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A Comparison of Three Rounding Algorithms
for IEEE Floating-Point Multiplication

Guy Even and Peter-Michael Seidel

Abstract—A new IEEE compliant floating-point rounding algorithm for computing the rounded product from a carry-save
representation of the product is presented. The new rounding algorithm is compared with the rounding algorithms of Yu and Zyner [26]
and of Quach et al. [17]. For each rounding algorithm, a logical description and a block diagram is given, the correctness is proven, and
the latency is analyzed. We conclude that the new rounding algorithm is the fastest rounding algorithm, provided that an injection
(which depends only on the rounding mode and the sign) can be added in during the reduction of the partial products into a carry-save
encoded digit string. In double precision format, the latency of the new rounding algorithm is 12 logic levels compared to 14 logic levels
in the algorithm of Quach et al. and 16 logic levels in the algorithm of Yu and Zyner.

Index Terms—Floating-point arithmetic, IEEE 754 Standard, floating-point multiplication, IEEE rounding.

1 INTRODUCTION

VERY modern microprocessor includes a floating-point

(FP) multiplier that complies with the IEEE 754
Standard [9]. The latency of the FP multiplier is critical to
floating-point performance since a large portion of the FP
instructions consists of FP multiplications. For example,
Oberman reports that FP multiplications account for
37 percent of the FP instructions in benchmark applications
[13].

Floating point multipliers perform the computation in
two phases. In the first phase, an addition tree reduces the
partial products to a carry-save encoded digit string that
represents the exact product. In the second phase, a binary
string representing the rounded product is computed from
the carry-save encoded string. A lot of research has been
devoted to optimizing the latency of adding the partial
products to produce the carry-save encoded product, e.g.,
(1], [2], [5], [11], [12], [14], [15], [16], [21], [23], [24], [25].
More recently, work on rounding the product according to
the IEEE 754 Standard has been published [7], [17], [18],
[19], [26], [28]. Assuming that the multiplier outputs a carry-
save encoded digit string representing the exact product,
the following natural question arises: What is the fastest
method to compute the rounded product given the exact
product represented by carry-save encoded digit string?

We consider and compare three rounding algorithms: 1)
the algorithm of Quach et al. [17], which we denote as the
QTF algorithm; 2) the algorithm of Yu and Zyner [26],
which we denote as the YZ algorithm; and 3) a new
algorithm that is based on injection-based rounding [7],
which we denote as the ES algorithm. We provide block
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diagrams of these rounding algorithms, optimized for
speed. We measure the latency of the algorithms in a
unified fashion, using logic levels to enable technology
independent comparisons. The main building blocks of
these algorithms are similar and consist of a compound
adder and the computation of a sticky and carry bits. Thus,
the costs of the three algorithms are similar and the
interesting question is finding the fastest algorithm.

We focus on double precision multiplication in which
each significand is represented by 53 bits. The algorithms
assume that the significands are normalized, namely, in
the range [1,2), and, therefore, their product is in the
range [1,4). We do not consider the cases that deal with
denormal or special values since supporting denormal
values can be obtained by using an extended exponent
range [10], [19], [27] and the computation on special
values can be done in parallel [8]. A full design of a
floating-point unit that includes a discussion of the
internal formats, supporting denormal values, special
values, and exceptions appears in [20].

The three algorithms share the following techniques:

1. The product represented by a carry-save encoded
digit string of 106 digits in the case of double
precision is partitioned into a lower part and an
upper part. The upper part is added by a compound
adder that computes the binary representations of
sum and sum + ulp, where ulp denotes a unit in the
last position and sum denotes the sum of the upper
part. A carry-bit, a round-bit, and a sticky-bit are
computed from the lower part.

2. The rounding decision is computed in two paths:
The nonoverflow path works under the assumption
that the exact product is in the range [1,2) and the
overflow path works under the assumption that the
product is in the range [2,4). Although the sum of
the upper part, denoted by sum, does not equal the
exact product, the most significant bit of sum
controls the selection between these two paths.

0018-9340/00/$10.00 © 2000 IEEE
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We outline the main differences between the three
rounding algorithms:

1. The rounding decision. The QTF and ES algorithms
simplify the rounding decision by an early addition
of a value (this value is called the prediction in the
QTF algorithm and the injection in the ES algorithm).
In the QTF algorithm, the prediction depends on the
rounding mode and on the carry-save digit posi-
tioned 53 digits to the right of the radix point. In the
ES algorithm, the injection depends only on the
rounding mode and we assume that it is added in
with the partial products and, thus, the product
already includes the injection. The rounding deci-
sion in the YZ algorithm is based on customary
rounding tables.

2. The position in which the carry-save encoded
product is partitioned into a lower part and an
upper part differs in the three algorithms. In the
YZ algorithm, the lower and upper parts are
separated by a “buffer” of three carry-save digits
in positions [51 : 53], where the position of a digit
denotes how many digits it is to the right of the radix
point. In the other two algorithms, the upper part
consists of positions [—1:52], and the lower part
consists of positions [53 : 104].

The latencies of the proposed designs that implement
these algorithms in terms of logic levels are the following;:
The latency of the ES algorithm is 12 logic levels, the latency
of the QTF algorithm is 14 logic levels, and the latency of the
YZ algorithm is 16. Note that we modified and adapted the
QTF and YZ algorithms for minimum latency.

Supporting all four rounding modes of the IEEE 754
Standard is an error prone task. We therefore provide
correctness proofs of all three algorithms which formalize
and clarify the difficult aspects. From this point of view, the
YZ algorithm is easiest to prove and the QTF algorithm is
the most intricate (especially the rounding decision logic).

The paper is organized as follows: In Section 2,
preliminary issues are described, such as: notation, con-
ventions we use regarding IEEE rounding, and the general
setting. In Section 3, a straightforward rounding algorithm
is reviewed. This algorithm is described to provide an
outline of the task of rounding after the exact product is
computed. It does not attempt to parallelize the task of
rounding and, therefore, has a long latency. In Sections 4-6,
each rounding algorithm is described, proven, and ana-
lyzed. In Section 7, we discuss how the latencies of the
algorithms increase as the precision is increased. In
Section 8, a summary and conclusion is given.

2 PRELIMINARIES

2.1 Notation

Let wzzip1---z;€{0,1}" denote a binary string. By
x[z1 : 22], we denote the binary string z, . 11---z,. We
also sometimes refer to z; as z[i|]. Since we deal with
fractions, we index binary encoded bit strings by
20.21%2 ... so that x; is associated with the weight 27,
The value encoded by z[z : z2] is denoted by |z[z : 2]
and equals

| original rounding mode | sign | reduced rounding mode ]

round to +oc + RI
round to +oc — R7Z
round to —oc + RZ
round to —oc — RI

Fig. 1. Rounding mode reduction based on the sign.

2
|x[z1 : 20]| = Zmi <270

=z

Boolean operators are often denoted as follows: V denotes
an OR, A denotes an AND, and @ denotes an XOR.

2.2 IEEE Rounding

The IEEE-754-1985 Standard defines four rounding modes:
round toward 0, round toward oo, round toward —oo, and
round to nearest (even). In Fig. 1, a reduction of the round
toward +oo and round toward —oc rounding modes to the
rounding modes RZ (round to zero) and RI (round to
infinity) is depicted. This reduction is based on the sign of
the number and follows Quatch et al. [17]. This reduction
leaves only three rounding modes: RI, RZ, and RNE (round
to nearest-even). Furthermore, Quach et al. [17] suggested
implementing RNE by round to nearest (up), denoted by
RNU. The rounding mode RNU is defined as follows: If z is
between two successive representable numbers y; < x < y»,
then

Jw ifx<(y1+y2)/2
rryu () = {y2 otherwise.

The reason that RNE can be implemented by RNU is that
renvu(z) # reye(z) Hf © = (y1 + y2)/2 and the least signifi-
cant bit (LSB) of the binary encoding of y, is 1. Therefore,
obtaining rpyp(z) from rpyy(z) can be accomplished by
“pulling down” the LSB when z = (y1 + y2)/2.

For the sake of clarity, we define round to zero (RZ) and
round to infinity (RI) of significands in the range [1,4) in
double precision. Note that this definition excludes the
postnormalization shift that takes place when the number is
in the binade [2,4). We also ignore the overflow exception
that can occur in RI. The definition uses the notation |z] for
the integer floor function and [z] for the integer ceiling
function.

Definition 1. Let x € [1,4), then rrz(x) and rp(x) are defined

by
(z) = ls%] 277 ifz €[1,2)
TR ) 2 if e [2,4).
[ e
TR Tt 20 if e [2,4).

2.3 General Setting

In this paper, we consider a double precision multiplier. We
assume that the significands are normalized, namely, that
the values of the two significands are in the range [1,2) and
that each significand is represented by a binary string with
bits in positions [0:52]. The exact product of the two
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significands is in the range [1,4) and is encoded by a binary
string with bits in positions [—1 : 104]. (Note that the weight
of the bit in position [—1] is 2.) For the sake of simplicity, we
ignore the exponent and sign-bit paths; a full description of
a floating-point multiplier, including the exponent and
sign-bit paths, appears in [20].

3 NaiveE IEEE ROUNDING

In this section, we review a simple but slow IEEE compliant
algorithm for rounding after multiplication [4].

3.1 Description

The input consists of two binary strings SUM and CARRY,
each having 106 bits which are indexed from —1 to 104. The
sum of the binary numbers represented by SUM and CARRY
equals the exact product EXA € [1,4).

Rounding is computed as follows (the computation of
the exponent string is omitted):

1. Reduce the rounding mode to one of three rounding
modes based on the sign of the product.

2. 2:1-compression. The SUM and CARRY strings are
added to obtain a single binary string X[—1 : 104],
namely |X|= |SUM|+ |CARRY|. Note that, since
the exact product is in the range [1,4), the most
significant bit of X is in position [—1].

3. Normalization. If |X| > 2, then |X'| = |X|/2, other-
wise |X'| =|X|. This is implemented by a condi-
tional shift by at most one position to the right. Note
that X’ is indexed from 0 to 105.

4. Compute sticky. The sticky-bit equals

OR(X'[54], X'[55], ..., X'[105]).

5. Compute rounding decision. The rounding decision
RD € {0,1} is based on the rounding mode, the bits,
L = X'[52], R = X'[53] , and the sticky-bit. Note that
the rounding mode at this stage already incorporates
the sign.

6. Increment. Compute |X'[0:52]|+RD-272. Let
Y[—1:52] be the binary string that represents the
sum. Note that the increment may result with an
overflow, namely, |Y| = 2.

7. Postnormalize. If |Y| =2, then |Y'| =1, otherwise
Y' =Y[0:52.

The significand of the rounded product is given by Y.

3.2 Delay Analysis

The latency of Steps 2, 4, and 6 of the naive rounding
procedure is at least logarithmic in the length of the binary
strings SUM and CARRY. The other steps require only
constant delay. If every pipeline stage can accommodate at
most one logarithmic depth circuit, then an implementation
of the naive rounding procedure requires at least three
pipeline stages.

4 THE ES ROUNDING ALGORITHM

In this section, we review injection-based rounding [7] and
present an implementation for double precision that
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representable numbers

PN

———
real line t t
RZ rounding intervals ) y
rounding — —
RNU rounding intervals I )I )I )}
k,_\ JRR/A NN S— k’—\« —
RNU rounding values
-t
RNU roun;ifing intervals +05- 2 ) ) )I
ter injection
rounding — — —
RI rounding intervals K ( (
—_— A \’Y‘J - — A
RI rounding values T~ T~ T~
r
RI rounding intervals +0.999...+ 2 ) ) )I
after injection . S
rounding — - —

Fig. 2. (a) Reducing RNU to RZ with an injection; (b) reducing Rl to RZ
with an injection.

requires (under assumptions specified in Section 4.5) only
12 logic levels.

4.1 Injection-Based Rounding

Rounding by injection reduces the rounding modes RI and
RNU to RZ [7]. The reduction is based on adding an
injection that depends only on the rounding mode, as
follows:

0 if RZ
INJ = ¢ 279 if RNU
2792 — 27104 if RI.

The effect of adding INJ is summarized in the following
equation:

X€e[l,2) = roundne(X)=roundrz(X +1INJ), (1)

where mode € {RZ, RNU, RI}.

Fig. 2 depicts the reduction of RNU and RI to RZ by
injection assuming that the number to be rounded is in the
range [1,2).

If the exact product, denoted by EXA, is in the range
[2,4), then the injection fails to reduce all the rounding
modes to RZ. To fix the reduction, an injection correction
amount is added. The injection correction amount, denoted
by INJCOR, is defined by

0=0-0 if RZ
INJCOR = ¢ 2773 =252 _27% if RNU
2752 — 2751 _ 27104 _ (2752 _ 27104) if RL

Therefore, if X is in the range [2, 4), the effect of adding the
injection and the correction amount is summarized in the
following equation:
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high low
101 52[53 104 suM
CARRY
iOL \—* OL
| HA(54) \
Compute Carry,
Round & Sticky | 5 "IL
(52) C: 7L
R: 8L
Cl52IR J CI52).R,S RS
RN RN
csa | ¥ l l
RN | 7 fix L’ fix L
RI (ovf) (novf)
Compound-Adder(53) XOR—|
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Y1[51] YO[51]
Increment 9Ly SLy 9L 9L
YOL1] 9L Decision
sum+1 sum sig-ovl | AND ‘ | AND | | AND ‘
YI[-1:51] YO[-1:51]
91 91. 4 8L 101, 101 101 101. 101.
100 9L L’(inc) | L(inc) L’(ninc) | L(ninc)

ShiftR

121, RESULT[0:51] 121,y RESULT[52]

Fig. 3. Block diagram of the ES rounding algorithm annotated with timing
estimates (“5L” next to a signal means that the signal is valid after five
logic levels).

X €[2,4) = roundoq.(X) = roundpz(X + INJ + INJCOR)
(2)
where mode € {RZ, RNU, RI}.

We assume that INJ is already added in the multiplier
adder array. As discussed later, in Section 8, this assump-
tion is motivated by the potential of advancing the addition
of the injection to the multiplier array with a very small
slowdown of the multiplier array. The early addition of the
injection causes the carry-save output of the multiplier
array to satisfy:

|SUM| + [CARRY| = EXA + INJ.

This completes the description of injection-based round-
ing for numbers in the range [1,4).

4.2 The Rounding Algorithm

In this section, we present the new ES algorithm for
rounding in floating-point multiplication that is based on
injection-based rounding.

Fig. 3 depicts a block diagram of the ES rounding
algorithm. The rounding algorithm works under the
assumption that the SUM and CARRY-strings already
include the injection (but not the injection correction) and
proceeds as follows:

1. The SUM and CARRY-strings are divided into a high
part and a low part. The high part consists of
positions [—1:52] and the low part consists of
positions [53 : 104].

2. The low part is input to the box that computes the
carry, round, and sticky-bits, defined as follows:

0[52] = 052
R = o33
S = OR(0o54, 055, - - -, O104),

where o5, - - - 0104 is the binary string that satisfies:

The higher part is input to a line of Half Adders and
produces the output (Xg,[—1:51],Ly) and
Xearry|—1 : 51]. Note that the bit Ly is in position
52 and that no carry is generated to position —2
because the exact product is less than 4 (even after
adding the injection).

Xoum[—1:51] and Xcgy[—1:51] are input to
the Compound Adder, that outputs the sum
Y0[-1:51] and the incremented sum
[Y1[—1:51]| = [YO[—1: 51]| + 27°L.

The Increment Decision box receives the round-bit
(R), the carry-bit (C[52]), the LSB (L), the MSB
(Y0[—1]), and the rounding modes (RN, RI). The
output signal INC indicates whether Y0 or Y1 is to
be selected.

The most significant bits Y0[—1] and Y'1[—1] indicate
whether Y0 and Y1 are in the range [2,4). Depend-
ing on these bits, Y0 and Y1 are normalized as
follows:

Z0[0: 51] =

Y0[0 : 51] if YO[-1] = 0
{ shiftright(YO[-1:50]) if YO[-1] = 1
Z1[0 : 51) =

Y1[0: 51] it Y1[-1] =0
{sm‘ft_m'ght(y1[—1 :500) if Y1[-1] = 1.

The rounded result (except for the least significant
bit) is selected between Z0 and Z1 according to the
increment decision INC, as follows:

Z0[0: 51] if INC=0

RESULT[0 : 51] = {21[0 :51] if INC = 1.

In case the rounding mode is RNE, the least
significant bit needs to be corrected since RNE and
RNU do not always result in the same least
significant bit. The correction of the least significant
bit is computed by two parallel paths; one path
working under the assumption that the rounded
result overflows (i.e., greater than or equal to 2) and
the other path working under the assumption that
the rounded result does not overflow.

The path that computes the correction of the LSB
under the “no-overflow” assumption is implemen-
ted by the box called “fix L (novf)”. The inputs of the
“fix L (novf)” box are the round bit R, the sticky bit
S, and a signal RNE indicating whether the round-
ing mode is round to nearest even. When the output,
denoted by not(pd), equals zero, the LSB should be
pulled down.
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The path that computes the correction of the LSB
under the “overflow” assumption is implemented by
the box called “fix L” (ovf)”. The inputs of the “fix L’
(ovf)” box are the Ly bit, the carry-bit C[52], the
round bit R, the sticky bit S, and the signal RNE.
When the output, denoted by not(pd’), equals zero,
the LSB should be pulled down.

Note that the pull down signals are inactive if the
rounding mode is not RNE.

9. The least significant bit of the rounded result before
fixing the LSB (in case of a discrepancy between
RNE and RNU) equals one of three values:

a. If the rounded result does not overflow, then the
LSB equals Lx @ C[52];

b. If the rounded result overflows and the incre-
ment decision is not to increment, then the LSB
equals Y0[51]; and

c. If the rounded result overflows and the incre-
ment decision is to increment, then the LSB
equals Y1[51].

The fixing of the LSB is implemented by combin-
ing (using AND-gates) the pull-down signals with
the corresponding candidates for the LSB signals.

The outputs of the three AND-gates are denoted
by: L'(inc), L'(ninc), and L(inc). For the sake of
clarity, we introduce the signal L(ninc), which
equals L(inc).

10. The LSB of the rounded result equals L(ninc) if no
overflow occurred and no increment took place. The
LSB of the rounded result equals L(inc) if no
overflow occurred and an increment took place.
The LSB of the rounded result equals L'(ninc) if an
overflow occurred and no increment took place. The
LSB of the rounded result equals L'(inc) if an
overflow occurred and an increment took place.

According to the four cases, the LSB of the
rounded result is selected depending on the over-
flow signals and the increment decision.

4.3 Details

In this section, we describe the functionality of three boxes
in Fig. 3 that have not yet been fully described.

Fix L (novf). This box belongs to the path that assumes
that the product is in the range [1,2). Recall that there might
be a discrepancy between RNE and RNU when a tie occurs,
namely, when the exact product equals the midpoint
between two successive representable numbers. Let EXA
denote the value of the exact product, the “Fix L (novf)”
generates a signal not(pd) that satisfies:

EXA € [1,2) = (not(pd) = 0 < a tie occurs and RNE).

When a tie occurs, there are two possibilities: 1) If RNU and
RNE agree, then both yield a rounded result with a LSB
equal to zero. Pulling down the LSB in this case is not
required, but causes no damage. 2) If RNU and RNE
disagree, then the LSB of the RNU result must equal 1 and
the LSB of the RNE result must equal 0. Hence, the RNE
result can be obtained from the RNU result by pulling
down the LSB.
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Without the addition of the injection, a tie occurs when
R=1 and S=0. Since an injection of 275 is already
included, a tie occurs when R = 0 and S = 0. Therefore, the
not(pd) signal is defined by:

not(pd) = OR(R, S,not(RNE)).

Fix L’ (ovf). This box belongs to the path that assumes
that the product is in the range [2,4). The “Fix L’ (ovf)”
generates a signal not(pd') that satisfies:

EXA € [2,4) = (not(pd') = 0 & a tie occurs and RNE).

The difference between not(pd’) and not(pd) is that not(pd’)
is used under the assumption that the product is greater
than or equal to 2. Without the addition of the injection, a tie
occurs (in case of overflow) when Ly ® C[52] =1, R =0,
and S = 0. Since an injection of 277 is already included, a
tie occurs when Lx @ C[52] =1, R=1, and S = 0. There-
fore, the not(pd') signal is defined by:

not(pd') = OR(not(Lx & C[52]),not(R), S, not(RNE)).

Increment Decision. The increment decision box has two
paths, depending on whether an overflow occurs. The path
working under the assumption that no overflow occurs (i.e.,
Y0[-1]=0) produces an increment decision if
Ly + C[52] = 2. The path working under the assumption
that an overflow occurs (i.e., Y0[—1] = 1) needs to take into
account the correction of the injection, denoted by INJCOR.
It produces an increment decision if
Lx + C[52] + INJCOR - 2°2 + R/2 > 2. Therefore, the INC
signal is defined by:

Lyx AC[52]
INC ={ Ly Vv C[52]

R+ Lx + C[52] > 2

if YO[-1]=0or RZ
if YO[-1] =1 and RI
if YO[~1] = 1 and RNE.

4.4 Correctness Proof

The difficult part in our algorithm is the correctness of
the INC signal. As long as the bit Y0[-1] indicates
correctly whether the exact product is greater than or
equal to 2, (1) and (2) imply that the INC signal is correct.
However, the bit Y0[—1] might not indicate correctly the
binade of the exact product. The following two cases are
possible: 1) Y0[—1] =0 and the exact product is greater
than or equal to 2; and 2) Y0[-1]=1 and the exact
product (without the injection) is less than 2.

The source of such errors is due to the fact that
|Y0[—1 : 51]| does not always equal the 53 most-significant
bits of the exact product. Recall that:

[YO[—1:51]| = [ Xeum[—1 : 51]| + | Xcamy[—1 : 51]|.

Hence, there may be two reasons for a discrepancy between
Y0[-1:51] and the 53 most-significant bits of the exact
product: 1) The carry-in bit to position [51] is ignored in
Y0[—1 : 51]; and 2) the injection is incorporated in the SUM
and CARRY strings.

The following claim proves that, even in the presence of
mismatches described above, Y0[—1] can be used for
controlling which path should be selected: the “no-over-
flow” path or the “overflow” path. The reason this is true is
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that, when Y0[—1] fails to indicate the binade of the exact

product, the following holds: 1) The rounded result equals

2; and 2) both paths compute the result 2.

Claim 1. Let EXA denote the exact product and let SUM and
CARRY satisfy |SUM|+ |[CARRY| = EXA +INJ. Then,

correct rounding of EXA can be computed as follows:

if YO[—1]
if YO[—1].

TRz(EXA + INJ)

EXA) =
Tmode(EXA) { rrz(EXA 4+ INJ + INJCOR)

Proof. There are two cases to consider: 1) Y0[—1] = 0 and 2)
YO0[-1] = 1.

l. Suppose Y0[—1] = 0. If EXA < 2, then the claim
follows from (1). If EXA > 2, then

EXA +INJ € [2,[Y0[0 : 51] + <), (3)
with ¢ =3-27%2. The reason for this is the
possible contribution of Ly -272 € {0,27°%} and

|[SUM([53 : 104]| + |[CARRY[53 : 104]| € [0,27%).
Since Y0[—1] = 0, it follows that

[Y0[0:51]] <2—27°L
Since [Y0[0 : 51]| + & > 2+ 272, we have
[Y0[0:51]] >2 -2
Therefore, |Y0[0 : 51]| = 2 — 27%! and (3) yields
EXA +1INJ € [2,2 4 27%%). (4)

The correction of the injection satisfies
0 < INJCOR < 2792, therefore:

EXA +INJ 4 INJCOR € 2,2 +27°%). (5)
(2), in this case,
Fmode(EXA) = rpz(EXA + INJ 4+ INJCOR). How-

ever, in this case,

According to

rrz(EXA +INJ) = rpz(EXA + INJ + INJCOR) = 2
because rounding to zero maps both intervals
[2,2+27%2) and [2,2 +27%1) to 2.

2. Suppose Y0[-1] = 1. If EXA > 2, then the claim
follows from (2). If EXA <2, then since
INJ € [0,27%2), it follows that
EXA +1INJ € [2,2 4+ 27%%). (6)
The proof now follows the proof in case 1. ]
The following claim proves that our implementation of
the computation of 7,04.(EXA) is correct. Note that the
claim does not deal with fixing the LSB to obtain RNE from
RNU.
Claim 2.

1. IfYO[-1] =0, then

643
T’Rz(EXA + INJ) =
|(Y0[0: 51], (Lx @ C[52]))| if INC
[(Y1[0:51],(Lx ® C[52]))| if INCAY1[—1]
[(Y1][-1:51]| if INCAY1[-1].
2. IfYO[-1] =1, then
rrz(EXA +INJ 4+ INJCOR) =
{ |(YO[-1:51]] ifINC=0
|(Y1[-1:51]] if INC = 1.

Proof. Suppose Y0[—1] = 0, then
EXA +1INJ = [Y0[0 : 51]| + Ly - 27°% + C[52] - 2752 + tail,
where tail € [0,275%). This implies that

rrz(EXA +INJ) =
rrz(|[Y0[0 : 51)| 4 Lx - 277 4 C[52] - 27%).

The INC signal in this case equals 1 iff the addition of
Ly and C[52] generates a carry to position 51. If INC = 0,
then simple addition takes place:

rrz(EXA +1INJ) = |[Y0[0 : 51]| + Ly - 272 + C[52] - 2772

If INC =1, there are two cases: In the first case, the

increment does not cause an overflow and, again, simple

addition takes place. If an overflow is caused, then, since

only 53 bits are output, the bit L, & C[52] is discarded.

This completes the proof of the first part of the claim.
Suppose Y0[—1] = 1, then INC = 1 iff

Lx -27°% +|SUMJ53 : 104]| + |CARRY/[53 : 104]|
+INJCOR > 275

Therefore,

EXA +INJ 4 INJCOR = |Y0[~1 : 51]| +INC - 27! 4 tail,
where tail € [0,27%!). This implies that

rrz(EXA + INJ + INJCOR) =
rrz([Y0[~1: 51]| + INC - 2751)

and the claim follows. O

4.5 Delay Analysis

In this section, we present a delay analysis of the ES
rounding algorithm depicted in Fig. 3. Our analysis is based
on the following assumptions:

1. Consider a carry look-ahead adder and let dcra
denote the delay of the 53-bit adder measured in
logic levels. We assume that the MSB of the sum has
a delay of at most dcrs —1 logic levels. This
assumption is easy to satisfy if the carry look-ahead
adder of Brent and Kung is used [3]. Otherwise,
satisfying this assumption may require arranging the
parallel-prefix network so that the MSB is ready one
logic level earlier.

2. The compound adder is implemented so that the
delay of the sum is der4a and the delay of the
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lixL

Ysuml-1]

lixL

Fig. 4. Details of boxes in the ES rounding algorithm: (a) the Increment
Decision box; (b) the fix L' (ovf) box; and (c) the fix L (novf) box.

incremented sum is dgpa + 1. This can be obtained
by ORing the carry-generate and carry-propagate
signals [22, Lemma 1].

3. Consider the box in which the carry, round, and
sticky bits are computed. According to the first
assumption, since the widths of this box and the
compound adder are similar, the delay of the carry
bitis dera — 1 logic levels and the delay of the round
bit is dera logic levels. The delay of the sticky bit is
estimated to be dor4 — 2 logic levels, based on the
fast sticky bit computation presented in [26].

4. We assume that the delay associated with buffering
a fan-out of 53 is one logic level.

Fig. 3 depicts the block diagram of the injection-based
rounding algorithm annotated with timing estimates. We
assigned dcr4 the value of eight logic levels. This implies
that the sticky bit is valid after six logic levels, the carry-bit
C[52] is valid after seven logic levels, and the round-bit is
valid after eight logic levels. Similarly, the sum Y0 is valid
after nine logic levels, the MSB Y0[—1] is valid after eight
logic levels, the incremented sum Y1 is valid after 10 logic
levels, and the MSB Y'1[—1] is valid after nine logic levels.

Fig. 4 depicts implementations of the Fix L (novf), Fix L’
(ovf), and Increment Decision boxes. These implementa-
tions are used in Fig. 3 to obtain the estimated delay of 12
logic levels for the rounded product.

5 THE YZ ROUNDING ALGORITHM

In this section, we review and analyze the rounding
algorithm of Yu and Zyner, which was reported to have
been implemented in the ULTRASparc RISC microproces-
sor [26]. We refer to this algorithm as the YZ rounding
algorithm.

5.1 Description

Fig. 5 depicts a block diagram of the YZ rounding
algorithm. This description differs from the description in
[26] in two ways:

1. In [26], the sum output by the 3-bit adder has only
three bits. We believe that this is a mistake and that
the sum should have four bits (we denote this sum
by Z[50 : 53)).

2. The sum and the incremented sum in [26] is fed to a
4 : 1-mux, which selects one of them either shifted to
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Fig. 5. Block diagram of the YZ rounding algorithm annotated with timing
estimates.

the right or not. We propose to normalize the sum
and the incremented sum before the selection takes
place. This early normalization helps reduce the
delay of the rounding circuit at the cost of two
shifters rather than one.

The algorithm is described below:

1. The SUM and CARRY-strings are divided into a high
part and a low part. The high parts consist of
positions [—1:53] and the low parts consist of
positions [54 : 104].

2. The low part is input to the box that computes the
carry and sticky bits, defined as follows:

S = OR(054,055, - - -, 0104),

where 053 - - - 0104 is the binary string that satisfies:




The higher part is input to a line of Half Adders and
produces the output X,,,[-1:53] and
Xearry[—1 : 52]. Note that no carry is generated to
position [—2] because the exact product is less than 4.
The high part Xgm[—1:53] and Xcgmy[—1:52] is
divided into two parts. Positions [—1:50] are
fed into the Compound Adder that outputs the
sum YO0[-1:50] and the incremented
sum|Y1[—1:50]| = [YO[-1:50]| + 27%°. Positions
[51:53] are added with the carry bit C[53] to
produce the sum Z[50 : 53].

The processing of Z[50 : 53] is split into two paths;
one working under the assumption that the rounded
product will not overflow (i.e., less than 2) and the
other path working under the assumption that the
rounded product will overflow.

The no-overflow path computes a rounding
decision, rd[52], in the round dec. (novf) box. The
rounding decision rd[52] is added with Z[50 : 52] in
the X-novf box to produce the sum Z,,,7[50 : 52]. In
Claim 3, we prove that this 3-bit addition does not
produce a carry bit in position 49. The sum Z,,,,¢[50 :
52] has two roles: Positions [51 : 52] are the result bits
in positions [51:52] if no overflow occurs and
position [50] is used to detect if a carry is generated
in position [50] if no overflow occurs. The bit
Znovf[00] decides whether the upper sum Y0[0 : 50]
or the incremented sum Y'1[0 : 50] should be selected
in the no-overflow case.

The overflow path computes a rounding decision,
rd'[51], in the round dec. (ovf) box. The rounding
decision rd'[51] is added with Z[50 : 51] in the X-ovf
box to produce the sum Z,,¢[50 : 51]. In Claim 3, we
prove that this 2-bit addition does not produce a
carry bit in position 49. The sum Z,,;[50 : 51] has two
roles: Position [51] serves as the result bit in position
[52] if overflow occurs and position [50] is used to
decide whether an increment should take place in
the upper part.

The decision of which path should be chosen is
made by the select decision box. First, an overflow
signal ovf is computed as follows:

ovf =YO0[—1] V (Z,0nf[50] A Y1[—1]). (7)

The overflow signal ovf determines whether Z,;[50]
Or Z,,r[50] is chosen as the carry-bit that effects
position [50] and, therefore, determines the incre-
ment decision inc:

| ZyyB0]  ifovf=1
me= { Znows[50] if ovf = 0. )

The two least significand bits of the rounded
product are computed as follows: If no overflow
occurs (ovf = 0), then

result[51 : 52) = Zp0¢[51 : 52].

Therefore, the lower mux selects these bits for
result[51 : 52] when ovf = 0 signal.
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If an overflow occurs (ovf=1), then
result[52] = Zy,f[51]. The bit result[51] depends on
whether an increment takes place or not:

Y1[50] if inc =1

result[51] = { Y0[50] if inc = 0.

Note that inc = Z,,¢[50] if ovf = 1. Since the signal
Zows[50] is ready earlier than inc, we use Z,,;[50] to
control the selection:

Y1[50] i Zyus[50] = 1

result[b1] = {YO[50] if Z,7[50] = 0.

The selection between Y'1[50] and Y 0[50] is done by
the sel multiplexer in Fig. 5.

8. The most significant bits Y0[—1] and Y0[—1] indicate
whether Y0 and Y1 are in the range [2,4). Depend-
ing on these bits, Y0 and Y1 are normalized as

follows:
Z0[0 : 50] =
Y0[0 : 50] if YO[-1] =0
{ shiftright(Y0[—1:49]) if YO[-1]=1
Z1[0 : 50] =
Y1[0: 50] if Y1[-1] =0
{ shiftright(Y1[—1:49]) if Y1[-1] =1.

9. The rounded result (except for the least significant
bit) is selected between Z0 and Z1 according to the
increment decision inc signal, as follows:

w1 J2Z0[0:51] ifinc=0

RESULT(0: 51] = { Z1[0:51] if inc=1.

5.2 Correctness

In this section, we prove that adding the rounding decision

does not generate a carry-bit in position 49. This claim

applies both to the no-overflow path and to the overflow
path.

Claim 3. Let Z[50 : 53] denote the sum that is output by the 3-bit
adder, as depicted in Fig. 5. Let rd[52] denote the rounding
decision for the no-overflow path and let rd'[51] denote the
rounding decision for the overflow path. Then,

Z[50]- 27 + Z[51] - 272 +rd[51] - 27 < 1
Z[50]- 27 + Z[51] - 272 4 Z[52] - 27 + rd[52] - 2% < 1.

Proof. The partial compression [6] caused by the half-adder
line implies that

(| X sum [51 = 53| + | Xearry[51 : 52]]) - 2 € [0,5/8)].

This follows from the fact that Xy, [i] and Xeemyli + 1]
cannot both be equal to one. Adding C[53] increases the
above range by 274, yielding that

|Z[50 : 53]| - 2% € [0,11/16].

The contribution of rd'[51] - 272 is in the range [0,4/16]
and the contribution of rd[52] - 273 is in the range [0, 2/16]
and, therefore, the claim follows. O
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5.3 Delay analysis
Fig. 5 depicts the YZ rounding algorithm annotated with
our timing estimates. We use the same assumptions on the
delays of signals that are used in Section 4.5. We argue that
at least 16 logic levels are required. The path in which the
sum and incremented sum are computed does not lie on the
critical path. The critical path consists of the carry-bit
computation, the 3-bit adder, the round dec. (novf) box, the
Y-novf box, the select decision box, a driver, and the upper
mux.

We considered the following optimizations to minimize
delay for a lower bound on the required number of logic
levels:

1. The 3-bit adder is implemented by conditional sum
adder; the late carry-in bit C[53] selects between the
sum and the incremented sum. This is a fast
implementation because the bits of X 4.y and Xy,
are valid after one logic level and the carry-bit C[53]
is valid after seven logic levels.

2. The rounding decision boxes are implemented by
cascading two levels of multiplexers that are
controlled by Z[52:53] in the no-overflow path
and by Z[51:52] in the overflow path. In the
overflow path, Z[53] is combined with sticky-bit
and, hence, the rounding decision required three
logic levels. In the no-overflow path, only two logic
levels are required.

3. The addition of the rounding decision bit required
only one logic level using a conditional sum adder.

4. The inc signal is valid after three more logic levels,
due to the need to compute the signal ovf in two logic
levels (see (7)), and one selection according to (8).

5. The inc signal passes through a driver due to the
large fanout. This driver incurs a delay of one logic
level and controls the upper mux to output the result
after 16 logic levels.

6 THE QTF ROUNDING ALGORITHM

Quach et al. [17] presented methods for IEEE compliant
rounding. Their technique is a generalization of the round-
ing algorithm of Santoro et al. [18]. In this section, we
present a rounding algorithm that is based on the method of
Quach et al. while aiming for minimum delay.

Apart from reducing the rounding modes to RZ, RNU,
and RI, the key idea used in the methods of Quach et al.
and Santoro et al. is to inject a prediction bit that is based on
the rounding mode and the values of SUM[53] and
CARRY[53]. The injection of the prediction bit reduces the
number of possibilities of the rounded result.

In this section, we deviate from Quach et al. [17] in the
following points:

1. The presentation in the paper of Quach et al. is
separated according to the rounding mode. Since we
are investigating rounding algorithms that support
all the rounding modes, we integrated the rounding
modes into one algorithm.

2. Quach et al. suggest several options for the choice of
the prediction logic in RNU. Only one possibility
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was suggested in modes RZ and RI. Since the
prediction logic lies on the critical path, we chose
to simplify the prediction logic as much as possible
by defining:

1 if RI A (SUM[53] vV CARRY[53])
pred = .
0 otherwise.

3. Quach et al. separate the rounding decision and the
compound adder. They use a 3-way compound
adder that computes sum, sum+1, and sum + 2.
The correct sum is selected by the control logic. We
are interested in a faster design and, therefore, we
break the 3-way adder into a Half-Adder line, a 2-
way compound adder, and a mux. The control logic
uses an output of the 2-way compound adder and
the LSB (in case of no overflow) is generated by the
control logic, as well as the increment decision.

6.1 Description

Fig. 6 depicts a block diagram of a rounding algorithm that
we suggest based on Quach et al. [17]. There are many
similarities between the rounding algorithm based on
injection rounding and the rounding algorithm based on
Quach et al.,, so we point out the differences and the new

notations.
Before being input to the compound adder, the high part

of the SUM and CARRY pass through two lines of Half-
Adders. The first line makes room for the prediction bit. The
second pass enables separating the bit Ly in position [52]
(this is, in fact, part of a 3-way compound adder). The
increment decision has two paths: one for overflow and the
other for no-overflow. The MSB Y 0[—1] selects which path
outputs the increment decision inc. In addition, the
increment decision computes the LSB (before fixing for

RNE) in case an overflow does not occur.

6.2 Details
In this section, we describe the details of the increment

decision box and the LSB-fix for RNE box.

6.2.1 Increment Decision Box
The outputs of the increment decision box are the increment

decision inc and the bit L that equals the LSB of the
rounded product before fixing in case no overflow occurs.
The increment decision is partitioned into two paths. One is
for the case that an overflow occurs which computes the
signal ince,s and the other path is for the case that no
overflow occurs which computes the signal inc,q,s. The
following equations define the signals incyyy, incnonf, and

inc:
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Fig. 6. Block diagram of the QTF rounding algorithm annotated with
timing estimates.

(Ly + C[52] > 2) it RZ
) _J (R+ Ly +C[52] >2) if RNU
Mol =Y (SVR)+ Ly >2)  if RI AC[52] = pred
0 if RI A C[52] # pred
(Ly +C[52 > 2) if RZ
, (Ly +C[p2] > 1) if RNU
el =N (SV RV Ly) it RIA C[52] = pred
Ly if RIA C[52] # pred.

The output inc equals inc,q,s or inc,,; bit according to bit
YOo[-1].

if YO[—1] =0

. _ incnmrf
me= { if YO[—1] = 1.

incov f

The bit L, which equals the LSB of the rounded product
(before fixing) in case no overflow occurs, is defined by:

Ly @ C[52] if RZ
L=< Ra Ly ®C[52] if RNU
(SVR)@® Ly @ C[52] @ pred if R

Note that the case of RI is complicated due to the possibility
that pred # C[52]. If pred = C[52], then L = (SV R) ® Lx,
but if pred # C[52], the effect of the wrong prediction is
reversed by (SV R) & Lx @ pred & C[52].

6.2.2 LSB-Fix for RNE

The LSB-fix for RNE box outputs two signals: not(pd) is used
to pull-down the LSB if a “tie” occurs but no overflow
occurs, and not(pd') is used to pull-down the LSB if a “tie”
and an overflow occur. These signals are defined as follows:

In contrast to injection-based rounding, no injection or
prediction is contained in the Ly, R, and S-bit computation

in RNE. If no overflow occurs, a “tie” occurs iff R =1 and
S =0, in which case the LSB should be pulled down for
RNE. Therefore,

not(pd) = OR (not(R), S,not(RNE)).

If overflow occurs, a “tie” occurs iff Ly + C[52] =1,
R =0, and S =0, in which case the LSB should be pulled
down for RNE. Therefore,

not(pd') = OR. (not(Lx & C[52]), R, S,not(RNE)).

6.3 Correctness

In this section, we prove the correctness of the selection
signal INC. The proof is divided into two parts. In the first
part, we assume that Y0[—1] = 1 iff the exact product is in
the range [2,4). In the second part, we prove that, even if the
YO0[-1] signals overflow incorrectly, then the selection
signal inc is still correct.

Claim 4. Suppose that Y 0[—1] signals correctly whether the exact
product is in the range [2,4). Then, the inc signal signals
correctly whether an increment is required for rounding.

Proof. We consider separately the cases of overflow and no
overflow. For each case, we consider the three possible
rounding modes. The question which we address is
whether the rounding decision in conjunction with the
compression of the lower part of the carry-save repre-
sentation produces a carry into position 51. The inc
signal should be 1 iff a carry is generated into position 51.

Suppose no overflow occurs, namely Y0[—1] = 0.

l. Inrounding mode RZ, only truncation takes place
and, therefore, a carry into position 51 is
generated iff Ly + C[52] > 2.

2. In rounding mode RNU, the rounding decision is
to increment (in position 52) if the round-bit
equals 1. This increment generates a carry to
position 52 and, hence, a carry is generated into
position 51 iff R+ Lx + C[52] > 2.

3. In rounding mode RI, the rounding decision is to
increment (in position 52) if R=1 or S = 1. One
needs to take into account the prediction that was
already added to the product. We consider two
subcases:

a. If C[52] = pred, then the contributions of pred
and C[52] cancel out and, therefore, C[52]
should be ignored. The rounding decision
generates a carry into position 51 iff
(RVS)A Ly.

b. If C[52] # pred, then this implies that
C[52] =0, pred=1, and R =1. Therefore,
the rounding decision without the prediction
would have been to increment in position 52.
Since pred =1, this increment already took
place, and an additional carry should not be
generated into position 51.

Suppose that overflow occurs, namely, Y0[-1] = 1.

l. In rounding mode RZ, only truncation occurs, so
this case is identical to the case of no overflow.
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2. In rounding mode RNU, the rounding decision is
determined by the bit in position 52 which equals
Ly & C[52]. Therefore, there are two cases: either
a carry is generated into position 51 since Lx +
C[52] > 2 or a carry is generated into position 51
by the rounding decision. Combining these cases
implies that a carry is generated into position 51

3. Inrounding mode RI, we consider two cases: i) If
C[52] = pred, then we may ignore C[52] and the
prediction since their contributions cancel out. In
this case, the rounding decision is to increment iff
OR (Lx,R,S).ii) If C[52] # pred, then C[52] =0,
pred =1, and R = 1. We consider two subcases:

a. If Ly =1, then the effect of the prediction
was restricted to changing Ly from 0 to 1.
Therefore, the rounding decision is based on
RV S. Since R =1, the rounding decision is
to increment.

b. If Lx =0, then the effect of the prediction
was to generate a carry into position 51 in the
second half-adder line and to change Lx
from 1 to 0. This means that, without the
prediction, Ly would have been equal to 1,
which implies that the rounding decision
would have been to increment. Since an
increment already took place, an additional
increment is not required. O

The selection between inc,,; and inc,q,s is controlled by
Y0[—1], although Y 0[—1] might not correctly signal the case
of overflow. The following claim shows that, when Y0[—1]
does not signal overflow correctly, both choices are equal
and, hence, the inc signal is correct.

Claim 5. Suppose that YO0[—1] bit does not signal an overflow
correctly, namely, Y0[—1] =1 and EXA <2 or YO[-1] =0
and EXA > 2. Then, incy,f = incpoy.

Proof. The proof is divided into two cases:

l. Y0[-1]=1 and EXA < 2. This case can only
occur when pred =1 and C[52] = 0. Therefore, it
is restricted to rounding mode RI. Since

24 Ly -2 <Y0[-1:51]+ Ly -2
=EXA[0: 52] + pred - 2772 < 242772
it follows that Lx = 0. This implies that, in this
case, iNCoyf = iNCpovy, as required.

2. Y0[-1] =0 and EXA > 2. This discrepancy can
only occur if C[52] = 1 and pred = 0. Therefore,
[YO[—1:51]| + Ly -27°% = EXA[~1:52] — 272

>2-27%
Since |YO[—1:51]|+ Ly -27? is smaller than 2
and a multiple of 272, it follows that
[Y0[0:51]| + Ly - 2792 =2 — 272,

This implies that Ly = 1. Consider the three
rounding modes: In RZ, incy,; = incpep. In Rl if
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C[52] = 1, then pred = 1, excluding the possibility
of this case. In RNU, since C[52] =1 and Ly =1,
it follows that inco,s = incney, and the claim
follows. O

6.4 Delay Analysis

Fig. 6 depicts the rounding algorithm based on Quach et al.
[17] with delay annotation. The delay assumptions that are
used here are similar to those used in the two previous
rounding algorithms. The rounding algorithm depicted in
Fig. 6 uses a prediction logic which lies on the critical path.
The delay of the prediction logic is two logic levels.
Following Quach et al., Fig. 6 depicts a nonoptimized
processing order in which the postnormalization shift takes
place after the round selection. The increment decision box
is assumed to be organized as follows: The bits S, C[52], R,
and YO0[—-1] are valid after 6,7,8,10 logic levels, respec-
tively. To minimize delay, we implement the rounding
equations by 4 levels of multiplexers so that the results can
be selected conditionally as the signals arrive. Thus, a total
delay of 15 logic levels is obtained. By performing
postnormalization before the round selection takes place,
one logic level can be saved to obtain a total delay of 14
logic levels.

7 HIGHER PRECISIONS

How do these rounding algorithms scale when higher
precisions are used? One can see that the parts in the
presented rounding algorithms that depend on the length of
the significands are: the half-adders, the compound adder,
the sticky, round, and carry-bit computation, the selection
multiplexers, and the drivers for amplifying the signals that
control the wide multiplexers.

When precision is increased, the widths of upper and
lower parts of the carry and save strings grow, but they still
stay almost equal to each other. This implies that our
assumptions on the relative delay of the carry-bit computa-
tion and the compound adder do not need to be changed.
Moreover, it is expected that, as precision grows, the gap
between the delay of computing the carry-bit and the
sticky-bit grows so that the sticky-bit computation will not
lie on the critical path. This implies that a first order
estimate (ignoring additional delay due to increased fanout
and interconnection length) of the delays of the rounding
algorithms for precision p can be stated as follows:

1. The delay of the injection-based rounding algorithm
is four logic levels plus the delay of the sum
computation of the p-bit compound adder dcpa(p).

2. The delay of the YZ rounding algorithm is
8+ dcra(p).

3. The delay of the rounding algorithm based on
Quach et al. [17] with the optimization (in which
the postnormalization takes place before the selec-
tion) is 6 + dera(p) logic levels.

8 SuMMARY AND CONCLUSIONS

A new IEEE compliant floating-point rounding algorithm
for computing the rounded product from a carry-save
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representation of the product is presented. The new
rounding algorithm is compared with two previous round-
ing algorithms. To make the comparison as relevant as
possible, we considered optimizations of the previous
algorithms which improve the delay. For each rounding
algorithm, a logical description and a block diagram is
given, the correctness is proven, and the latency is analyzed.

Our conclusion is that the new ES rounding algorithm is
the fastest rounding algorithm provided that an injection is
added in during the reduction of the partial products into a
carry-save encoded digit string. With the ES algorithm, the
rounded product can be computed in 12 logic levels in
double precision (i.e., when the significands are 53 bits
long). In “precision independent” terms, the critical path
consists of a compound adder and four additional logic
levels.

If the injection is not added in during the reduction of the
partial products into a carry-save encoded digit string, then
an extra step of adding in the injection is required. This step
amounts to a carry-save addition and the latency associated
with it is that of a full-adder, namely, two logic levels. Thus,
if the injection is added in late, then the latency of the ES
rounding algorithm is 14 logic levels.

The addition of the injection during the reduction of the
partial products can be accomplished without a slowdown
or with a very small slowdown. The justification for this is:
1) The partial products are usually obtained by Booth
recoding and by selecting (e.g., 5:1 multiplexer) and, hence,
are valid (i.e., available) much later than the injection; and
2) the delay of adding the partial products does not increase
strictly monotonically as a function of the number of partial
products. The delay incurred by adding in the injection, if
any, depends on the length of the significands and on the
organization of the adder tree.

The other two rounding algorithms do not require an
injection and, in double precision, the latency of the QTF
rounding algorithm is 14 logic levels. The critical path
consists of a compound adder and six additional logic
levels. The YZ rounding algorithm ranks as the slowest
rounding algorithm, with a latency of 16 logic levels, and
the critical path consists of a compound adder and eight
additional logic levels.
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