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An Algorithm for the Machine Computation of Partial-

Fractions Expansion of Functions Having

Multiple Poles

SADASHIVA S. GODBOLE

Abstract-The partial-fractions expansion of a function F(s)/(s - a)',
m > 1, involves the computation of m coefflcients, namely (1 /i!)(dtF(a)/dsi),
O < i < m - 1. Wehrhahn [ii and Karni [3] have provided a method
for computing these coefficients algebraically. A new approach is taken
here which involves approximating a multiple pole by neighboring simple
poles. The theory developed turns out to have a very interesting resem-
blance to the FFT algorithm. The algorithm is illustrated by several ex-
amples. Typical applications are finding the inverse Laplace transform
of a function having multiple poles and the evaluation of higher order
derivatives of an arbitrary function H(z) at some arbitrary z - zo.

Index Terms-Discrete Fourier transform (DFT), fast Fourier transform
(FFT), multiple pole, partial-fractions expansion.

G(s) =

F(s) F(a) F(')(a) F(2)(a)/2!
_ = +--- +--

(s - a)m (s - a)m (s - a)m 1 (s - a) m-2

F(ml)(a)/(m - 1)!

(s - a)
(1)

where F(i)(a) denotes (d&F(s)/dst) =a. It is desired to find
expressions for the PFE coefficients, i.e., the numerators
appearing on the right-hand side of (1).

Consider an auxiliary function G(s) given by

F(s) (2
,%\ , .f\

INTRODUCTION

T IS quite easy to perform machine computation of
partial-fraction expansion (PFE) on functions having
simple poles. Similar computations in the case of func-.

tions having multiple poles, e.g., F(s)/(s-a)m involve eval-
uation of m PFE coefficients, namely, (l/i!)(diF(a)/ds%),
0<i<(m-1). Wehrhahn [1] provided a method for com-
puting these coefficients for the special case F(s)= 1. Karni
[3] extended this method to arbitrary F(s).
This paper describes a new algorithm for computing such

PFE coefficients. The general theory is developed in the
following section.

THEORY

Consider a function F(s)/(s-a)m, where F(s) includes any
other poles and a is complex in general. The PFE of this
function with respect to the pole at a is given by

where e is a positive number, n>m and r=eei2Trn. Let
ni, 1< i<q, be nontrivial integer prime factors of n so that

n = nlin2 * * nq. (3)

The following identities concerning r will be used frequently
in the subsequent development:

rn = 1 (4)

(5)

(6)1 + rP + r2p + - . . + r(n-p) = 0

where p is a nontrivial integer factor (not necessarily prime)
of n. For n= m, G(s) approaches the original function, i.e.,
F(s)/(s-a)m, in the limit as e-*O (see Fig. 1).

Let the residue of G(s) at s= a+eri-1, 1 < i< n, be denoted
by Ri and let the numerator and denominator of Ri be de-
noted by Ni and Di, respectively. Then Ri is given by

F(a + tri-1)
E -(ri-1-1)(r'1--r) . . *.(ri--1- r-(ri-1-i r--8l
Ni
Di

(7a)

Only N~plays the key role in the following development. The
Manuscript received September 24, 1970; revised January 13, 1971
The author is with the Department of Electrical Engineering, Vir- Taylor's series expansion of Ni about a will converge pro-

ginia Polytechnic Institute and State University, Blacksburg, Va. 24061. vided e satisfies the inequality
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Fig. 1. s-plane representation of a multiple pole and its approximation.

e<distance from s= a to the nearest
singularity of F(s), say ema.,. (7b)

Moreover the series can be approximated by its first n
terms if e is chosen suitably. (More will be said about this
choice in the next section.) Under these conditions, Ni may
be expressed as

N= F(a + eri-1) ~F(a) + F(M)(a)eri-'

F(2) (a)
+ c-2r2(i-1) +...

2!

F(n-'l)(a)
+ ()n-r(n-1) (i-1) (8)

(n -1)!

Expressing (8) in matrix form and using (4) yields

An,g= N (9)

where

1 1

r

1 r2
An = .

1 n-1

1 ... 1

r2 . . . rn-1
r4 . . . rn-2

n X n
* .I

1 1

1 r,
2

1 r,

n-i
_1 r1

1
2

rl
4

rn

n-2
rl

* * 1
n-I

n-2
* * ri

(10)

and ri= l/r= e-j2,1rf. Identities (4)-(6) apply to r1 also.
Solving (9) for g yields

1
g = -CnN.

n
(11)

It is very interesting to note the resemblance between (11)
and the general equation describing the DFT (discrete
Fourier transform) [2]

F X*(0) 1 x(°) 1

X*(27/nT) x1= (T)

L X*(27r(n- 1)/nT) I L x((n- 1)T)
or

X* = Cx. (12)

F(a)

F(l)(a)e

F(2)(a)
2!

F(n-l)(a)

(n-1)!

Thus g may be interpreted as the vector of DFT coefficients
of a discrete time function described by (l/n)N. The inverse
DFT is given by

N

Nn

N=

To solve (9) for g requires the knowledge of An' The

Appendix shows the derivation of An 1 and some other
interesting results. As proved there, An-1 is (l/n)Cn where
Cn is given by

X = C, X*

1
= AnX*.

n
(13)

Another interesting fact about Cn is that for n= 3, Cn 1 repre-
sents the matrix transformation used to resolve three un-

symmetrical phase vectors into Fortescue's symmetrical
components [5].
To perform the computation CnN in (11) fast, Cn may be

split up into q factors [see (3)] as done in the FFT (fast
Fourier transform) algorithm [2], [4]. Thus,

CAI

or simply An(i,j)= r(i-1) (i-1) mod n
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C. = F1F2 . Fq. (14)

Incidentally, since A. is of the same form as Cn, similar
factoring may be used to compute the inverse FFT defined
by (13). Substituting (14) into (11) yields

1
=-F1F2 * *FqN. (15)

n

The desired PFE coefficients can now be readily obtained
from the relation

F(i- ) (a) -i
(i -1) ! fi-i

1 <i<m. (16)

The algorithm based on the above theory is presented next
with several examples.

ALGORITHM

The algorithm may now be stated as follows.
1) Choose a suitable n and e. The criterion for doing this is

discussed later in this section.
2) Compute Ni= F(a+ ri-1), 1< i< n.

3) Form the product F1F2 . . . FqN as in the FFT al-
gorithm [2] and obtain g using (15).

4) Compute the desired PFE coefficients by using (16).
Scaling: While dealing with some functions, it may be

necessary or desirable to scale them before applying the
above algorithm. Suppose the given function, F(s)/(s-a)",
is to be magnified (or reduced) by a factor M. Let the scaled
s plane be called S plane such that

(s + 1) -1/64 F(-4)
= ~+

(s + 2)(s + 4)6 (s + 2) (s + 4)6

+

F(1) (-4) (5)(-4)
(s+4)5 5!(s+4)

where F(s)=s+l/s+2. The derivatives for this simple F(s)
can be readily calculated.

Here m= 6 and if n is chosen equal to m, then q= 2, n1=.3,
and n2= 2. The corresponding factors are given by

1 1 1 0 0 0

O 0 0 1 r, rl
2 4

1 ri ri0 0 0

O O 0 1 r, 1
4 2

1 ri ri 00 0

0 1 r1 r1..

1 0 0 1 0 O-

0 1 0 0 1 0

0 1 0 0 1

1 0 0ri 0

3

JO0 1 0 0 r1-

The PFE coefficients were computed for several choices of n
and e. To compare the degree of accuracy achieved in each
case, a cost function J was defined as follows:

100 m
J= -Zii

(m- 1) i=2
(21)

where

(fi - Fi)/( i

Xifil I

fi = F(i-1) (a)/(i -1) !

llil so

IliI = o

Ms = S. (17)

Also let F(s) have the following general form:

u,v

F(s) = H (s + zj) Jj(s +p,). (18)
j=I j=i

The scaled F(s) is denoted by 4q(S) and is given by

/u v\

c1(S) = (S + Z3)/ I (S + Pj))M(U) (19)
j=1 j=1

where Zj= Mzj and Pj= Mpj. Also a becomes A in the S
plane.
Now, suppose the algorithm is applied to 4(S) to compute

4(A), b(')(A), . . . , 4(1-1)(A)/(n- 1)!. It can be shown that
the corresponding coefficients in the s plane are given by

0 <i < (n-1). (20)

Example 1: Suppose the PFE of the following function is
desired:

s+ 1

(s + 2)(s + 4)6

The PFE is given by

and Ji is the correct value offi. 1, is not included in the
summation on the right-hand side of (21) sincef1 = F(a) can
be computed accurately by direct substitution. This same
cost function was used in the following examples also. For
this example,jjfO for any i and so J represents the average
percent absolute variation from the correct coefficients.

Figs. 2, 3, and 4 show the results in graphical form. Fig. 2
shows that, for a given m, as n is varied from n=m to higher
values, the maximum accuracy (which corresponds to
minimum J) tends to improve and the optimal value of e
tends to increase. Additional computations for n=m= 2, 3,
4, 5 were also carried out and the results appear in Fig. 2. It
can be seen therefrom that as m increases, the optimal e
corresponding to n=m also increases. Fig. 3 shows the
optimal combinations of e and n while Fig. 4 shows ths im-
provement in the highest accuracy as n is increased. A sample
of the computed coefficients is shown below along with the
correct ones.

Computed Value
Coeffi- n= 12, e=0.8 (i.e., 40 percent) Correct Value
cient Real Imaginary
f2 0.2500037E 00 -0.2270099E--06 0.25
f3 0.1250017E 00 -0.3346941E-06 0.125
f4 0.6250048E-01 -0.5513055E-06 0.0625
f5 0.3125093E-01 -O.3880513E-06 0.03125
f6 0.1562534E-01 -0.3031651E-06 0.015625
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Fig. 2. Plot of cost function J versus percent e.
(Refer to Example 1.)

100

Fig. 5. Plot of J versus percent e.
(Refer to Examples 2, 3, and 4.)

60 Example 2: Assume we are given the following function:
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Fig. 3. Optimal values of e and n found in Example 1.

E

E
._

._

.1 I

m=6

.01-

- m60

I _

.001 a _
0

0~~~~~~

fI

6 8 10 12 14
n

Fig. 4. Variation of minimum J with n. (Refer to Example 1.)

In this case, n was chosen equal to m (i.e., 6) and various
values of e were tried. The results are plotted in Fig. 5. The
highest accuracy occurred at E= 0.02 (i.e., 20 percent).
Example 3: The function of the previous example was

magnified by a factor of 100. The scaled-up F(s) and a are

given by
S+ 100

S + 200
A = 210.

The results in this case were slightly better, in general, than
those of the previous example and are shown in Fig. 5. The
best accuracy occurred, however, at the same percent e.

Example 4: Assume we are given the following function:

s+ 1

(s + 2)(s + 102)6

The result of computations for n=m= 6 and various
values of e is shown in Fig. 5. The best accuracy occurred at
e= 30 (i.e., 30 percent).
Example 5: Assume we are given the following function:

(s + 2 + j8)(s + 2 - j8)(s + 18 + j8)(s + 18 - j8)

(s + 10)6

In this case, Emax given by (7b) is infinite. The PFE coeffi-
cients, F(W)(a)/i!, i> 5 are all zero. The result of computations
for n=m= 6 and various values of e is shown in Fig. 6. As
expected (since (8) does not involve any approximation for
the F(s) of this example), there is a wide range of e which
gives good accuracy.

Choice of e and n: The only approximation used while
developing the theory in the preceding section was to
truncate the Taylor's series in (8). Intuitively, therefore, it

1.0

.1

.01

.001
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NO
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Fig. 6. Plot of J versus e. (Refer to Example 5.)

would seem that computational accuracy should improve as
e is reduced and n increased. The results obtained in Example
1, however, indicate that a good choice of e and n is as
follows.

Case 1: emax given by (7b) is finite.
e: Between 0.25 and 0.50 times Emax commensurate

with n.
n: n>m+4.

Case 2: Em..= oo (which implies v= 0 [refer to (18)]). In this
case, the coefficients fi, i>(u+ 1), must be all zero. The
Taylor's series expansion of F(a+eri-1) thus has only (u+ 1)
nonzero terms at most. Equation (8), therefore, does not
involve any approximation for n=u+ 1 and there is no
advantage in letting n exceed (u+ 1).

e: Any reasonable value, say e= 1.
n: m+4<n<(u+l) if u>m+4, otherwise n<u+l.

The scaling technique described earlier should be used,
when necessary, to ensure that E-'> (l/L), L being the
largest number that will not cause overflow in the computer.

CONCLUSIONS
The algorithm developed allows fast, efficient, and fairly

accurate machine computation of PFE coefficients of func-
tions having multiple poles. The accuracy of the results can
be controlled by suitable choice of e and n. Further investi-
gation is necessary to substantiate/impro've the guidelines
described in the preceding section for choosing e. The al-
gorithm has several applications, typical ones being the
following.

1) Inverse Laplace and Fourier transforms.
2) Inverse FFT.
3) Evaluation of derivatives of any order of an arbitrary

function H(z) at some arbitrary z= zo.
The resemblance of this algorithm with the FFT algorithm is
very interesting.

APPENDIX
DERIVATION OFAX

Lemma 1: The sum of the elements of ith row of An and
Cn (also ith column), 2< i< n, is equal to zero.

Proof: The sum under consideration is the left-hand
side of (5) orp times that of (6).
Theorem 1: A- '= (l/n)Cn

Proof: Let V=An,, (l/n)C,,. Using Lemma 1, it can be
easily proved that

V(1, 1) = 1
V(l,j) =0,
V(i, 1) = 0,

2 <j. n

2 <i <n.

For 2<i< n, 2.j]<n, the following relations hold:

1 n
V(i, j) = - E A,(i,k) C,(k,j)

n k=1

l (i-1) (k-1) (k-1) (j-1)
=- Z.r ri

n k=l

1 (k-1) (i-j)
= -Er

n k=1
(22)

For i=j, (22) becomes

V(i, i) = 1.

For i=j, (22) may be rewritten as

V(i, j)-- [1 + r(i-j) + r2(i-j) + . . .
n

+ r(n-1)(i-j)]. (23)

But (i-j) must satisfy the relation

1 < (i- j) <5 (n -2).

Hence the right-hand side of (23) is 1/n times the sum of the
elements of mth row of An, 2<m<n-1. By Lemma 1,
V(i,j)=O.
Thus V is an identity matrix. This and the fact that An and

Cn are symmetrical assure that A- '= (l/n)Cn.
Corollary 1: Cn-j= (l /n)An.

OTHER INTERESTING RESULTS

1) Given An, Cn can be readily obtained by turning the
last (n- 1) rows of An upside down. Expressed mathemat-
ically, this means

Cn-

-1 0 0.*.0
0 0 0 ...0
0 0 0...0

0 0 0...1

0 0 1*..0
_0 1 0...0

0 o
0 1

1 0

O 0

0 0
0 0-

An.
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2) It can be proved that the demoninator of R1, D1, is
given by

n-1( 1)(n-l)/2r(3n-l)/4(l- r)2(1 - r2)2 . . .

r(n-1) /2) 2, n odd

1n-1( 1)(n-2)/2r3n(n-2)/4(1 - r)2(1 - r2) 2

*(1 - r(f-1)'2)2(l - rn/2), n even.

3) The third interesting result is given by Theorem 2.
Theorem 2: Dk= (l/r)D(kl1), 2<k< n.

Proof:

Dk = en-l(r1 -1)(rk-l- r) . . . (r-1 rk-2)
* (rk-l - rk) . . (rk-1 rn-1)

= en-1(rk-l - 1)r(rk-2 - 1) . . . r(rk-2 -rk-3)

(rk-2 - rn-1)
*r(rk-2- rk-1) ... r(rk-2 rn-2)

(k2-n

(rk-l-_)rn-2
(rk-2 - rn-1) (k)

1
- D (k-1).
r

Corollary 2: Dk= (1/rk-I)Dj.
REFERENCES

[11 E. Wehrhahn, "On partial fraction expansion with high-order
poles," IEEE Trans. Circuit Theory (Corresp.), vol. CT-14, Sept.
1967, pp. 346-347.

[21 J. A. Glassman, "A generalization of the fast Fourier transform,"
IEEE Trans. Comput., vol. C-19, Feb. 1970, pp. 105-116.

[3] S. Karni, "Easy partial fraction expansion with multiple poles,"
Proc. IEEE (Lett.), vol. 57, Feb. 1969, pp. 231-232.

[41 J. W. Cooley and J. W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Math. Comput., vol. 19,
Apr. 1965, pp. 297-301.

[5] C. L. Fortescue, "Method of symmetrical coordinates applied to the
solution of polyphase networks," AIEE Trans., vol. 37, 1918, pp.
1027-1140.

Checking Experiments ror Sequential Machines

EDWARD P. HSIEH, MEMBER, IEEE

Abstract-Some new procedures for designing efficient checking ex-

periments for sequential machines are described. These procedures are

based on the use of four types of sequences introduced, namely, the

compound DS, the resolving sequence (RS), the compound. RS, and the

simple I/O sequence. Significant reduction in the bound on the length of

checking experiments is achieved. Along a parallel line of development,
a new procedure, called the state counting method, is presented for de-

tecting faults that can cause an increase in the number of states. For
an n-state, m-input symbol machine, this procedure gives a bound on the

length of checking experiments that is approximately mAl& n times the

bound for conventional checking experiments designed strictly under the

assumption that no faults increase the number of states, where m > 1

and An is the maximum anticipated increase in the number of states due

to faults.

Index Terms-Bounds, checking experiments, fault detection, sequen-

tial machines, state-increasing faults, synchronous machines.

I. INTRODUCTION

NE of the most studied and important theoretical
aspects in the area of fault detection for sequential
machines is concerned with the design of checking

experiments [1]-[7]. In a checking experiment, the machine
under test is considered as a black box with only input and
output terminals accessible. Bv observing the output re-
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ponse to the input sequence constituting the checking
experiment, one verifies whether the machine under test is
operating in accordance with the given state table specifi-
cation.
The earliest work on the fault detection problem was done

by Moore [8]. His method requires the enumeration of all
possible faulty machines, and yields an experiment that not
only detects faults, but also identifies which fault has oc-
curred. Along the same "machine identification" approach,
Poage and McCluskey [9] gave a method for designing opti-
mal experiments which checks against a small, selected set
of faults. An efficient approach to the design of checking
experiments, called the transition checking approach, was
first introduced by Hennie [1]. His method does not require
the enumeration of the faulty machines and yields most
effective results 1) for machines that have a distinguishing
sequence (an input sequence whose application makes it
possible to determine the initial state of the machine by
observing the output response), and 2) for machines that
are reduced, strongly connected, and such that no malfunc-
tion causes an increase in the number of states.
For machines that do not have any distinguishing se-

quences (DS), Hennie's procedure yields very long experi-
ments with a general bound on length being proportional
to the factorial of the number of states. For this class of
machines, a great deal of attention has been given to the
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