Evo, neka stoji:
[dtex]V(x_0,x_1,\ldots ,x_n)=\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
x_0 & x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_0^2 & x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
x_0^n & x_1^n & x_2^n & \ldots & x_{n-1}^n & x_n^n\\
\end{vmatrix}=[/dtex]
[dtex]=\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
x_0 & x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_0^2 & x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
0 & x_1^{n-1}(x_1-x_0) & x_2^{n-1}(x_2-x_0) & \ldots & x_{n-1}^{n-1}(x_{n-1}-x_0) & x_n^{n-1}(x_n-x_0)\\
\end{vmatrix}=[/dtex]
[dtex]=\dots=
\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
0 & x_1-x_0 & x_2-x_0 & \ldots & x_{n-1}-x_0 & x_n-x_0\\
0 & x_1(x_1-x_0) & x_2(x_2-x_0) & \ldots & x_{n-1}(x_{n-1}-x_0) & x_n(x_n-x_0)\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & x_1^{n-2}(x_1-x_0) & x_2^{n-2}(x_2-x_0) & \ldots & x_{n-1}^{n-2}(x_{n-1}-x_0) & x_n^{n-2}(x_n-x_0)\\
0 & x_1^{n-1}(x_1-x_0) & x_2^{n-1}(x_2-x_0) & \ldots & x_{n-1}^{n-1}(x_{n-1}-x_0) & x_n^{n-1}(x_n-x_0)\\
\end{vmatrix}
[/dtex]
Sada napravimo Laplaceov razvoj po prvom stupcu, a zatim iz svakog stupca izlučimo [tex]x_i-x_0, \ i=1,\ldots ,n[/tex]. Dobijemo
[dtex]\prod_{i=1}^n (x_i-x_0)\begin{vmatrix}
1 & 1 & \ldots & 1 & 1\\
x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
x_1^n & x_2^n & \ldots & x_{n-1}^n & x_n^n\\
\end{vmatrix}=\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)[/dtex]
Dakle, [tex]V(x_0,x_1,\ldots ,x_n)=\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)[/tex]. Iteriramo:
[dtex]\begin{array}{ccl}
V(x_0,x_1,\ldots ,x_n) & = & \displaystyle\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)\\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdot V(x_2,\ldots ,x_n)\\
& \vdots & \\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdots\prod_{i=n-1}^n (x_i-x_{n-2})\cdot V(x_{n-1},x_n)\\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdots\prod_{i=n-1}^n (x_i-x_{n-2})\prod_{i=n}^n (x_i-x_{n-1})\cdot V(x_n)
\end{array}[/dtex]
Primijetimo [tex]V(x_n)=\vert 1\vert=1[/tex].
Na kraju dobijemo
[dtex]V(x_0,x_1,\ldots ,x_n)=\prod_{i<j}(x_j-x_i), \ j=0,\ldots ,n.[/dtex]
Evo, neka stoji:
[dtex]V(x_0,x_1,\ldots ,x_n)=\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
x_0 & x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_0^2 & x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
x_0^n & x_1^n & x_2^n & \ldots & x_{n-1}^n & x_n^n\\
\end{vmatrix}=[/dtex]
[dtex]=\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
x_0 & x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_0^2 & x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
x_0^{n-1} & x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
0 & x_1^{n-1}(x_1-x_0) & x_2^{n-1}(x_2-x_0) & \ldots & x_{n-1}^{n-1}(x_{n-1}-x_0) & x_n^{n-1}(x_n-x_0)\\
\end{vmatrix}=[/dtex]
[dtex]=\dots=
\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 & 1\\
0 & x_1-x_0 & x_2-x_0 & \ldots & x_{n-1}-x_0 & x_n-x_0\\
0 & x_1(x_1-x_0) & x_2(x_2-x_0) & \ldots & x_{n-1}(x_{n-1}-x_0) & x_n(x_n-x_0)\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & x_1^{n-2}(x_1-x_0) & x_2^{n-2}(x_2-x_0) & \ldots & x_{n-1}^{n-2}(x_{n-1}-x_0) & x_n^{n-2}(x_n-x_0)\\
0 & x_1^{n-1}(x_1-x_0) & x_2^{n-1}(x_2-x_0) & \ldots & x_{n-1}^{n-1}(x_{n-1}-x_0) & x_n^{n-1}(x_n-x_0)\\
\end{vmatrix}
[/dtex]
Sada napravimo Laplaceov razvoj po prvom stupcu, a zatim iz svakog stupca izlučimo [tex]x_i-x_0, \ i=1,\ldots ,n[/tex]. Dobijemo
[dtex]\prod_{i=1}^n (x_i-x_0)\begin{vmatrix}
1 & 1 & \ldots & 1 & 1\\
x_1 & x_2 & \ldots & x_{n-1} & x_n\\
x_1^2 & x_2^2 & \ldots & x_{n-1}^2 & x_n^2\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
x_1^{n-1} & x_2^{n-1} & \ldots & x_{n-1}^{n-1} & x_n^{n-1}\\
x_1^n & x_2^n & \ldots & x_{n-1}^n & x_n^n\\
\end{vmatrix}=\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)[/dtex]
Dakle, [tex]V(x_0,x_1,\ldots ,x_n)=\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)[/tex]. Iteriramo:
[dtex]\begin{array}{ccl}
V(x_0,x_1,\ldots ,x_n) & = & \displaystyle\prod_{i=1}^n (x_i-x_0)\cdot V(x_1,\ldots ,x_n)\\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdot V(x_2,\ldots ,x_n)\\
& \vdots & \\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdots\prod_{i=n-1}^n (x_i-x_{n-2})\cdot V(x_{n-1},x_n)\\
& = & \displaystyle\prod_{i=1}^n (x_i-x_0)\prod_{i=2}^n (x_i-x_1)\cdots\prod_{i=n-1}^n (x_i-x_{n-2})\prod_{i=n}^n (x_i-x_{n-1})\cdot V(x_n)
\end{array}[/dtex]
Primijetimo [tex]V(x_n)=\vert 1\vert=1[/tex].
Na kraju dobijemo
[dtex]V(x_0,x_1,\ldots ,x_n)=\prod_{i<j}(x_j-x_i), \ j=0,\ldots ,n.[/dtex]
|