Search
 
 
  Engleski
 
 
 
Open in this window (click to change)
Forum@DeGiorgi: Početna
Forum za podršku nastavi na PMF-MO
Login Registracija FAQ Smajlići Članstvo Pretražnik Forum@DeGiorgi: Početna

2. zadaca
WWW:

Moja sarma
 
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji diplomskih i starih studija -> Konačne geometrije
Prethodna tema :: Sljedeća tema  
Autor/ica Poruka
*tika*
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 05. 07. 2009. (16:02:50)
Postovi: (5)16
Sarma = la pohva - posuda
= 0 - 0

PostPostano: 18:49 uto, 19. 3. 2013    Naslov: 2. zadaca Citirajte i odgovorite

Kada je rok za predaju druge zadace?
Kada je rok za predaju druge zadace?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
fireball
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 07. 10. 2005. (18:49:17)
Postovi: (4AB)16
Spol: muško
Sarma = la pohva - posuda
26 = 100 - 74
Lokacija: s rukom u vatri i nogom u grobu

PostPostano: 19:10 uto, 19. 3. 2013    Naslov: Re: 2. zadaca Citirajte i odgovorite

[quote="*tika*"]Kada je rok za predaju druge zadace?[/quote]
trebalo bi biti prekosutra, ali moze i iduci tjedan
*tika* (napisa):
Kada je rok za predaju druge zadace?

trebalo bi biti prekosutra, ali moze i iduci tjedan



_________________
I bow before you Veliki Limun, on je kiseo i zut Bow to the left
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail
kkarlo
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 19. 05. 2010. (08:43:59)
Postovi: (1B2)16
Spol: zombi
Sarma = la pohva - posuda
64 = 72 - 8

PostPostano: 9:30 sri, 20. 3. 2013    Naslov: Citirajte i odgovorite

U desetom zadatku... Zašto je ovaj puta desno napisan sa točkom, a lijevo nije?
Jesu li to različite operacije ili je tako ispalo slučajno?
U desetom zadatku... Zašto je ovaj puta desno napisan sa točkom, a lijevo nije?
Jesu li to različite operacije ili je tako ispalo slučajno?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 11:07 sri, 20. 3. 2013    Naslov: Citirajte i odgovorite

Na lijevoj strani je oznaka za djelovanje grupe G na skup X (u ovom slucaju je G=X). Tocka na desnoj strani je grupovna operacija. Dakle kad djelujes s elementom g na element x, on ga konjugira (g*x*g^(-1)), a ne mnozi (g*x).
Na lijevoj strani je oznaka za djelovanje grupe G na skup X (u ovom slucaju je G=X). Tocka na desnoj strani je grupovna operacija. Dakle kad djelujes s elementom g na element x, on ga konjugira (g*x*g^(-1)), a ne mnozi (g*x).



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
eta
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 16. 02. 2007. (16:54:15)
Postovi: (2F)16
Sarma = la pohva - posuda
-2 = 3 - 5

PostPostano: 8:36 pon, 10. 6. 2013    Naslov: Peta zadaća Citirajte i odgovorite

Imam pitanja vezano uz petu zadaću,treći zadatak.Produkt ortogonalnih latinskih kvadrata reda 3 sa samim sobom bi bilo :
11 22 33
22 33 11
33 11 22

i to sve modulo 9 pa dobijem

2 4 5
4 5 2
5 2 4

koju trebamo dopinuit do reda 9
i onda isti postupak radimo i s drugom matricom reda 3,s time da ju konstruiramo tako da bude ortogonalna na prvu?
Imam pitanja vezano uz petu zadaću,treći zadatak.Produkt ortogonalnih latinskih kvadrata reda 3 sa samim sobom bi bilo :
11 22 33
22 33 11
33 11 22

i to sve modulo 9 pa dobijem

2 4 5
4 5 2
5 2 4

koju trebamo dopinuit do reda 9
i onda isti postupak radimo i s drugom matricom reda 3,s time da ju konstruiramo tako da bude ortogonalna na prvu?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 18:07 pon, 10. 6. 2013    Naslov: Citirajte i odgovorite

Ne, to nije to. Radi se o dokazu sljedeceg teorema: ako postoji par ortogonalnih latinskih kvadrata reda n1 i par ortogonalnih latinskih kvadrata reda n2, onda postoji par ortogonalnih latinskih kvadrata reda n1*n2. Dokaz sam radio na predavanjima, ali nema ga u trenutnoj verziji skripte.

Konstrukcija ide ovako. Neka su A, B ortogonalni latinski kvadrati reda n1, a A' i B' reda n2. Broj i iz {1,2,...,n1*n2} identificiramo s parom (i1,i2) iz {1,2,...,n1}x{1,2,...,n2} tako da je i=(i1-1)*n2+i2. Kvadrat AxA' na mjestu (i,j) ima unos (a_{i1,j1},a'_{i2,j2}). Analogno definiramo BxB'.

Uzmite dva ortogonalna kvadrata reda 3, pomnozite prvog sa samim sobom i drugog sa samim sobom kao sto je gore opisano. Provjerite da ste tako dobili ortogonalne kvadrate reda 9.

Ista ta konstrukcija opisana je [url=http://www.unilorin.edu.ng/publications/adeleke/File17.PDF]ovdje[/url] u terminima kvazigrupa (teorem 2 na str. 358). Ako netko izgugla ljepsi opis, nek polinka.
Ne, to nije to. Radi se o dokazu sljedeceg teorema: ako postoji par ortogonalnih latinskih kvadrata reda n1 i par ortogonalnih latinskih kvadrata reda n2, onda postoji par ortogonalnih latinskih kvadrata reda n1*n2. Dokaz sam radio na predavanjima, ali nema ga u trenutnoj verziji skripte.

Konstrukcija ide ovako. Neka su A, B ortogonalni latinski kvadrati reda n1, a A' i B' reda n2. Broj i iz {1,2,...,n1*n2} identificiramo s parom (i1,i2) iz {1,2,...,n1}x{1,2,...,n2} tako da je i=(i1-1)*n2+i2. Kvadrat AxA' na mjestu (i,j) ima unos (a_{i1,j1},a'_{i2,j2}). Analogno definiramo BxB'.

Uzmite dva ortogonalna kvadrata reda 3, pomnozite prvog sa samim sobom i drugog sa samim sobom kao sto je gore opisano. Provjerite da ste tako dobili ortogonalne kvadrate reda 9.

Ista ta konstrukcija opisana je ovdje u terminima kvazigrupa (teorem 2 na str. 358). Ako netko izgugla ljepsi opis, nek polinka.



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
eta
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 16. 02. 2007. (16:54:15)
Postovi: (2F)16
Sarma = la pohva - posuda
-2 = 3 - 5

PostPostano: 20:55 pon, 10. 6. 2013    Naslov: Citirajte i odgovorite

Hvala :) I mislila sam ,nakon što sam malo bolje proučila :oops: da treba ovako!
Hvala Smile I mislila sam ,nakon što sam malo bolje proučila Embarassed da treba ovako!


[Vrh]
Korisnički profil Pošaljite privatnu poruku
Prethodni postovi:   
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji diplomskih i starih studija -> Konačne geometrije Vremenska zona: GMT + 01:00.
Stranica 1 / 1.

 
Forum(o)Bir:  
Možete otvarati nove teme.
Možete odgovarati na postove.
Ne možete uređivati Vaše postove.
Ne možete izbrisati Vaše postove.
Ne možete glasovati u anketama.
You can attach files in this forum
You can download files in this forum


Powered by phpBB © 2001, 2002 phpBB Group
Theme created by Vjacheslav Trushkin
HR (Cro) by Ančica Sečan