Prethodna tema :: Sljedeća tema |
Autor/ica |
Poruka |
Gordan Forumaš(ica)
Pridružen/a: 03. 11. 2002. (18:01:44) Postovi: (192)16
Spol:
Lokacija: Zagreb
|
Postano: 18:43 ned, 20. 1. 2008 Naslov: Par dokaza |
|
|
(a) Dokazi da u svakom, makar kako malom okolisu neke kvadratne matrice A reda n postoji matrica koja je invertibilna (ako je A invertibilna, to je jasno: uzmemo samu matricu A; znaci ostaje slucaj kada A nije invertibilna). Drugim rijecima, skup svih invertibilnih matrica je gust u skupu svih matrica reda n.
(b) Je li skup neinvertibilnih matrica takoder gust u skupu svih matrica?
(c) Je li skup svih invertibilnih (regularnih) matrica reda n otvoren u skupu svih matrica reda n.
(d) Interpretirajte odgovore na pitanja (a-c) u slucaju n = 1 (matrice reda 1, tj. realni brojevi).
(e) x'(t) = Ax(t), x(0) = x0 , tj. x(t) = exp(At) x0.
Kako fazni portret trajektorija ovisi o izboru kvadratne matrice? Kakve trajektorije daju stabilne kvadratne matrice?
(a) Dokazi da u svakom, makar kako malom okolisu neke kvadratne matrice A reda n postoji matrica koja je invertibilna (ako je A invertibilna, to je jasno: uzmemo samu matricu A; znaci ostaje slucaj kada A nije invertibilna). Drugim rijecima, skup svih invertibilnih matrica je gust u skupu svih matrica reda n.
(b) Je li skup neinvertibilnih matrica takoder gust u skupu svih matrica?
(c) Je li skup svih invertibilnih (regularnih) matrica reda n otvoren u skupu svih matrica reda n.
(d) Interpretirajte odgovore na pitanja (a-c) u slucaju n = 1 (matrice reda 1, tj. realni brojevi).
(e) x'(t) = Ax(t), x(0) = x0 , tj. x(t) = exp(At) x0.
Kako fazni portret trajektorija ovisi o izboru kvadratne matrice? Kakve trajektorije daju stabilne kvadratne matrice?
Zadnja promjena: Gordan; 8:59 pon, 21. 1. 2008; ukupno mijenjano 1 put.
|
|
[Vrh] |
|
MB Forumaš(ica)
Pridružen/a: 01. 07. 2005. (12:35:21) Postovi: (224)16
Spol:
Lokacija: Molvice
|
|
[Vrh] |
|
petar Gost
|
|
[Vrh] |
|
|