Search
 
 
  Engleski
 
 
 
Open in this window (click to change)
Forum@DeGiorgi: Početna
Forum za podršku nastavi na PMF-MO
Login Registracija FAQ Smajlići Članstvo Pretražnik Forum@DeGiorgi: Početna

Zadace
WWW:
Idite na Prethodno  1, 2, 3, 4  Sljedeće
Moja sarma
 
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji 1. godine, preddiplomski studij Matematika -> Elementarna matematika 1 i 2
Prethodna tema :: Sljedeća tema  
Autor/ica Poruka
Lepi91
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 15. 09. 2010. (15:22:23)
Postovi: (C8)16
Spol: muško
Sarma = la pohva - posuda
= 13 - 4

PostPostano: 17:37 sub, 9. 10. 2010    Naslov: Citirajte i odgovorite

pitanjce:

jel ce u blicu bit zadaci tipa 5,6,7,8? jer kao samo na zaokruzivanje je... pa slobodno dajte svoje misljenje,a tu ima za raspisat... fala unaprijed
pitanjce:

jel ce u blicu bit zadaci tipa 5,6,7,8? jer kao samo na zaokruzivanje je... pa slobodno dajte svoje misljenje,a tu ima za raspisat... fala unaprijed


[Vrh]
Korisnički profil Pošaljite privatnu poruku
frutabella
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 09. 10. 2010. (16:35:36)
Postovi: (24E)16
Sarma = la pohva - posuda
-5 = 42 - 47

PostPostano: 18:42 sub, 9. 10. 2010    Naslov: Citirajte i odgovorite

Ja mislim, ali samo mislim, da nebi trebali biti takvi zadaci za 15 min, ma da opet, koliko kazu, zadaci iz zadace ce biti u blicu (kao), a ako izlucimo bar zadanja 3 zadatka onda od skupova ostaje samo 5.zad, sto je sad malo cudno.
Da se uvjerim, pisemo samo skupove bez relacija, jel tako ?
Ja mislim, ali samo mislim, da nebi trebali biti takvi zadaci za 15 min, ma da opet, koliko kazu, zadaci iz zadace ce biti u blicu (kao), a ako izlucimo bar zadanja 3 zadatka onda od skupova ostaje samo 5.zad, sto je sad malo cudno.
Da se uvjerim, pisemo samo skupove bez relacija, jel tako ?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
27re
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 06. 10. 2010. (16:07:02)
Postovi: (17)16
Sarma = la pohva - posuda
= 3 - 3

PostPostano: 21:32 sub, 9. 10. 2010    Naslov: Citirajte i odgovorite

[quote="frutabella"]Ja mislim, ali samo mislim, da nebi trebali biti takvi zadaci za 15 min, ma da opet, koliko kazu, zadaci iz zadace ce biti u blicu (kao), a ako izlucimo bar zadanja 3 zadatka onda od skupova ostaje samo 5.zad, sto je sad malo cudno.
Da se uvjerim, pisemo samo skupove bez relacija, jel tako ?[/quote]

Pa kao prvo relacije nisu bile u ovoj zadaći, a i rečeno je da ih neće biti
frutabella (napisa):
Ja mislim, ali samo mislim, da nebi trebali biti takvi zadaci za 15 min, ma da opet, koliko kazu, zadaci iz zadace ce biti u blicu (kao), a ako izlucimo bar zadanja 3 zadatka onda od skupova ostaje samo 5.zad, sto je sad malo cudno.
Da se uvjerim, pisemo samo skupove bez relacija, jel tako ?


Pa kao prvo relacije nisu bile u ovoj zadaći, a i rečeno je da ih neće biti


[Vrh]
Korisnički profil Pošaljite privatnu poruku
888
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 09. 10. 2010. (18:26:14)
Postovi: (29)16
Sarma = la pohva - posuda
-3 = 3 - 6

PostPostano: 12:05 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

imam pitanje u vezi zadnjeg zadatka... je li dovoljno uzet za primjer dva disjunktna skupa i raspisat i vidjet što ćemo dobiti?
imam pitanje u vezi zadnjeg zadatka... je li dovoljno uzet za primjer dva disjunktna skupa i raspisat i vidjet što ćemo dobiti?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
pbakic
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 05. 10. 2009. (17:48:30)
Postovi: (143)16
Spol: muško
Sarma = la pohva - posuda
83 = 86 - 3

PostPostano: 13:00 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

Pa trebala bi se dokazati opcenita tvrdnja...
u a) dijelu, to znaci da treba raspisati opcenito, a u b) zadatku (ako se nasluti da tvrdnja ne vrijedi), dovoljno je naci konkretan kontraprimjer:
X={1,2} F={{1},{2}}
Y={2,3}, G={{2},{3}}
Sada imamo FuG={{1},{2},{3}}, a to je ocito particija skupa {1,2,3}=XuY,
ali X i Y nisu disjunktni. =>b) ne vrijedi.
Ako treba jos raspisati a), reci
Pa trebala bi se dokazati opcenita tvrdnja...
u a) dijelu, to znaci da treba raspisati opcenito, a u b) zadatku (ako se nasluti da tvrdnja ne vrijedi), dovoljno je naci konkretan kontraprimjer:
X={1,2} F={{1},{2}}
Y={2,3}, G={{2},{3}}
Sada imamo FuG={{1},{2},{3}}, a to je ocito particija skupa {1,2,3}=XuY,
ali X i Y nisu disjunktni. =>b) ne vrijedi.
Ako treba jos raspisati a), reci


[Vrh]
Korisnički profil Pošaljite privatnu poruku
Tomislav
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 04. 10. 2010. (20:18:25)
Postovi: (181)16
Spol: muško
Sarma = la pohva - posuda
23 = 116 - 93

PostPostano: 13:47 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

Cisto informativno, hoce li zadaci na blicu biti na zaokruživanje ili ne nužno?
Cisto informativno, hoce li zadaci na blicu biti na zaokruživanje ili ne nužno?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
pbakic
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 05. 10. 2009. (17:48:30)
Postovi: (143)16
Spol: muško
Sarma = la pohva - posuda
83 = 86 - 3

PostPostano: 14:10 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

Prosle godine su svi bili na zaokruzivanje, pa ce valjda i ove ('ko bi to ispravljao... :D)
Prosle godine su svi bili na zaokruzivanje, pa ce valjda i ove ('ko bi to ispravljao... Very Happy)


[Vrh]
Korisnički profil Pošaljite privatnu poruku
ceps
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 08. 10. 2010. (13:03:07)
Postovi: (13A)16
Sarma = la pohva - posuda
71 = 74 - 3

PostPostano: 14:29 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

[quote="pbakic"]Pa trebala bi se dokazati opcenita tvrdnja...
u a) dijelu, to znaci da treba raspisati opcenito, a u b) zadatku (ako se nasluti da tvrdnja ne vrijedi), dovoljno je naci konkretan kontraprimjer:
X={1,2} F={{1},{2}}
Y={2,3}, G={{2},{3}}
Sada imamo FuG={{1},{2},{3}}, a to je ocito particija skupa {1,2,3}=XuY,
ali X i Y nisu disjunktni. =>b) ne vrijedi.
Ako treba jos raspisati a), reci[/quote]

Ako može za mene raspisati a) još... Intuitivno mi je jasno zašto je tako, ali ne znam da li mogu to ispravno formalno dokazati.
pbakic (napisa):
Pa trebala bi se dokazati opcenita tvrdnja...
u a) dijelu, to znaci da treba raspisati opcenito, a u b) zadatku (ako se nasluti da tvrdnja ne vrijedi), dovoljno je naci konkretan kontraprimjer:
X={1,2} F={{1},{2}}
Y={2,3}, G={{2},{3}}
Sada imamo FuG={{1},{2},{3}}, a to je ocito particija skupa {1,2,3}=XuY,
ali X i Y nisu disjunktni. ⇒b) ne vrijedi.
Ako treba jos raspisati a), reci


Ako može za mene raspisati a) još... Intuitivno mi je jasno zašto je tako, ali ne znam da li mogu to ispravno formalno dokazati.


[Vrh]
Korisnički profil Pošaljite privatnu poruku
pbakic
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 05. 10. 2009. (17:48:30)
Postovi: (143)16
Spol: muško
Sarma = la pohva - posuda
83 = 86 - 3

PostPostano: 14:44 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

evo za a) dokaz:
Da bi FuG bila particija XuY, mora zadovoljavati ona 3 svojstva:

1) FuG ne sadrzi prazan skup (to je ocito, jer ni F ni G ne sadrze prazan skup, buduci da su F i G particije)

2) za svaka dva elementa iz FuG, presjek im je prazan:
ako su oba elementa iz F ili oba iz G, onda im je presjek prazan jer su F i G particije pa to svojstvo vrijedi unutar njih.
ako je jedan iz F, drugi iz G: buduci da su X i Y disjunktni, onda pogotovo za bilo koja dva podskupa [latex]A\subseteq X[/latex] i [latex]B\subseteq Y[/latex] vrijedi [latex]A\cap B=\varnothing[/latex].

3) unija svih elemenata FuG daje XuY:
Unija svih elemenata iz F daje X (jer je F particija), unija svih elemenata iz G daje Y, pa kad napravimo uniju jednih i drugih, dobit cemo XuY
evo za a) dokaz:
Da bi FuG bila particija XuY, mora zadovoljavati ona 3 svojstva:

1) FuG ne sadrzi prazan skup (to je ocito, jer ni F ni G ne sadrze prazan skup, buduci da su F i G particije)

2) za svaka dva elementa iz FuG, presjek im je prazan:
ako su oba elementa iz F ili oba iz G, onda im je presjek prazan jer su F i G particije pa to svojstvo vrijedi unutar njih.
ako je jedan iz F, drugi iz G: buduci da su X i Y disjunktni, onda pogotovo za bilo koja dva podskupa i vrijedi .

3) unija svih elemenata FuG daje XuY:
Unija svih elemenata iz F daje X (jer je F particija), unija svih elemenata iz G daje Y, pa kad napravimo uniju jednih i drugih, dobit cemo XuY




Zadnja promjena: pbakic; 19:28 ned, 10. 10. 2010; ukupno mijenjano 1 put.
[Vrh]
Korisnički profil Pošaljite privatnu poruku
ceps
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 08. 10. 2010. (13:03:07)
Postovi: (13A)16
Sarma = la pohva - posuda
71 = 74 - 3

PostPostano: 15:51 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

Aha, samo treba dokazati da vrijede tri svojstva particije. Hvala! Često mi se dogodi kod tih dokaza da mislim prekomplicirano.

Samo mi se čini da ti se dogodio mali lapsus:

za svaka dva elementa iz FuG, presjek im je [b]ne[/b]prazan

Particija skupa je rastav skupa na neprazne disjunktne podskupove, tj. presjek elemenata bi trebao biti prazan jer su disjunktni, ke ne?
Aha, samo treba dokazati da vrijede tri svojstva particije. Hvala! Često mi se dogodi kod tih dokaza da mislim prekomplicirano.

Samo mi se čini da ti se dogodio mali lapsus:

za svaka dva elementa iz FuG, presjek im je neprazan

Particija skupa je rastav skupa na neprazne disjunktne podskupove, tj. presjek elemenata bi trebao biti prazan jer su disjunktni, ke ne?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
pbakic
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 05. 10. 2009. (17:48:30)
Postovi: (143)16
Spol: muško
Sarma = la pohva - posuda
83 = 86 - 3

PostPostano: 19:29 ned, 10. 10. 2010    Naslov: Citirajte i odgovorite

Naravno, imas pravo - pisem jedno, a dokazujem drugo :D
Sad je ispravljeno (valjda neki tik, izgleda da sam vise puta do sad dokazivao da je nesto neprazno nego prazno :))
Naravno, imas pravo - pisem jedno, a dokazujem drugo Very Happy
Sad je ispravljeno (valjda neki tik, izgleda da sam vise puta do sad dokazivao da je nesto neprazno nego prazno Smile)


[Vrh]
Korisnički profil Pošaljite privatnu poruku
AnaP
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 02. 05. 2008. (15:41:46)
Postovi: (153)16
Sarma = la pohva - posuda
55 = 60 - 5

PostPostano: 9:05 čet, 14. 10. 2010    Naslov: Citirajte i odgovorite

Objavljena je i druga domaca zadaca na
http://web.math.hr/nastava/em/EM1/zadace/dz2010/dz2.pdf

Zadaca se ne predaje, ali preporucamo je kao vjezbu za kolokvij.
Objavljena je i druga domaca zadaca na
http://web.math.hr/nastava/em/EM1/zadace/dz2010/dz2.pdf

Zadaca se ne predaje, ali preporucamo je kao vjezbu za kolokvij.


[Vrh]
Korisnički profil Pošaljite privatnu poruku
ceps
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 08. 10. 2010. (13:03:07)
Postovi: (13A)16
Sarma = la pohva - posuda
71 = 74 - 3

PostPostano: 14:28 čet, 14. 10. 2010    Naslov: Citirajte i odgovorite

1. pitanje

U relaciji je uređeni par (1,5) dvaput naveden. Greška?
1. pitanje

U relaciji je uređeni par (1,5) dvaput naveden. Greška?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
AnaP
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 02. 05. 2008. (15:41:46)
Postovi: (153)16
Sarma = la pohva - posuda
55 = 60 - 5

PostPostano: 15:56 čet, 14. 10. 2010    Naslov: Citirajte i odgovorite

Da, par je naveden dva puta. To je viska, ali nije pogresno :-)
Da, par je naveden dva puta. To je viska, ali nije pogresno Smile


[Vrh]
Korisnički profil Pošaljite privatnu poruku
<gogo>
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 09. 09. 2010. (09:09:31)
Postovi: (19)16
Spol: muško
Sarma = la pohva - posuda
= 5 - 4

PostPostano: 20:58 ned, 24. 10. 2010    Naslov: Citirajte i odgovorite

DZ.2/2 zadatak

Zadan je neki skup S. Na [latex]\mathcal{P}(S) [/latex] definiramo relaciju sa:

[latex]A \rho B \Leftrightarrow A \cap B \neq \emptyset[/latex]

[latex]A, B \in \mathcal{P}(S)[/latex]

mora li relacija [latex]\rho[/latex] biti refleksivna? simetricna? tranzitivna? antisimetricna?

ideje? :?:
DZ.2/2 zadatak

Zadan je neki skup S. Na definiramo relaciju sa:





mora li relacija biti refleksivna? simetricna? tranzitivna? antisimetricna?

ideje? Question


[Vrh]
Korisnički profil Pošaljite privatnu poruku
Cobs
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 21. 01. 2008. (13:32:15)
Postovi: (206)16
Spol: muško
Sarma = la pohva - posuda
26 = 40 - 14
Lokacija: Geto

PostPostano: 22:10 ned, 24. 10. 2010    Naslov: Citirajte i odgovorite

[quote="<gogo>"]DZ.2/2 zadatak

Zadan je neki skup S. Na [latex]\mathcal{P}(S) [/latex] definiramo relaciju sa:

[latex]A \rho B \Leftrightarrow A \cap B \neq \emptyset[/latex]

[latex]A, B \in \mathcal{P}(S)[/latex]

mora li relacija [latex]\rho[/latex] biti refleksivna? simetricna? tranzitivna? antisimetricna?

ideje? :?:[/quote]

Neka je [latex]R[/latex] neka relacija na skupu [latex]A[/latex].

R je refleksivna ako je [latex]\forall a \in A \hspace{5mm} aRa[/latex]
tj. svaki element u skupu A je u relaciji sa samim sobom.

u tvojem zadatku bi to bilo:

uzmimo proizvoljan [latex]B \in \mathcal{P}(S)[/latex]

ako je [latex]B \rho B \Leftrightarrow B\cap B \neq \emptyset[/latex]

što znači da je relacija [latex]\rho[/latex] refleksivna ako svaki skup iz P(S) u presjeku sa samim sobom ne daje prazan skup. a s obzirom da svaki skup u presjeku sa samim sobom je taj isti skup, ta relacija će bit refleksivna osim u slučaju ako ti je [latex]\emptyset \in \mathcal{P}(S)[/latex].
Za simetričnost ako je A u relaciji sa B tj. njihov je presjek neprazan onda je i presjek B i A neprazan tj. B je i u relaciji sa A, tj relacija je i simetrična. Dalje ćeš valjda moć sam?
<gogo> (napisa):
DZ.2/2 zadatak

Zadan je neki skup S. Na definiramo relaciju sa:





mora li relacija biti refleksivna? simetricna? tranzitivna? antisimetricna?

ideje? Question


Neka je neka relacija na skupu .

R je refleksivna ako je
tj. svaki element u skupu A je u relaciji sa samim sobom.

u tvojem zadatku bi to bilo:

uzmimo proizvoljan

ako je

što znači da je relacija refleksivna ako svaki skup iz P(S) u presjeku sa samim sobom ne daje prazan skup. a s obzirom da svaki skup u presjeku sa samim sobom je taj isti skup, ta relacija će bit refleksivna osim u slučaju ako ti je .
Za simetričnost ako je A u relaciji sa B tj. njihov je presjek neprazan onda je i presjek B i A neprazan tj. B je i u relaciji sa A, tj relacija je i simetrična. Dalje ćeš valjda moć sam?


[Vrh]
Korisnički profil Pošaljite privatnu poruku Posjetite Web stranice
krcko
Forumaš nagrađen za životno djelo
Forumaš nagrađen za životno djelo


Pridružen/a: 07. 10. 2002. (15:57:59)
Postovi: (18B3)16
Sarma = la pohva - posuda
655 = 759 - 104

PostPostano: 8:26 pon, 25. 10. 2010    Naslov: Citirajte i odgovorite

[quote="Cobs"]osim u slučaju ako ti je [latex]\emptyset \in \mathcal{P}(S)[/latex][/quote]

Moze li se reci je li to istina ili ne :?:
Cobs (napisa):
osim u slučaju ako ti je


Moze li se reci je li to istina ili ne Question



_________________
Vedran Krcadinac

Ljudi su razliciti, a nula je paran broj.
[Vrh]
Korisnički profil Pošaljite privatnu poruku Pošaljite e-mail Posjetite Web stranice
888
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 09. 10. 2010. (18:26:14)
Postovi: (29)16
Sarma = la pohva - posuda
-3 = 3 - 6

PostPostano: 12:36 pon, 25. 10. 2010    Naslov: Citirajte i odgovorite

zanima me za isti zadatak, dakle zadatak 2 iz zadaće, da li je relacija antisimetrična?
zanima me za isti zadatak, dakle zadatak 2 iz zadaće, da li je relacija antisimetrična?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
Joker
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 19. 09. 2010. (10:19:16)
Postovi: (8C)16
Spol: žensko
Sarma = la pohva - posuda
= 11 - 11

PostPostano: 21:17 pon, 25. 10. 2010    Naslov: Citirajte i odgovorite

zna li itko,3, zadatak iz druge domaće zadaće...tj zanima me samo,je li ta relacija totalni uređaj na RxR? i ako je,molila bih da netko obajsni zašto...

http://web.math.hr/nastava/em/EM1/zadace/dz2010/dz2.pdf --> tu je taj zadatak,3.

hvala unaprijed =)
zna li itko,3, zadatak iz druge domaće zadaće...tj zanima me samo,je li ta relacija totalni uređaj na RxR? i ako je,molila bih da netko obajsni zašto...

http://web.math.hr/nastava/em/EM1/zadace/dz2010/dz2.pdf --> tu je taj zadatak,3.

hvala unaprijed =)


[Vrh]
Korisnički profil Pošaljite privatnu poruku
<gogo>
Forumaš(ica)
Forumaš(ica)


Pridružen/a: 09. 09. 2010. (09:09:31)
Postovi: (19)16
Spol: muško
Sarma = la pohva - posuda
= 5 - 4

PostPostano: 11:13 uto, 26. 10. 2010    Naslov: Citirajte i odgovorite

[quote="888"]zanima me za isti zadatak, dakle zadatak 2 iz zadaće, da li je relacija antisimetrična?[/quote]

ak su ti [latex]A \rho B[/latex] i [latex]B \rho A [/latex] (a jesu kad im presjek sigurno nije [latex]\emptyset[/latex]) onda ta dva skupa nisu jednaka..

znaci antisimetricnost ne vrijedi...

tranzitivnost isto nemora vrijedit...

[size=9][color=#999999]Added after 9 minutes:[/color][/size]

[quote="krcko"][quote="Cobs"]osim u slučaju ako ti je [latex]\emptyset \in \mathcal{P}(S)[/latex][/quote]

Moze li se reci je li to istina ili ne :?:[/quote]

istina je..

al kaj nije taj prazan skup [latex]\emptyset[/latex] iskljucen uvjetom za [latex]A \cap B \neq \emptyset[/latex] ?
888 (napisa):
zanima me za isti zadatak, dakle zadatak 2 iz zadaće, da li je relacija antisimetrična?


ak su ti i (a jesu kad im presjek sigurno nije ) onda ta dva skupa nisu jednaka..

znaci antisimetricnost ne vrijedi...

tranzitivnost isto nemora vrijedit...

Added after 9 minutes:

krcko (napisa):
Cobs (napisa):
osim u slučaju ako ti je


Moze li se reci je li to istina ili ne Question


istina je..

al kaj nije taj prazan skup iskljucen uvjetom za ?


[Vrh]
Korisnički profil Pošaljite privatnu poruku
Prethodni postovi:   
Započnite novu temu   Odgovorite na temu   printer-friendly view    Forum@DeGiorgi: Početna -> Kolegiji 1. godine, preddiplomski studij Matematika -> Elementarna matematika 1 i 2 Vremenska zona: GMT + 01:00.
Idite na Prethodno  1, 2, 3, 4  Sljedeće
Stranica 2 / 4.

 
Forum(o)Bir:  
Ne možete otvarati nove teme.
Ne možete odgovarati na postove.
Ne možete uređivati Vaše postove.
Ne možete izbrisati Vaše postove.
Ne možete glasovati u anketama.
You can attach files in this forum
You can download files in this forum


Powered by phpBB © 2001, 2002 phpBB Group
Theme created by Vjacheslav Trushkin
HR (Cro) by Ančica Sečan