
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 2, FEBRUARY 1970

Generation of Products and Quotients Using
Approximate Binary Logarithms for

Digital Filtering Applications
ERNEST L. HALL, MEMBER, IEEE, DAVID D. LYNCH, MEMBER, IEEE, AND

SAMUEL J. DWYER, III, MEMBER, IEEE

Abstract-An approximate method for rapid multiplication or divi-
sion with relatively simple digital circuitry is described. The algo-
rithm consists of computing approximate binary logarithms, adding or
subtracting the logarithms, and computing the approximate anti-
logarithm of the resultant. Using a criteria of minimum mean square
error, coefficients for the approximations are developed. An error
analysis is given for three cases in which the algorithm is useful.
Finally, applications to digital filtering computations are considered
which illustrate that log-antilog multiplication is not simpler than
an array multiplier for computing single products, but is useful for
parallel digital filter banks and multiplicative digital filters.

Index Terms-Antilogarithm converter, binary-to-binary log-
arithm converter, computer multiplication, digital filter realization.

INTRODUCTION
AN ALGORITHM for computer multiplication by

binary logarithms was described by Mitchell [1]
and expanded by Combet, Van Zonneveld, and

Verbeek [2]. This method has only modest accuracy
and limited application for general purpose computa-
tion. However, there is a class of digital filtering prob-
lems in which the speed, nature of the signals, and com-
ponent count, offset accuracy considerations. Real-time
digital filtering of radar video for moving target detec-
tion, synthetic aperture processing, and pulse compres-
sion are in this class. Because of the statistical nature of
the sampled signals, the large amount of signal integra-
tion required, and the characterization of detection per-
formance on a probabilistic basis, the accuracy of a sin-
gle computation has less importance than the mean and
variance of the operation on the signal ensemble. Radar
video is characterized by broad bandwidth and corre-
sponding high data flow rates which make real time
multiplication with readily available logic very difficult.
Furthermore, multiple filters are usually required be-
cause the noise is colored and the filter bandpass is but
a small fraction of the actual signal bandwidth.

In Section I the binary-to-binary logarithm conver-
sion is reviewed. In Section II the antilogarithm con-
version is developed. In Section III a detailed error

Manuscript received May 1, 1968; revised July 14, 1969.
E. L. Hall is with the Department of Electrical Engineering,

University of Missouri, Columbia, and Emerson Electric Company,
St. Louis, Mo.

D. D. Lynch is with the Emerson Electric Company, Electronics
and Space Division, St. Louis, Mo.

S. J. Dwyer, I II, is with the Department of Electrical Engineering,
University of Missouri, Columbia, Mo.

analysis is given. Finally, Section IV contains examples
of the use of the log-antilog technique for digital filter
applications.

I. BINARY-TO-BINARY LOGARITHM CONVERSION
A simple method for the computation of the base two

logarithm of a binary number was developed by Mitch-
ell [I]. The method consists of encoding the binary
number into a form from which the characteristic is
easily determined and the mantissa is easily approxi-
mated.

Let N be a nonzero finite length binary number and
let m and j represent the binary power of the most and
least significant bits of N, respectively. The case of
N=0 is easily handled separately. N may be written as

N = ZmZm-l . . Zj+,Zj
with

Zm =01; m,j=O ±1 ...; m >j.
Clearly,

2m1+ > N > 2'.

N is also given by
m

N =Zj2i.

Now let Zk be the most significant nonzero bit of N,
m>k>j. Then,

k-1

N = 2k + EZ2i.
i-i

Factoring out 2k results in
f k-1 E

N = 2 I1 + Z2i-k = 2k(1+ x)

where
k-1

x = E Zi2i-k and 1 > x > 0 since k > j.
i=i

Thus, N has been encoded into the form N= 2'(1 +x).
The base two logarithm of N is

log2N = k + 1Og2 (1 + X).

97'

IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1970

Fig. 1. Piecewise linear approximation to binary logarithm.

Since 1 >x>0, the logarithm characteristic is k and the
mantissa is only a function of x.
A linear approximation of log2 N is of the form

LA(N) = k + ax + b.

The geometrical interpretation of this approximation is
shlown in Fig. 1 and consists of a piecewise linear ap-
proximation between the points where log2 N attains
integral values.
The linear coefficients a and b may be selected to

maximize some return function. If simplicity is the de-
sired return function, then a = 1 and b =0 are the best
coefficients. As shown by Mitchell, the maximum error

E = 10g2 N - LA(N)

with a= 1, b =0, is 0.086.
If an easily computed set of coefficients is desired,

then one may use the linear terms of a Taylor series
expansion of log2 (1 +x) about the point x = xo, 1 >xo> 0
to obtain

a = log2 E/(1 + xO)
b = 1og2 (1 + xO) - xO log2 E/(1 + xO).

The error in this approximation is

E =-xO log2 e-(1 + xO) log2 (1 + xO).

Combet et al. [2] described another method for se-
lecting the coefficients. This method consists of parti-
tioning the range of x into four parts and again making
a piecewise linear approximation. The linear equations
given in [2] were reportedly found by trial and error
using a criteria of minimum error, and constraining the
coefficients to be easily implemented with binary cir-
cuitry. That is, the coefficients were chosen to be frac-
tions with integer numerators and power of two de-
nominators. With a four subinterval partition, the
single division error was reduced by a factor of six.
The authors propose that for many applications, in-

cluding digital filtering, mean-square error is a desirable
error criteria, although maximum error and easy im-
plementation must also be considered. The coefficients
for a linear least squares fit to log2 (1 +x) over, 1 > x2 > x
>xj .0, will now be developed.

The mean-squared error is defined as

1 rx2
P2 = gJ{1og2 (1+ x) -(ax + b)}2dx.

X2 - Xl X1

To minimize E2 with respect to a and b it is necessary
that

=E 0-= -2x{1og2 (1+ x) -(ax + b)}dx
d a xl

-= 0 = --2{1 g2 (1 + X)-(ax + b)}dx-
a b x

Let
2

Il =f Xlog2 (1 + x)dx

Xl

= log24YFloge Y- Y}
1-+:X1

I2 =J xlog2 (1+ x)dx
X1

Y2 1+X2

= 1og2 E - loge Y - Y2/4} 1+x 1

then

a = {12 - (x2 + xl)I1/2}
fX23 - X13 (X22 -X12)(X2 + x1)

3 4

b = 11/(x2 - x1) - a(x + x2)/2.
Thus, for any partition of the interval [0, 1], the best
linear mean-square coefficients can be determined and
E2 evaluated. Also, the maximum error for any sub-
interval is easily determined. The coefficients, the mean-

square error, and the maximum absolute error are given
in Table I for 1, 2, 4, and 8 equispaced subinterval
partitions.

For a particular realization, it is cQnnyenient to work
with the linear equations in the form;

x + cx + d if a > I

x+cx+ d if a < I

98

HALL et at.: GENERATION OF PRODUCTS AND QUOTIENTS FOR DIGITAL FILTERING

TABLE I
MEAN-SQUARE ERROR AND COEFFICIENTS

FOR LOGARITHM APPROXIMATION

Number Subin- Zof Subin- terval a b Emnax
tervals tra

1 1 0.984255 0.065176 0.641074E-3 0.065176
2 1 1.163555 0.021303 0.192903E-4 0.021303

2 0.827788 0.181567 0.581653E-5 0.010518
4 1 1.285610 0.006243 0.278225E-6 0.006243

2 1.050957 0.063330 0.387113E-6 0.004141
3 0.888761 0.143537 0.642476E-6 0.002186
4 0.770244 0.231857 0.289856E-7 0.002186

8 1 1.359165 0.001681 0.173267E-7 0.001681
2 1.215426 0.019368 0.550871E-7 0.001371
3 1.099427 0.048200 0.814192E-7 0.001129
4 1.003868 0.083914 0.297152E-7 0.000933
5 0.923414 0.124049 0.130118E-6 0.000794
6 0.854749 0.166916 0.128720E-6 0.000695
7 0.806959 0.202033 0.186847E-6 0.001232
8 0.734065 0.265769 0.150003E-6 0.001186

TABLE I I
LOGARITHM EQUATIONS

Range Mantissa

O<x<1/4 x*=x+37x/128+1/128
1/4<x<1/2 x*=x+ 3x/ 64+1/16
1/2.x<3/4 x*=x+ 7x/ 64+1/32
3/4<x<1 x* =x+29x/128

where
x= 1 -x.

Also, for simple binary circuitry, it is necessary to
obtain c and d as sums of binary fractions. In general
the number of bits necessary for an input N as pre-
viously defined is m -j -1. However, for a given appli-
cation one may be able to use a smaller number of bits
with only a slightly larger maximum or mean-square
error.
The linear logarithm equations for a four subdivision

realization are given in Table II. The coefficients are the
minimum mean-square coefficients quantitized to seven
bits. The maximum error, which was computed at the
critical values and extrema, ranges over -0.00782
<Emax<0.00994. The realized maximum mean-squared
error is 7Z2max=3.33X10-6.

I I. ANTILOGARITHM CONVERSION

The following method of computing the antiloga-
rithm is used by Mitchell [1].

Let

M = LA(N) = k + x

0 .x < 1, k an integer.

Then

2M = 2k.2x

Since k is an integer, multiplication by 2k is simply a
shift operation. An approximation to 2M is given by
EA (M) = 2k(1 +x). This approximation is shown in

Fig. 2. Piecewise linear approximation to binary exponent.

Fig. 2 and consists of a piecewise linear approximation
to 2M between the points where M takes on integral
values.
The authors propose an improved approximation to

the antilogarithm conversion which allows the error to
be reduced to any desired level at the cost of increased
complexity. The method is similar to the logarithm
conversion and consists of partitioning the interval,
0< x <1, into subintervals and making linear approxi-
mations over these subintervals. Mean-square error is
again used as the error criteria. M\laximum error is also
computed.
The linear least squares fit to 2x over the interval,

0.<xl<x.<x2< 1, will now be developed. The linear
mean-squared error is defined as

1X2
E2 = xj {2x - (ax + b)}2dx.

X2 -Xl X1

To minimize E2 with respect to a and b it is necessary
that

aE2 ~~rX2
=o = - 2x{2x - (ax + b)}dx

oa 2

and

E2 rX20E2 _ u= 2{2x - (ax + b)} dx.
ab I,

99

IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1970

TABLE III
MEAN-SQUARE ERROR AND COEFFICIENTS
FOR ANTILOGARITHm APPROXIMATION

Number Subin- ofSubin-1.ab E JE,,,axI~~~~~~~~~~~~~~~~~._

tervals tervals b E Emax

I 1 0.992089 0.946650 0.656127E-3 0.061261
2 1 0.826852 0.988453 0.813603E-5 0.012333

2 1.169200 0.813322 0.143051E-4 0.017487
4 1 0.756609 0.997295 0.894069E-7 0.002759

2 0.900147 0.960905 0.283122E-6 0.003275
3 1.068757 0.876172 0.23818E-6 0.004054
4 1.273014 0.722413 0.730156E-6 0.004519

8 1 0.726814 0.999170 0.223517E-7 0.000839
2 0.787594 0.991472 0.223517E-7 0.000846
3 0.859510 0.973650 0.372529E-7 0.000872
4 0.945204 0.941145 0.149011E-7 0.001242
5 1.021377 0.902764 0.134110E-6 0.001095
6 1.110733 0.847371 0.208616E-6 0.001372
7 1.221244 0.764536 0.819563E-7 0.001323
8 1.331134 0.667864 0.163912E-6 0.001400

TABLE IV
ANTILOGARITHM EQUATIONS

0<x<1/4 Y=x+ 1/4±+ 3/4
1/4<x<1/2 Y=x+13/128X+55/64
1/2<x<3/4 Y=x+ 9/128x+ 7/8
3/4<x<1 Y=x+35/128x+23/32

Let
rX2

z1= Z2xdx = 10g2 e{62X2 -2X1}

r w2 ~ X log, 2 - l- *2
2= x2dx = 2x

JZ1 _ ~~(log, 2)2
Then

a ={12

(X2 + x1) I4

(X23- XI3) (X22 Xl)(Xl +X2)}

/R3 ..4J
(X22_-Xi2

b= 1-aI(X2 - Xl).

Thus, for any partition of [0, 1], the linear mean-

square error coefficients a and b may be determined
and E2 evaluated. The absolute maximum error may

also be determined over each subinterval. These values
are given in Table III for 1, 2, 4, and 8 subinterval
partitions.
The linear antilogarithm equations for a four sub-

division realization are given in Table IV. The coeffi-
cients are the mean-square coefficients quantized to
seven bits. The maximum error ranges over

-0.00327 < Em,x < 0.00796;

the realized maximum mean-squared error is E2max
= 1.475 X10-6.

I1I. ERROR ANALYSIS

In this section, an error analysis is given for several
cases in which a log-antilog conversion would be desir-
able. The first case considered will be the product of
two variables. Next, a special case of a product of a
constant and a variable is considered. This special
case arises in many digital filter applications. Finally,
the error for a quotient of two variables is considered.

This analysis is mainly concerned with errors due to
the approximation. Quantization error, truncation error,
and coefficient error have been dealt with in other papers
and would depend on the actual hardware used to im-
plement the conversions. For one of the authors' ap-
plications [3] an exact digital simulation was made to
study these effects.

A. Product Error

Suppose that the log-antilog conversion was used to
approximate the product of two numbers. How much
error would be incurred? Let M1 and M2 represent two
binary numbers which are encoded into the form:

Ml = 2k(l + x1) where 0 < x1 < 1, k, an integer
M2=2k2(1 + X2) where 0 <x2 < 1, k2 an integer.

The approximate binary logarithms, denoted by LA,
are given by

LA(M1) = ki + xi + yl
LA(M2) = k2 + X2 + Y2

where Yl and Y2 are the linear correction terms, i.e.,

100

HALL et al.: GENERATION OF PRODUCTS AND QUOTIENTS FOR DIGITAL FILTERING 101

o (A1 +A3+ A1A3)

Fig. 3. Curve of constant error E1 = C.

Yi aix1 + bi

Y2= a2x2 + b2.
The values of as and bi, i=1, 2, are constants over a
certain interval of xi and are given in Table II. No
carry can occur in the sum xi+yi with the coefficients
given in Table II so that

O X1 + y' < 1

O . X2 + Y2 <1.

Adding the approximate logarithms of M1 and M2
gives the approximate logarithm LP of the product
P=M1M2. Thus,

LP = ki + k2 + X1 + Yl + X2 + Y2.

Since a carry from the mantissa to the characteristic
can occur, there are two cases to consider.

For Case 1, no carry: x+y1 +X2 +y2 <1
For Case 2, carry: xj+y1 +X2+y2> 1.
Case 1: The approximate binary exponent EA (P) is

given by

EA(P) = 2kl+k2(1 + Xl + X2 + yl + Y2 + Z12)
where z12 iS the linear correction term, i.e.,

12 = a3(x1 + X2 + yl + Y2) + b3.
Case 2:

EA(P) = 2+k 2+1±(XI + X2 + yI + y2 + Z12)

where Z12 is the linear correction term, i.e.,

Z12 = a3(x1 + yl+ x2 + Y2 -1) + b3.

The coefficients a3 and b3 are constants over certain
regions and are given in Table IV. The error in using
the approximate product is given by

E = P - EA(P) = M1M2 - EA(P).

Case 1:

E = 2kl+k2{(+ XI)(+ x2)
- (1 + Xl + yl + X2 + Y2 + Z12)}

E = 2kl+k2+l1XIX2 - (yl + Y2 + Z12)}I
Let the normalized error be defined as

El = E/2kl+k2.
Case 2:

E = 2ki+2+lk2(l + x2) (1 + xI)
- 2(xj + X2 + yl + Y2 + Z12)}

E = 2k+k2{(1 - xi) (1 - x2)/2 - (yl + Y2 + z12) }I.
For this case, let the normalized error be defined as

E2 = E/2(kli+k2+)

A direct attempt at finding the critical points of E1 and
E2 would involve setting the partial derivatives equal
to zero. For Case 1,

&E,
= X2 - a, - a3 - aIa3

&xl

= X1- a2 - a3 -a2a3
aX2

which would indicate that the critical point is

(X1, X2) = (a2 + a3 + a2a3, al + a3 + ala3).

However, this point never falls in the interval of interest
for the given coefficients. This fact is clearly indicated
by the E1 =constant curves shown in Fig. 3. A similar
result holds for E2. If

E1 = C = X1X2 - (al + a3 + a1a3)x1 - (a2 + a3 + a2a3)X2

- (b, + b2)(1 + a3)-be
then

102

(a2 + a3 + a2a3) {X2 +
Xl =

IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1970

C+ (bl+b2)(1+ a3) + b3)
a2 + a3 + a2a3 J

X2-(a, + a3 + ala3)

A graph of this equation is shown in Fig. 3.
In fact, E is a hyperbolic paraboloid and is a mono-

tonic function over the regions of interest, and there-
fore, it attains its maximum and minimum values at
the boundary of the region.
The maximum absolute values of the normalized

error E over the 16 regions of x1 and x2 are given in
Table V. The maximum error is 0.01907 and occurs at
Xl=X2=. The values in Table V were arrived at by
computing E at 4096 equispaced points in the (xI, x2)
plane. The maximum product error is only I as large as
the product error computed by Mitchell [1] for single
interval approximations to the logarithm and exponen-
tial function.

B. Product Error-Special Case
The special case of the product of a variable and a

constant will now be considered. This case arises in all
linear constant coefficient digital filter applications. It
is assumed that the logarithm of the constant is exact.
As one would expect, the resulting product error is
smaller.
Let N and C represent two binary numbers encoded

into the form

N = 2k1(1 + x1)
C = 2k2(1 + X2).

The approximate logarithm of N is given by
LA(N) = ki+ xi + y, where y, = aix, + b2.

The binary logarithm of C is given by
10g2 (C) = k2 + 10g2 (1 + x2).

The approximate logarithm of the product P = CN is
given by

LP = ki + k2 + Xl + yl + log2 (1 + X2)*

Two cases must again be considered.
For Case 1, no carry: xi+y1+1og2 (1+X2)<1.
For Case 2, carry: xl+yl+10g2 (1+X2)>1.

The approximate binary exponent of P is given by:
Case 1:

EA(P) = 2k+k2 {1 + X1 + Yi + 10g2 (1 + X2) + Z12}

where

Z12= a34xi + yi + log2 (1 + x2)} + b3.
Case 2:

EA(P) = 2ki+k2(xi + yl + 10g2 (1 + X2) + Z12}

where

Z12 - a3{xI + yl+ log2 (1 + x2)- + b3.
The product error is defined as

E=P-EA(P).
Case 1:

E = 2kl+k2 (1 + X1) + x2)

-(1 + X1+ yl+ 10g2 (1 + X2) + Z12)j
Let the normalized error be defined as

E = E/(2k,+k2).
Case 2:

E = 2kl+k2+{(1 + XI) (1 + x2)/2
- (X1 + yl + 1og2 (1 + X2) + Z12)}

Let the normalized error be defined by
E2= E/ [2klik2+1].

The normalized error is again a monotonic function
over certain regions and attains its maximum and mini-
mum values at the boundaries of these regions. The
maximum absolute values of the error are shown in
Table VI. The largest error is 0.01321 which occurs at
xl = 25/64, x2 = 14/32 and is substantially smaller than
the product error for the general case. Although this
point (xl, x2) is not on the boundary of one of the 16
main regions, it is on a product boundary since a3
changes inside the region.

C. Quotient Error
The error incurred in a division operation will now be

considered. Let the dividend D1 and the divisor D2 be
binary numbers encoded into the form

D1= 211(1 + x1),
D2= 2k1(1 + X2),

0 <Xi< I

0 < X2 < 1.

The approximate logarithms of D1 and D2 are given by
LA(Di) =ki+ X + yi, y =a1x1+ bi
LA(D2) = k2 + X2 + Y2, Y2 = a2X2 + b2.

Subtracting these logarithms gives the approximate
logarithm LQ of the quotient Q =DID2:

LQ = k- k2 + Xl- X2 + yI - Y2

HALL et al.: GENERATION OF PRODUCTS AND QUOTIENTS FOR DIGITAL FILTERING

TABLE V
MODULUS VALUES OF PRODUCT ERROR

W A1 ~~o<X,<-,I :1Xl<i I <XI<3 I:!<XI<<
O<X2<4 0.01907 0.01280 0.01059 0.01270
<X2< 1 0.01280 0.01758 0.01163 0.008384<X2<I 0.01059 0.01163 0.00773 0.00994

4 <X2< 1 0.01277 0.00838 0.00994 0.01531

TABLE VI
MODULUS VALUES OF PRODUCT ERROR SPECIAL CASE

\ XI
X2 \ O<X1<i i<Xl<l I<X <3 3<1<

-<X2<} 0.01229 0.01321 0.01150 0.007282 <X2< 3 0.01168 0.01103 0.00677 0.00994
a <X2<1 0.01276 0.00742 0.01000 0.01100

Again, two cases must be considered depending on the
occurrence of a borrow from the characteristic to the
mantissa.

Case 1, no borrow: xl+yl2X2+Y2.
Case 2, borrow occurs: xl+yl<X2+y2.
Case 1:

EA (Q) = 2kl k8 {I+ Xl + yl X2 - Y2 + Z12}

where

Z12 a3axi + Yi -X- Y2} + b3.

Case 2:

EA(Q) = 21k*l2112 + X1 + Yi -X - Y2 + Z12}

where

Z12= a3 + Xl + YI - X2- Y2} + b3.

The actual quotient is given by

Q = D1/D2 = 2k1-2 } }.

The error is defined as

E= Q-EA(Q)

which for the two cases is the following.
Case 1:

E = 2k-k{(+ 1) + XI + Yl-X2 Y2 + Z12)
+ X2)

Let the normalized error be defined by

El = E/2k1-1k2

TABLE VII
MODULUS VALUES OF QUOTIENT ERROR

Xi

°~~<Xl<1 I4SXl<j I<XI<-4
3{<X,<Ix2 _-

O<X2<1 0.00985 0.00741 0.00692 0.00590
i X2 < 0.01500 0.00724 0.00490 0.00364<.X2< 3 0.01779 0.00724 0.00657 0.00497
X.X2< 1 0.01776 0.00779 0.00612 0.00594

Case 2:

E = 2k1 k2 {(- 1/2(1 + X + yl-X2-Y2+ 12) -

Again let the normalized error be defined by
E2 = E/(2k1-k2).

The maximum value of E for the 16 regions of the
Xl, X2 plane is listed in Table VII. This error is five
times smaller than the quotient error computed by
Mitchell.

IV. APPLICATIONS TO DIGITAL FILTERING
To illustrate the applications in which the log-

antilog conversion would be advantageous, three exam-

ples are given. The first example shows that for a single
multiplication a cobweb array is simpler. The second
example illustrates how the log-antilog conversion can
be used advantageously for a parallel filter bank. The
last example of a multiplicative filter illustrates a situa-
tion in which a log-antilog conversion is necessary.
Example 1-Nonrecursive Digital Filter: The differ-

ence equation of a nonrecursive digital filter [4] may
be written as

-1

Y. E aix.-i -

i=O

Using the log-antilog conversion the computation may
be performed by

N-1

Y.= E exp flog I ai I + log I x.-i I1}
i=O

103

IEEE TRANSACTIONS ON COMPUTERS, FEBRUARY 1970

Fig. 4. Parallel filter bank.

Log e(t) Log n (t)M

Fig. 5. Multiplicative digital filter.

The special cases of act<0 or x,,i <0 are easily handled
by either complementing or clearing the antilogarithm
result. Also, the computation of log ail may be done
a priori.
The tradeoff between the two computations is: a

direct multiplication versus a log conversion, an addi-
tion, and an exponentiation. A comparison of hardware
complexity and computation time can be made for the
particular example of multiplying two six-bit numbers.
An indicator of hardware complexity is the number of
full adder circuits required. For a cobweb array multi-
plier, 30 adders are required if all product bits are
retained; however, only 21 adders are required if the
product is truncated to six bits. For the log conversion,
twelve adders are required, for the log addition eight
are used, and for the antilog conversion ten are needed,
or a total of 30 adders are required to obtain 6-bit
accuracy. Thus, for a multiplication the cobweb array
is less complex and simpler than the log-antilog con-
version.
Example 2-Parallel Digital Filter Bank: A particular

digital filter configuration which often arises is the
parallel filter bank which may be described by a z-trans-
fer function of the form

H(z) = H1(z) + H2I(z) + * * + Hr(Z).
The block diagram of this filter is shown in Fig. 4(a).
If each of the Hi are of the nonrecursive type, then the
log conversion of xi may be performed first as shown in
Fig. 4(b). The resulting filters, Gi, would then require
only an addition and an exponentiation for each multi-
plication. If any of the Hi are of the recursive [5] type

described by a difference equation of the form
N-1 M

Y.= E ix-i- E biYn_i
i-1 i-1

then, again the computation of log xi may be moved
ahead of the remaining filters.
Once more assuming 6-bit numbers, the cobweb array

truncated to 6 bits would require 21 adders for each
multiplication. An addition and exponentiation require
18 adders. Thus, if the number of filters R is four or
more, the log-antilog conversion would require less
hardware.
Example 3-A Multiplicative Digital Filter: Recently,

Oppenheim et al. [6] presented a general method for
nonlinear filtering of multiplied and convolved signals.
The multiplicative techniques were applied to audio
dynamic range compression and expansion and image
enhancement. The block diagram of a multiplicative
filter is shown in Fig. 5. If the input signal S(t) consists
of the product of two components e(t) and b(t), then the
logarithm conversion reduces the process to the familiar
additive process which may be filtered using linear
techniques. The antilogarithm conversion reconstitutes
the filtered signals.
The log and antilog conversions developed in this

paper could be used for any digital realization of the
multiplicative filter.

V. SUMMARY
Algorithms for approximate binary logarithms and

exponents and some applications of these algorithms
to digital filtering have been described. Since the maxi-

104

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-19, NO. 2, FEBRUARY 1970

mum product and division errors occur as percentages
of the operands, these algorithms are suited for high-
speed hardware rather than GP computer applications.
One such application is real time digital filtering. The

computations involved are usually sums of products of
a variable and constant coefficients. Using the log-
antilog algorithms gives complete freedom of coefficient
selection. For single multiplications a cobweb array
multiplier is simpler. However, for other configurations,
such as a parallel digital filter bank, the log-antilog
technique is less complex. Also, there are applications,
such as multiplicative digital filters, where log and ex-
ponent conversions are necessary.

REFERENCES

[11 J. N. Mitchell, Jr., "Computer multiplication and division using
binary logarithms, " IRE Trans. Electronic Computers, vol. EC-1 1,
pp. 512-517, August 1962.

[21 M. Combet, H. Van Zonneveld, and L. Verbeek, "Computation of
the base two logarithm of binary numbers," IEEE Trans. Elec-
tronic Computers, vol. EC-14, pp. 863-867, December 1965.

[3] E. L. Hall, D. D. Lynch, and R. E. Young, "A digital modified
discrete Fourier transform Doppler radar processor," 1968
EASCONRec., pp. 150-159.

[41 J. F. Kaiser and F. Kuo, System Analysis by Digital Computer.
New York: Wiley, 1966, pp. 218-277.

[51 C. M. Rader and B. Gold, "Digital filter design techniques in the
frequency domain," Proc. IEEE, vol. 55, pp. 149-171, February
1967.

[6] A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, Jr.,
"Nonlinear filtering of multiplied and convolved signals," Proc.
IEEE, vol. 56, pp. 1264-1291, August 1968.

A Generalization of the Fast Fourier Transform

J. A. GLASSMAN

Abstract-A procedure for factoring of the NXN matrix rep-
resenting the discrete Fourier transform is presented which does not
produce shuffled data. Exactly one factor is produced for each factor
of N, resulting in a fast Fourier transform valid for any N. The
factoring algorithm enables the fast Fourier transform to be imple-
mented in general with four nested loops, and with three loops if N
is a power of two. No special logical organization, such as binary in-
dexing, is required to unshuffle data. Included are two sample pro-
grams, one which writes the equations of the matrix factors employ-
ing the four key loops, and one which implements the algorithm in a
fast Fourier transform for N a power of two. The algorithm is shown
to be most efficient for N a power of two.

Index Terms-Cooley-Tukey algorithm, discrete Fourier trans-
form, fast Fourier transform, mixed radix, spectral analysis.

T HE fast Fourier transform, extensively covered in
current journals [1]- [7] and popularly termed the
Cooley-Tukey algorithm [4], can be generalized

for any number of coefficients N by a factoring which
does not shuffle the data. This factoring has three
major effects on the fast Fourier transform. First, the
transform is more easily explained, since the complexity
of the tree graph to trace data is eliminated. Second, the
mechanization is simplified since the final data need not
be unshuffled, and third, the fast Fourier transform may
be conveniently applied to any number of coefficients,
although an application to anything but a power of two
or four may be only of academic interest. The applica-
tion of the fast Fourier transforms to any N, which may

Manuscript received January 16, 1969; revised August 4, 1969.
The author is with Hughes Aircraft Company, Canoga Park,

Calif.

be termed a mixed radix algorithm, has appeared in
recent articles [7]- [9] but no other algorithm has been
found which does not involve scrambled data. This
paper develops the basic matrix, demonstrates the al-
gorithm for its factorization, and illustrates the factor-
ing and the resulting fast Fourier transform with pro-
grams for time-sharing operation.

THE DISCRETE FOURIER TRANSFORM
The Fourier transform Y(w) of a function x(t) is de-

fined by the relation
co

Y(W) = x(t)e- wtdt.
-co

(1)

If x(t) is sampled g times, a sampled function X*(t) is
produced, defined by

A-1

X*(t) = E x(t)b(t - kT)
k20

(2)

where a(t) is the Dirac delta function. The Fourier trans-
form of X*(t) is the discrete Fourier transform Y*(w):

Y*(w) = x*(t)e-iwtdt
-00

r A--1
- f EF x(t)5(t- kT)e-wtdt

j-1

Y*-(w) = E x(kT)eiwkT.
k=O

(3)

105

