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A Fortran implementation of a random number generator is described whmh produces a sequence of 
random mtegers that is machine independent as long as the machine can represent all mtegers m the 
interval [ -2 . . 31  + 1, 2..31 - 1] 
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INTRODUCTION 

There are a number of situations in which it is desirable to have a random 
number generator that is machine independent. In general, it is useful if a program 
written in a high-level language produces results which are the same from 
machine to machine as long as the input to the program is the same. 

For example, the pseudorandom number generator used by the Control Data 
Corporation in its GPSS simulation program is the same as in IBM's GPSS, even 
though the generator is known to have defective statistical behavior. Apparently, 
compatibility is more valuable than statistical goodness. 

The program described here is an implementation of the generator described 
by Lewis et al. [6] and indirectly attributed to D.H. Lehmer. The code for the 
program appears in Figure 1. The generator produces a sequence of positive 
integers, IX, by the recursion: 

I X ( / +  1) = A,IX(i) mod P 

where P is the Mersenne prime number 23~ - 1 = 2147483647 and A = 75 = 16807. 
Thus all integers IX produced will satisfy 0 < IX < 231 - 1. Most large computers 
can represent all integers in this range using INTEGER format. Many minicom- 
puters, however, are fundamentally 16-bit machines and thus cannot represent 
integers in this range with the "native" INTEGER format. If, however, the 
minicomputer has another format, such as DOUBLE PRECISION which can 
represent integers in the range [0, 231 - 1], then the generator proposed here may 
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! 

JUNCTION R A N D ( I X )  
C F'OI"qFADLI- RANDOM NUMBER GENERAFOR 
(" USING FFIE RECURSION 
C IX - IX~(A HOD P 
C 
C SOMF COtIPII ERS, E.Go, THE HP3000, REQUIRE THE FOLLOWING 

C DECLARAFION TO BE INIEGER~4 
INIEGER A,P,IX,B15,BI6,XHI,XALO,LEF rLO,FHI,K 

C 

DATA A/16807/,BIS/32768/,B]6/65536/,F'/2147483647/ 
C 

I: GEl- 15 HI ORDER B{rS OF IX 
XHI = IX/B16 

C GEF 16 L 0  B I I S  OF I X  AND FORM 1.0 PRODUCT 
XALO=(IX XHT*B] 6)*A 

C GEr ]5 HI ORDER BIFS OF LO F'RODUCT 

LEFTI.O- XALO/BI6 
~ FOI(M FHE ,$1 HIGHESF BIIS OF FULL F'RODUCr 

FHI = XIII~A ~ LEFTLO 
(' GEF OVERFLO J'ASF 31SF BIT OF FULL F'RODUCT 

K = FHI/B15 
C ASSEMBLE ALL FHE PARRS AND F'RESUBTRACT P 
C "file F'ARENTHFSES ARE FSSENTIAL 

IX = (((XALO-LEFILO~BI6) - F'> + (FHI"K~BIS)~BI6) ÷ K 
C ADD P BACh IN IF NECESSARY 

JF- ( I X  . L I .  O) IX -- IX  + F' 
C MIJLTII-'LY BY 1 / ( 2 ~ . ~ 1 - 1 )  

5'AND -= FLOAT(IX)~(4.656612875E-10 
RETURN 

END 

F~g 1. Portable Fortran random number generator 

still be implemented. A version of RAND which uses DOUBLE PRECISION 
rather than the INTEGER format appears in Figure 2. 

MACHINE INDEPENDENT USE OF THE GENERATOR 

The generator is invoked as a function, that is, F X  = R A N D  (IX).  Before first 
use, IX must be set to some initial integral value in the range 0 < IX < 2147483647. 
Subsequent values of IX are then obtained recursively from the preceding IX by 
invoking the function. RAND returns a random fraction in the interval 0 < 
RAND < I. One can use either this fractional value or IX itself. 

Even though the generator is machine independent according to the earlier 
criterion, it is quite easy to use it in a way which destroys this independence. 

To maintain as much machine independence as possible one should use IX 
rather than RAND where possible. For example, to generate a random integer K, 
in [I, J] one could use either: 

(I) K = (J - I + 1)*RAND(IX) + I 

or 

(2) FX = RAND (IX) 
K = (IX/(2147483647/(J - I + I))) + I. 

Method (2) is preferred because it is machine independent. The value of K in 
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DOUBLE PRECISION FUNCTION BRAND(IX) 
F'OR'rABL E RANDOM NUMBER GENERATOR 

USING THE RECURSION 
IX =" [X#A MOB P 

DOUBLE I-'RECISION A,P , IX ,B15 ,B I6 ,XHI ,XALO,LEFTLO,FHI ,K  

7~5, 2~15, 2#~1&, 2##31-1 

DAtA A/16807.DO/,BIb/32768.DO/,BIG/65536°DO/,P/2147483647.DO/ 

GE:I 1,5 HT ORDER BITS OF IX 
XH[ = I X / B t 6  
XHI = XHI - DMOD(XHI,I.DO) 

C GEF l& LO B I I S  OF IX AND FORM LO PRODUCT 
XALO:-( IX-XHI~B16)$A 

C GEF 15 HI ORDER BITS OF' LO PRODUCt 
LEFFi_O = XALO/B16 
LEFTLO -- LEFFLO - DMOD(LEFTLO,I.DO) 

C FORM THE 31 HIGHESF BITS OF FULL PRODUCT 
FHI = XH]);A 4- LEFTLO 

(] GET OVERFLO PASF 31SF BIT OF FULL PRODUCT 
Ix --" F I ' - I ] / B t 5  
Ix '= k - D M O D ( E , I . I ' J O )  

C ASSEMBLE ALL ]HE PARIS ANB PRESUBIRACT P 
C THE PARENFI~ESES ARE ESSENFIAL 

I X - "  ( ( ( X A L O - I .  E I " T L O ~ B I & )  - P )  + ( F H I - h ~ B 1 5 ) ~ B 1 6 )  + I', 
C ADD P BACK I N  IF  NI=CESSARY 

IF { IX  .LF. OoDO) IX = IX -i F' 
[: MUI .T ]F 'LY BY 1/(2)K~31-I)  

bRAN1) = IX~4.656612875D-IO 
I,'E 1 URN 

ND 
Fig 2 Portable Fortran random number generator using double precision anthmetm 

method (1) may depend upon the manner in which the host machine converts 
integers to real. 

For example, the widely used NETGEN portable problem generator [4] for 
network LP problems contains a slow but very portable random number gener- 
ator. Unfortunately, method (1) is used when the generator is invoked. Thus, 
even though NETGEN takes integer input and produces integer output, it is not 
truly portable because it unnecessarily uses floating point arithmetic in interme- 
diate calculations. 

S T A T I S T I C A L  P R O P E R T I E S  

As with all multiplicative congruential generators the output from the generator 
cycles. The generator is full cycle, that is, every integer from 1 to 23~ - 2 = 
2147483646 is generated exactly once in the cycle. This cycle length is about four 
times greater than that of other typical "portable" Fortran random number 
generators. 

Lewis et al. [6] have subjected the IBM 360 machine language version of this 
generator to a battery of statistical tests. In their words the "generator has been 
found to be highly satisfactory." Hutchinson [3] points out that the low-order 
bits do not behave in the highly nonrandom fashion characteristic of generators 
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for which P is a power of 2. Gavish and Merchant  [2] find this generator to be the 
best of the simple multiplicative generators they  tested, including the generator 
with A = 630360016. 

The IMSL library [8] uses this generator as the basis for its "shuffling" 
generator, GGU4, which has statistical properties which are empirically gratifying. 

I M P L E M E N T A T I O N  

There are two difficulties in implementing the generator in a high-level language: 
(1) The product A , I X  may  have 46 bits in it, but  we are only assuming tha t  

the host  machine can correctly store and calculate 31-bit products. 
(2) P is not a power of 2, in fact it is prime, so discarding high-order digits of 

A , I X  is not a valid direct way of doing the mod P operation. 
Difficulty (1) is resolved by the s tandard device of simulating double precision 

with software. The 31-bit integer IX can be written as a*21~ +/Y where a is a 15- 
bit integer and fl is a 16-bit integer. The product A , I X  can be written as (A,a)*2 ~6 
+ A*fl. Because A {=16807) is represented by 15 bits, the product A*a has at  
most  30 bits and the product A*fl has at  most  31 bits. Only these products are 
manipulated by the generator. 

Difficulty (2) is resolved by using a procedure described by Payne et  al. [7] and 
Fishman [1] and also at t r ibuted to D.H. Lehmer. 

Suppose we wish to compute 

I X ( / +  1) = A,IX(i)  mod P (1) 

where 

P = r a - 1 (2) 

but  tha t  it is easier to compute 

Z -- A,IX(i)  mod r d (3) 

where r is the radix of the host  machine, e.g. 2, and d is the number  of base-r 
digits of the host  machine, e.g. 31. Equation (3) for an appropriate k is equivalent 
to 

Z = A,IX(i)  - k * r  d. (4) 

If  we add k to both sides of eq. (4), we obtain 

Z + k = A,IX(i)  - k * ( r  a - 1) ffi A,IX(i)  - k*P. (5) 

Thus,  provided Z + k < P, I X ( / +  1) - Z + k. In the Appendix it is shown tha t  
Z + k is always less than  2*P, provided reasonable assumptions are put  on r, d, 
P, and A; so if Z + k > P, w e u s e Z + k - P a s I X ( / + l ) .  

The appropriate value of k is 

k = [ A * I X ( i ) / r  a] (i.e. integer part). (6) 

Effectively, k is the set of overflow digits in the product, t reated as a number.  
The Fortran code uses r d = 231. The code makes no assumptions about how the 

host  computer  does ari thmetic other than  tha t  it does it correctly on all integers 
in [-213~ + 1, 231 - 1] and tha t  it does truncation on integer division. 
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Table I. Time in Seconds for 100,000 Calls 

Subroutine Machine  
Machine R A N D  GGUBF language D R A N D  

DEC 2050 6.3 9.1 2.5 25.4 
IBM 168 2.94 2.43 .92 5.54 
TI 59 570000* 

* This  number  is an extrapolation of results kindly supphed by W J. Cody. 
The  TI  59 is a 13-decimal digit pocket  calculator. 

The reader may check the correctness of the implementation on his or her own 
computer by verifying that if IX(0) = 1, then IX(1000) = 522329230. 

COMPARISONS WITH OTHER GENERATORS AND EXECUTION TIME 

Kruska] [5] describes an "extremely portable random number generator"; how- 
ever, its cycle length is only 2048 and is thus inappropriate for situations requiring 
large numbers of random numbers. 

The IMSL scientific subroutine library [8] uses the same recursive formula as 
that described here in its subroutine GGUBF. The widely used SIMSCRIPT II.5 
simulation system and the DEC 20 Fortran system use the same recursion but 
with the multiplier A = 630360016. The multiplier A -- 16807 appears to have 
been more thoroughly tested by Lewis et al. [6]. 

The IMSL generator is written in Fortran and is fairly portable. It uses double 
precision, floating point arithmetic; however, some machines such as the HP3000/ 
Series I can only represent at most 12 digits accurately in double precision, 
whereas the product of 16807 × 2147483646 has 14 digits. Thus GGUBF is not 
portable to the HP3000/Series I. RAND with the INTEGER*4 declaration as 
suggested in the program comments produces exactly the same sequence on the 
IBM 370, DEC 20, and HP3000. 

The generator DRAND (Figure 2) is probably the most portable. It is appro- 
priate for a computer such as the PRIME which carries less than 46 bits in 
DOUBLE PRECISION (so GGUBF cannot be used) and less than 31 bits in 
INTEGER (so RAND cannot be used) but does carry more than 31 bits in 
DOUBLE PRECISION (so DRAND works). DRAND has the drawback of 
making extensive use of DOUBLE PRECISION and thus being very slow. 

For execution timings a Fortran program was written which called the random 
number generator 100,000 times and summed the numbers. The results appear in 
Table I. Supercomputer class machines such as the IBM 168 tend to have very 
efficient double precision, floating point algorithms, so GGUBF may execute 
slightly faster on such machines. Smaller machines may in fact resort to software 
to perform double precision arithmetic, so RAND may be considerably faster on 
them. 

APPENDIX 
General Version of the Method 

The computing method for IX( /  + 1) is a specific form of a more genera] 
method. Suppose we wish to compute 
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I X ( / +  1) = A,IX( i )  mod P (A1) 

but  tha t  it is easier to compute  

Z = A,IX( i )  mod E (A2) 

which would be t rue ,  for example, if E = r ~. Let  E > P and define g and k as 
follows: 

g = E - P > 0 ,  
k = [A*IX(i ) /E]  (i.e. the integer part), (A4) 

so that  k equals the number  of integral multiples of E in A , I X  (i). Then,  adding 
k * g  to both  sides of eq. (A2) gives 

Z + k * g  = A,IX( i )  - k*(E - g) = A,IX(i )  - k*P. (A5) 

The  general method  is then: I feq .  (A5) is less than P, then I X ( / +  1) -- Z + k * g .  
If  not, then we wish to show tha t  I X ( / +  1) = Z + k * g  - P. 

This requires us to show tha t  eq. (A5) is less than 2*P. We note from eq. (A2) 
tha t  Z _< E - 1 so tha t  for eq. (A5) to be less than 2*P it is sufficient to have 

E - 1 + k*g  < 2*P. (A6) 

Because IX(i) < P, from eq. (A4) we find that  a sufficient condition for eq. (A6) 
is 

E - 1 + (A*P/E)*g < 2*P, (A7) 

o ra l so  

or also 

P + g - 1 + (A*P/E)*g  < 2*P, (A8) 

P - g + l  
( A , P / E )  < (A9) 

g 

We finally obtain tha t  a sufficient condition for the general method to work is 

A <  - - g , p  ~ + . (A10) 

For example, in R A N D  where g = 1 the sufficient condition is trivial: A < E 
= 2 31. 
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