

Examples are the following.

Intersection
T UT- 1 UT_1 with u= 1/2 Interval of z

1 1- z= 1/2 O<z<2/3
2 2z-1 2-2z -=3/4 2/3 < < 4/5
4 8z-6 7-8z z=13/16 4/5<z<14/17
3 4z-3 4-4: z=7/8 6/7<z<8/9
4 8:-7 8-8z z=15/16 14/15<z<16/17

5) Symmetry requires that the magnitudes of the jumps
at each of the two discontinuities of a symmetric pair be
equal. If the magnitude of the jump at Uk is ak, then the sum
for the symmetric pair Uk, u' is 2ak. The magnitudes of the

jumps form a geometric sequence; that is, ak±I 1= (l/2)ak.
For an interval of z having T pairs of discontinuities, the
jump magnitudes are

2-k
ak=2(1- 2-T) k = 0, 1, -, T - 1. (14)

Equation (14) follows from the requirement that

T-1

2a = 2,
k=O

since the total change in the probability density from u=0
tou=1 is2.

6) The probability P0(z) that the recoded digit yi is zero is

(z/2

Po(z) = J p(u, z)du

Po(z) = z for 0 < z < 2/3

P0(z) = 2/3 for 2/3 < z < 5/6.

P0(z) decreases in a nonmonotonic way from 2/3 to 1/2 in
the interval 5/6< z< 1.
The probability P1(z) that the magnitude of the recoded

digit lyIl is 1 is

Pi(z) = 1 -Po(z)
and the shift average <s> is

1

P1(Z)
Shively's results, as restated above, form the basis for the

analysis of the family of right-directed recodings corre-
sponding to the scaled SRT division. The recodings which
have attracted the greatest attention in the past are the
minimal ones, for which P1 (z) has its minimum value of
1/3. The minimal recodings of the SRT family correspond
to a choice of z in the range 2/3< z<5/6. The simplest
minimal recoding of Table I is obtained by choosing z to be
the simplest binary fraction in the minimal range; namely,
z=3/4, which yields Ji=Yi+lYi+2- Other relatively simple
minimal recodings correspond to the choice of z=11/16,
or fi=Yi+ 1(Yi+ 2 V Yi+ 3Yi+4) and to the choice of z= 13/16
or fi =Yi + lYi + 2(Yi+ 3 V Yi + 4). (These expressions for the fi
have been simplified.)
The minimal recodings of the SRT family are a subset

of the minimal right-directed recodings found by Pen-
hollow. The Penhollow minimal recodings differ in two
ways.

1) For the SRT family, if a minterm of weight Wk is in-
cluded in the canonical expansion of fi, all minterms having
weight greater than Wk are also included. This restriction
does not apply to the Penhollow recodings, for example,

fi = Yi+1(Yi+2Yi+3 V Yi+3Yi+4 V Yi+2Yi+4)

yields a minimal right-directed recoding which is not a mem-
ber of the SRT family, since the minterms of the canonical
expansion of fi have weights 11/16, 13/16, 7/8, and 15/16.
The minterm of weight 3/4, needed in the canonical expan-
sion for SRT minimum recoding with k=4 and z= 13/16, is
not included in the canonical expansion offi.

2) The restriction of arithmetic symmetry was not im-
posed by Penhollow. Let Fi be the class of all minimal right-
directed recoding functions Ji, and let Gi be the class of all
dual functions fD. Then any function from the class Fi and
any function from the class Gi can be used as fi and gi,
respectively, in (3) to yield a minimal Penhollow recoding.
Arithmetic symmetry, in contrast, requires that once Ji is
chosen, the one member of class Gi which is fP must be
used as gn, rather than any member of class G .
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Other recodings of the SRT family of historic interest are
the following.

1) z= 0, Ji= 1, fD = 0. In this case, the recoding equation
reduces to mi= Yj, and each yz is either + 1 or - 1. The cor-
responding division method is nonrestoring division.

2) z=1/2, fi=fP=yi+ . This recoding corresponds to
differentiation in the following physical sense. Assume that
a magnetic surface is magnetized positively for each digit yi
which is one, and is magnetized negatively for each digit
which is zero. The recoding corresponds to the pulse pat-
tern obtained as the magnetic surface is moved past a read-
ing head if a positive pulse is associated with + 1, a negative
pulse with a -1, and the absence of a pulse with zero.

This recoding is also related to the transformation from
binary to the Gray code.

3) z =1, fi=0, f P =1. The recoding equation reduces to
mi =mi 1, so that Yi=yi ifmo= y0= 0, and y= --Yi ifm0=yo
= 1. Thus positive numbers are left unchanged by this
recoding, and a negative number is replaced by the digitwise
negative of its diminished radix complement.

4) z= 2/3. The recoding for z= 2/3 is the canonical recod-
ing discussed by Reitwiesner [6], and shown to be the sim-
plest minimal left-directed recoding by Penhollow. The fact
that 2/3 cannot be represented by a finite number of binary
digits indicates that, as a right-directed recoding, it would be
necessary to inspect all digits to the right of yi.

THE RIGHT-DIRECTED RECODING CORRESPONDING TO THE
STRETCH DIVISION WITH d= 2/3

In the STRETCH division [2], additional redundancy is in-
troduced into the representation of the quotient in such a
way that the probability that the quotient digit is zero, and
hence the shift average, is increased. The divisor d, and the
multiples (3/4)d and (3/2)d are available for addition or sub-
traction at each step; hence the possible values for each
quotient digit are - 3/2, - 1, - 3/4, 0, 3/4, 1, and 3/2.

In addition to the comparison constant k= 1/2 to deter-
mine if another step of normalization can be performed,
two more comparison constants are required. Ideally
k= 7/81d1 would be employed to separate the partial re-
mainder range for which |qil = 3/4 from the partial remainder
range for which 1q,j = 1. Similarly k= 5/41d1 would be used to
separate the range for which Iqi|= 1 from the range for which
Iqi = 3/2.
With d= 2/3, and after scaling so that the scaled divisor is

1/2, the equation relating successive partial remainders is

1
Xi = 2xi-, -Y

and the rules for selection of yj are

if 2xi_1 < -8Y2,~=--

if ,3
if -x - < x1< -y!,Yi = - 1

7 3, 3if <2il< -8j

TABLE V
THE RECODING CORRESPONDING TO THE STRETCH DIVISION

mi_1 Yi Yi+ Yi+2 Yi+3 YimI i iJ*i+2

O 1 1 3/2 0 0
O 1 0 1 1 3/2 1 1 1
O 1 0 1 03 3/2 1 1 1
0 1 0 0 I. 1 0 o O
0 1 0 0 0 1 0 0 0
O 0 1 1 1 1 1 1 1
O 0 1 1 0 3/4 0 0 0
O 0 1 0 1 0 0 1 0
O 0 1 0 0 0 0 1 0
O 0 0 0 0 0
1 1 1 0 1 1
1 1 0 1 13 0 1 0 1
1 1 0 1 03 0 1 0 1
1 1 0 0 1 -3/4 1 1 1
1 1 0 0 0 -1 0 0 0
1 0 1 1 1 -1 1 1 1
1 0 1 1 03 -1 1 1 1
1 0 1 0 1 -3/2 0 0 0
1 0 1 0 0 -3/2 0 0 0
1 0 0 -3/2 1 1

if -8 < 2xi_
3 =<9i= 0

3 7 .3
if - < 2xi1 <BY. =

8 1

7 5
if <6. 2xi-1 < =Yi 1

5 3
if <2xi_1,y =2

The tabular equivalent of the rules of the recoding are
given in Table V. Note that the introduction of fractional
values of y' requires that the original digits yi+1 and Yi+ 2
be replaced by the values y*+ 1 and Y+ 2 in subsequent steps
of the recoding.

A particular numerical example of this recoding pro-
cedure is the following:

0 I 0 1 001 011 0 1 1 1 00 1 000
- 3/2 0 0 -3/2 0 3/4 0 0 1 0 0 -3/4 0 0 1.

The probability of a zero after recoding is 3/4, corre-
sponding to a shift average of 4.

A RIGHT-DIRECTED DECIMAL RECODING
As an example of a higher radix recoding, a decimal right-

directed recoding can be derived from the decimal division
example of [7 ]. In this example, two serial steps determine,
first, q+ 1 = 5, 0, 5 with comparison constants ideally equal
to + 2.5d, and second, q"'1 =2, 1, 0, 1, 2 with comparison
constants ideally equal to + 0.5d and + 1.5d. The quotient
digit qi+ is then

qj+= qf+l + qj+1.
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TABLE VI
A DECIMAL RECODING EXAMPLE

lOuO 0.1415926535 0.05 < IOuo <0.15 q1=1
lOu1 0.415926535 0.35 < 10u1 <0.45 q2=4
lOu2 0.15926535 0.15 <1Ou2 <0.25 q3 =2
lOU3 -0.4073465 -0.45. 10u3 < -0.35 q4=4
lOu4 -0.073465 -0.15 < 1Ou4 <-0.05 q5 =l
lOU5 +0.26535 0.25 < Ou5 < 0.35 q6= 3
lOu6 -0.3465 -0.35<10u6<-0.25 q7=3
lOU7 -0.465 1OU7 <-0.45 q8 =
lOu8 +0.35 0.35<10u8<0.45 q9=4
lOug -0.5 lOug< -0.45 qlo
010o 0

After scaling by the factor 1/lOd, and combining the two

serial steps into one, the rules for the scaled division, for
each scaled partial remainder ui, become

if 1Oui< -0.45, qi+1 = 5

if -0.45 < lOui < -0.35, qj+1 = 4
if -0.35 < lOui < -0.25, qi+ 1 = 3

if -0.25 < lOui < -0.15, qj+ 1 = 2

if -0.15 < lOui < -0.05, qj+1 = T
if -0.05 < lOui < +0.05,qi+1 = 0

if 0.05 < lOui < 0.15, qi,1 = 1
if 0.15 < lOui < 0.25, qi+1 = 2
if 0.25 < 10ui < 0.35, qj+1 = 3
if 0.35. 10ui <0.45, qj+1 = 4
if 0.45 < 10ui, qj+1 = 5.

The example of the recoding of 0.1415926535, treated
here as a scaled division with a divisor value of 0.1, and with
the recursion relationship ui+ 1 = 10ui-0.1qi+I , is shown in
Table VI.
The result of the recoding is 0.1424133545. The recoding

procedure requires inspection of the sign and first decimal
digit, and knowledge of whether or not the second decimal
digit is greater than or equal to five.

SUMMARY
This report establishes a correspondence between results

in binary recording theory obtained by Penhollow [5] and
the analyses of binary division by Freiman [1] and Shively
[8]. The correspondence is advantageous for the following
reasons.

1) The results of the binary division analyses become ap-
plicable to recoding theory.

2) Other known methods of division, when subjected to
similar correspondence relationships, yield new meth-
ods of recoding applicable to multiplication proce-
dures.

3) For the author, the correspondences have emphasized
the differences between multiplication and division.
One essential difference is that a division requires a
(theoretically infinite) family of recodings of the quo-
tient, whereas in multiplication one member of the
family usually suffices.
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