Search
 
 
  Engleski
 
 
 
Open in this window (click to change)
Forum@DeGiorgi: Početna
Forum za podršku nastavi na PMF-MO
Login Registracija FAQ Smajlići Članstvo Pretražnik Forum@DeGiorgi: Početna

popravni iz elem ?
WWW:
Idite na Prethodno  1, 2
Moja sarma
 
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji 1. godine, preddiplomski studij Matematika -> Elementarna matematika 1 i 2
Prethodna tema :: Sljedeća tema  
Autor/ica Poruka
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 19:26 sri, 14. 2. 2007    Naslov: Citirajte i odgovorite

[quote="Sophie"]a sta ako ja sad padnem kad cu pisat nadoknadu? hocu li i ja onda moc i popravni pisat?[/quote]

Nadoknade i popravci pisat ce se zajedno, u petak 23.2.2007. Ako ce trebati popravljati nadoknade ili nadoknadjivati popravke, to cete rijesiti u dogovoru s profesorom (to su ipak iznimke od iznimaka).

Nemoj tako negativno razmisljati... da si umjesto prigovaranja na forumu otisla profesoru, odmah bi saznala da ces imati nadoknadu. Jedna tvoja kolegica koja se razbolila prije prvog kolokvija tako je postupila i za nju smo vec odrzali nadoknadu.
Sophie (napisa):
a sta ako ja sad padnem kad cu pisat nadoknadu? hocu li i ja onda moc i popravni pisat?


Nadoknade i popravci pisat ce se zajedno, u petak 23.2.2007. Ako ce trebati popravljati nadoknade ili nadoknadjivati popravke, to cete rijesiti u dogovoru s profesorom (to su ipak iznimke od iznimaka).

Nemoj tako negativno razmisljati... da si umjesto prigovaranja na forumu otisla profesoru, odmah bi saznala da ces imati nadoknadu. Jedna tvoja kolegica koja se razbolila prije prvog kolokvija tako je postupila i za nju smo vec odrzali nadoknadu.



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
debelidemon
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 25. 09. 2006. (10:39:43)
Postovi: (17)16
Sarma = la pohva - posuda
= 3 - 0

PostPostano: 13:16 pet, 16. 2. 2007    Naslov: Citirajte i odgovorite

kako ce izgledat popravni?
kako ce izgledat popravni?



_________________
[Vrh]
Korisnički profil Pošaljite privatnu poruku Posjetite Web stranice
Sophie
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 01. 11. 2006. (16:23:02)
Postovi: (1B)16
Spol: žensko
Sarma = la pohva - posuda
= 0 - 0

PostPostano: 18:00 pet, 16. 2. 2007    Naslov: Citirajte i odgovorite

[quote="krcko"][quote="Sophie"]a sta ako ja sad padnem kad cu pisat nadoknadu? hocu li i ja onda moc i popravni pisat?[/quote]

Nadoknade i popravci pisat ce se zajedno, u petak 23.2.2007. Ako ce trebati popravljati nadoknade ili nadoknadjivati popravke, to cete rijesiti u dogovoru s profesorom (to su ipak iznimke od iznimaka).

Nemoj tako negativno razmisljati... da si umjesto prigovaranja na forumu otisla profesoru, odmah bi saznala da ces imati nadoknadu. Jedna tvoja kolegica koja se razbolila prije prvog kolokvija tako je postupila i za nju smo vec odrzali nadoknadu.[/quote]

dobro,hvala, nisam prigovarala ,samo sam pitala...
krcko (napisa):
Sophie (napisa):
a sta ako ja sad padnem kad cu pisat nadoknadu? hocu li i ja onda moc i popravni pisat?


Nadoknade i popravci pisat ce se zajedno, u petak 23.2.2007. Ako ce trebati popravljati nadoknade ili nadoknadjivati popravke, to cete rijesiti u dogovoru s profesorom (to su ipak iznimke od iznimaka).

Nemoj tako negativno razmisljati... da si umjesto prigovaranja na forumu otisla profesoru, odmah bi saznala da ces imati nadoknadu. Jedna tvoja kolegica koja se razbolila prije prvog kolokvija tako je postupila i za nju smo vec odrzali nadoknadu.


dobro,hvala, nisam prigovarala ,samo sam pitala...



_________________
SOPHIE
[Vrh]
Korisnički profil Pošaljite privatnu poruku
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 20:28 pet, 16. 2. 2007    Naslov: Citirajte i odgovorite

[quote="debelidemon"]kako ce izgledat popravni?[/quote]

Osim sluzbenih informacija [url=http://web.math.hr/nastava/em/em1/06em1rezultati.html]ovdje[/url], nesto malo sam napisao [url=http://degiorgi.math.hr/forum/viewtopic.php?t=8876&start=3]ovdje[/url]. Vise od toga ne znam.

[quote="Sophie"]dobro,hvala, nisam prigovarala ,samo sam pitala...[/quote]

[quote="Sophie, malo ranije"]jooooj pa sta tolko kompliciraju, kakvi minimalni bodovi, kakva jedna sansa... zbog sveg tog gubim volju uopce ce trudit.... najrade bih odustala od svega... zas nam jednostavno svima sta smo pali ne daju popravni i gotovo. ja bas nisam imala srece i razbolila sam se uzasno bas taj tjedan kad smo imali kolokvije i jossam uvijek bolesna...pa sam ih morala sve propustit... a mogla sam ih bar dva proc... i sad moram sve predmete svo gradivo pisat ,a mozda ih i necu moc pisat jer nemam dovoljne minimalne bodove...il mozda nece ni bit popravnog... bas sam pehist... :cry:[/quote]
debelidemon (napisa):
kako ce izgledat popravni?


Osim sluzbenih informacija ovdje, nesto malo sam napisao ovdje. Vise od toga ne znam.

Sophie (napisa):
dobro,hvala, nisam prigovarala ,samo sam pitala...


Sophie, malo ranije (napisa):
jooooj pa sta tolko kompliciraju, kakvi minimalni bodovi, kakva jedna sansa... zbog sveg tog gubim volju uopce ce trudit.... najrade bih odustala od svega... zas nam jednostavno svima sta smo pali ne daju popravni i gotovo. ja bas nisam imala srece i razbolila sam se uzasno bas taj tjedan kad smo imali kolokvije i jossam uvijek bolesna...pa sam ih morala sve propustit... a mogla sam ih bar dva proc... i sad moram sve predmete svo gradivo pisat ,a mozda ih i necu moc pisat jer nemam dovoljne minimalne bodove...il mozda nece ni bit popravnog... bas sam pehist... Crying or Very sad



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
debelidemon
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 25. 09. 2006. (10:39:43)
Postovi: (17)16
Sarma = la pohva - posuda
= 3 - 0

PostPostano: 22:03 pet, 16. 2. 2007    Naslov: Citirajte i odgovorite

nisam to vidio. . .

hvala . .
nisam to vidio. . .

hvala . .



_________________
[Vrh]
Korisnički profil Pošaljite privatnu poruku Posjetite Web stranice
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 13:57 sri, 21. 2. 2007    Naslov: Citirajte i odgovorite

Popravak i nadoknada kolokvija iz ELEMENTARNE MATEMATIKE 1 održat će se u petak, 23.2.2007. u 9:00 prema sljedećem rasporedu:

A - M pred. 101
N - Ž pred. 110

Slova se odnose na početno slovo prezimena :)
Popravak i nadoknada kolokvija iz ELEMENTARNE MATEMATIKE 1 održat će se u petak, 23.2.2007. u 9:00 prema sljedećem rasporedu:

A - M pred. 101
N - Ž pred. 110

Slova se odnose na početno slovo prezimena Smile



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 10:09 čet, 22. 2. 2007    Naslov: Citirajte i odgovorite

[quote="tyee"]dobro jutro... ovak buduci da sam malo kratak s biljeskama iz elementarne :( , a sada su vec lagano stisli rokovi nadam se da vam nece biti problem malo pomoci...
pa redom...
što znači napiši relacije ekvivalencije na skupu npr. {1,2,3,4,5} cije su klase ekvivalencije npr. {1,5},{2,4},{3}?
kako bih mogao na nekom skupu {1,2,3} nac neku relaciju koja je reflx.,antisim, a nije tranz?
iz drugog koloksa mi nije jasno kako se nalaze npr. dvoznamenkasti xeN za koje vrijedi npr. xkongr222 (mod22).
i za kraj sto su parcijalni razlomci?[/quote]

Relacija ekvivalencije s klasama zadanim gore je {(1,1), (1,5), (5,1), (5,5), (2,2), (2,4), (4,2), (4,4), (3,3)}. Nadam se da je na tom primjeru jasno kako se radi opcenito.

Primjeri relacija traze se metodom pokusaja i pogresaka. Uzmemo npr. relaciju {(1,1), (2,3)} i pogledamo ima li trazena svojstva. Odmah vidimo da nije refleksivna i da treba dodati (2,2) i (3,3). Antisimetricna jest jer nema parova ([i]a[/i],[i]b[/i]) i ([i]b[/i],[i]a[/i]) s [i]a[/i] razlicitim od [i]b[/i]. Medjutim, tranzitivna je a mi ne zelimo da bude. To svojstvo mozemo pokvariti dodavanjem para (1,2) (zbog toga sto (1,3) nije u relaciji). Time refleksivnost i antisimetricnost nismo pokvarili, pa je jedan primjer relacije kakva se trazi {(1,1), (2,3), (2,2), (3,3), (1,2)}.

Ovo s kongruencijom ce postati jasno kad proucite i razumijete definiciju. Necu pisati recepte jer ce u popravnom pitanje ionako biti malo drugacije formulirano.

Parcijalni razlomci su racionalne funkcije oblika P(x) / Q(x)^n, pri cemu je Q ireducibilni polinom i stupanj od P je manji od stupnja od Q. To je definicija s predavanja.
tyee (napisa):
dobro jutro... ovak buduci da sam malo kratak s biljeskama iz elementarne Sad , a sada su vec lagano stisli rokovi nadam se da vam nece biti problem malo pomoci...
pa redom...
što znači napiši relacije ekvivalencije na skupu npr. {1,2,3,4,5} cije su klase ekvivalencije npr. {1,5},{2,4},{3}?
kako bih mogao na nekom skupu {1,2,3} nac neku relaciju koja je reflx.,antisim, a nije tranz?
iz drugog koloksa mi nije jasno kako se nalaze npr. dvoznamenkasti xeN za koje vrijedi npr. xkongr222 (mod22).
i za kraj sto su parcijalni razlomci?


Relacija ekvivalencije s klasama zadanim gore je {(1,1), (1,5), (5,1), (5,5), (2,2), (2,4), (4,2), (4,4), (3,3)}. Nadam se da je na tom primjeru jasno kako se radi opcenito.

Primjeri relacija traze se metodom pokusaja i pogresaka. Uzmemo npr. relaciju {(1,1), (2,3)} i pogledamo ima li trazena svojstva. Odmah vidimo da nije refleksivna i da treba dodati (2,2) i (3,3). Antisimetricna jest jer nema parova (a,b) i (b,a) s a razlicitim od b. Medjutim, tranzitivna je a mi ne zelimo da bude. To svojstvo mozemo pokvariti dodavanjem para (1,2) (zbog toga sto (1,3) nije u relaciji). Time refleksivnost i antisimetricnost nismo pokvarili, pa je jedan primjer relacije kakva se trazi {(1,1), (2,3), (2,2), (3,3), (1,2)}.

Ovo s kongruencijom ce postati jasno kad proucite i razumijete definiciju. Necu pisati recepte jer ce u popravnom pitanje ionako biti malo drugacije formulirano.

Parcijalni razlomci su racionalne funkcije oblika P(x) / Q(x)^n, pri cemu je Q ireducibilni polinom i stupanj od P je manji od stupnja od Q. To je definicija s predavanja.



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
debelidemon
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 25. 09. 2006. (10:39:43)
Postovi: (17)16
Sarma = la pohva - posuda
= 3 - 0

PostPostano: 10:46 čet, 22. 2. 2007    Naslov: Citirajte i odgovorite

Jel istina da ce na popravnom biti samo teorija?
Jel istina da ce na popravnom biti samo teorija?



_________________
[Vrh]
Korisnički profil Pošaljite privatnu poruku Posjetite Web stranice
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 11:03 čet, 22. 2. 2007    Naslov: Citirajte i odgovorite

Nije istina.
Nije istina.



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 22:04 sub, 24. 2. 2007    Naslov: Citirajte i odgovorite

Objavljeni su [url=http://web.math.hr/nastava/em/em1/06em1poprez.html]rezultati popravnog kolokvija[/url].
Objavljeni su rezultati popravnog kolokvija.



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
Prethodni postovi:   
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji 1. godine, preddiplomski studij Matematika -> Elementarna matematika 1 i 2 Vremenska zona: GMT + 01:00.
Idite na Prethodno  1, 2
Stranica 2 / 2.

 
Forum(o)Bir:  
Ne možete otvarati nove teme.
Ne možete odgovarati na postove.
Ne možete uređivati Vaše postove.
Ne možete izbrisati Vaše postove.
Ne možete glasovati u anketama.
You can attach files in this forum
You can download files in this forum


Powered by phpBB © 2001, 2002 phpBB Group
Theme created by Vjacheslav Trushkin
HR (Cro) by Ančica Sečan